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Abstract: This paper presents experimental results of density for three 
binary systems: toluene - n-propanol, toluene - iso-propanol and toluene - 
propanoic acid. In order to obtain density values at different temperature and 
concentrations, empirical models were developed using experimental data. 
Two types of models were built and compared: feedforward neural networks 
and empirical equations which give the dependence of density on 
temperature and concentration. Accurate results were obtained in training 
and validation phases, using neural networks with simple topologies and 
short training time. In addition, the trend of the predicted densities was 
qualitatively consistent. The empirical equations also provide good 
concordance between simulation results and experimental data. 
 
Keywords: density, empirical models, artificial neural network modeling. 

 
 
 
INTRODUCTION 
 
A rational design or analysis of a chemical process greatly depends on the accurate 
representation of the thermophysical properties of the process streams. Among these 
properties, density and liquid viscosity emerges as one of the key transport variables 
needed in process design and development.  
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Liquid-liquid extraction, as a separation operation, is based on mass transfer and is 
largely applied in chemical industry. Different mechanisms and models were proposed 
to explain the very complex phenomenology of this operation [1]. 
The mass transfer intensity can be quantified using the individual mass transfer 
coefficients for each phase. For the liquid-liquid extraction, the determination of these 
coefficients is a difficult task that was approached by many researchers [2 - 4]. The 
proposed methods are based on some criterial equations for which the knowledge of 
viscosity and density of different solutions is necessary. Consequently, the experimental 
determination of these values, at different concentrations and temperatures, are very 
useful for the projection of industrial apparatus. 
Densities and viscosities of liquid mixtures are important from both practical and 
theoretical points of view. In the practical aspects, the densities are necessary in a lot of 
chemical engineering calculations (i.e. dimension of storage deposits, design of 
condensers and boilers) and also in order to determine the dynamic viscosity. 
Densities and viscosities for binary mixtures of 1-pentanol with benzene, 
chlorobenzene, brombenzene, iodobenzene, nitrobenzene, aniline, toluene and p-xylene 
have been measured over the whole compositions [5]. Nikam, et al. and Hasan [6] 
reported density and viscosity of mixtures of nitrobenzene with methanol, propan-1-ol, 
propan-2-ol, butan-1-ol, 2-methylpropan-1-ol and 2-methylpropan-2-ol at 298.15 and 
303.15 K.  
Viscosity and density data are presented by Palepu et. al. [7] for five binary liquid 
mixtures of acetonitrile with aniline and substituted anilines at five different 
temperatures and by Villa and co-workers [8] for 1-alkanols and dibutylamine mixtures 
at 298.15 K. 
Taking into account the utility of parameters such as viscosity and density of solutions 
and the fact that the experiments are very laborious, some mathematical models, which 
give its variation for different concentration and temperature domains, would by very 
useful. 
In the last decade, neural networks have attracted great interest as predictive models 
because they have proved to be able to approximate any continuous nonlinear functions 
[9 - 10] and have been applied widely in process modeling and control [11 - 12]. Neural 
networks have the ability to learn what happens in the process without actually 
modeling the physical and chemical laws that govern the system. So they are useful for 
modeling complex nonlinear processes where process understanding is limited [13]. 
In this paper, experimental densities for binary mixtures: toluene - iso-propanol, toluene 
- n-propanol and toluene - propanoic acid over the whole composition range at 19, 26, 
32, 38 and 44°C are obtained. From these experimental determinations some 
mathematical models were established representing empirical relations between density, 
temperature and concentration. Feedforward neural networks designed to predict density 
of different binary mixtures as function of temperature and molar fraction represent 
another type of models. Accurate results are obtained with both types of empirical 
models: equations relating density of temperature and molar fraction and neural network 
models. 
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EXPERIMENTAL  
 
The liquids involved in the experiments, toluene, iso-propanol, n-propanol and 
propanoic acid, were of analytical purity. A pycnometer equipped with internal 
thermometer thermostated was used. Preparation of the solutions was performed 
through weighing using an electronic balance. The molar fractions were known from 
±0.0001 to ±0.0005 in all cases. The estimated uncertainty of the measured densities 
was ±0.0001 g/cm3. 
The experimental values of density for toluene, n-propanol, iso-propanol and propanoic 
acid, as well as those for toluene - iso-propanol, toluene - n-propanol and toluene - 
propanoic acid solutions, for different molar fractions (X) and temperatures (t) are given 
in Tables 1a – 1b. 
 
NEURAL NETWORK MODELING 

 
Multilayer perception (MLP) is the best known and most widely used kind of neural 
network. It is formed by units (neurons), each of them forming a weighted sum of its 
inputs, to which a constant term is added (bias). This sum is then passed through a 
nonlinearity, called activation function. Most often, units are interconnected in a 
feedforward manner, that is, with interconnections that do not form any loops. 
A layered topology of a neural network consists in input, hidden and output layers. 
Note that in the multilayer feedforward network there are only interlayer connections. 
With each connection an weight is associated which is a weighted factor that reflects its 
importance. This weight is a scalar value, positive (excitatory) or negative (inhibitory). 
In the training phase, the neural network learns the behavior of the process. The 
training data set contains both input patterns and the corresponding output patterns 
(also called target patterns). Neural network training leads to finding values of 
connection weights that minimize the differences between the network output and the 
target values. The most extensively adopted algorithm for the learning phase is the 
back-propagation algorithm. 
The purpose of developing a neural model is to find a network (set of formulae) that 
captures the essential relationships in the data. These formulae are then applied to new 
sets of inputs to produce corresponding outputs. This is called generalization and 
represents subsequent phase after training, validation or testing phase, respectively. A 
network is said to generalize well when the input-output relationships, found by the 
network, is correct for input/output pattern of validation data which were never used in 
training the network (unseen data). 
To model the density of the three systems - toluene - n-propanol, toluene - iso-propanol 
and toluene - propanoic acid - separate neural networks were built. The input variables 
were temperature and molar fraction of the solution and the output variables was the 
solution density. 
To built an accurate neural network model, a large amount of training data is required. 
For all three binary systems, experimental data of different temperatures and 
concentrations were used for building and training the networks. The experiments were 
conducted in the ranges: t = 19 ÷ 44°C and X = 0 ÷ 1. Randomly, a few experimental 
data have been extracted to obtain the validation data set and the training was performed 
without these experimental data. 
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Table 1a: Experimental and neural network predicted densities 
(X)* n- propanol acid molar fraction 

Toluene - n-propanol Temperature 
(t) °C Molar fraction (X)* 

[mol/mol solution] 
Experimental density 

(ρexp) [kg/m3] 
Neural network density 

(ρnet) [kg/m3] 
19 0 867.8 865.4 
19 0.1238 858.1 859.6 
19 0.2459 852.1 853.0 
19 0.3657 848.0 846.4 
19 0.4954 839.4 838.6 
19 0.5832 831.3 833.0 
19 0.7513 823.4 822.6 
19 0.8755 814.9 814.3 
19 1 801.8 802.5 
26 0 861.3 860.8 
26 0.1238 852.6 853.9 
26 0.2459 846.7 847.5 
26 0.3657 842.4 841.3 
26 0.4954 834.4 833.7 
26 0.5832 826.2 828.3 
26 0.7513 818.1 818.0 
26 0.8755 809.9 809.4 
26 1 797.3 797.5 
32 0 855.8 855.6 
32 0.1238 848.0 848.5 
32 0.2459 842.0 842.5 
32 0.3657 837.6 836.5 
32 0.4954 830.1 829.1 
32 0.5832 821.9 823.7 
32 0.7513 813.5 813.5 
32 0.8755 805.7 804.8 
32 1 793.5 793.5 
38 0 850.2 849.9 
38 0.1238 843.3 843.3 
38 0.2459 837.3 837.7 
38 0.3657 832.8 831.8 
38 0.4954 825.8 824.4 
38 0.5832 817.6 819.1 
38 0.7513 808.9 809.0 
38 0.8755 801.4 800.3 
38 1 789.6 790.0 
44 0 844.7 844.5 
44 0.1238 838.6 838.7 
44 0.2459 832.6 833.5 
44 0.3657 828.0 827.6 
44 0.4954 821.5 820.1 
44 0.5832 813.3 814.8 
44 0.7513 804.3 804.8 
44 0.8755 797.2 796.2 
44 1 785.8 787.3 

 
 
 



SCIENTIFIC STUDY & RESEARCH ♦ Vol. VI (1) ♦ 2005 ♦ ISSN 1582-540X 
 

 - 69 -

Table 1b: Experimental and neural network predicted densities 
(X)* iso-propanol, propanoic acid molar fraction 

Toluene - iso-propanol Toluene - propanoic acid 

Tempe
-rature 
(t) °C 

Molar 
fraction 

(X)* 
mol/mol 
solution 

Experiment
al density 

(ρexp)  
kg/m3 

Neural 
network 
density 
(ρnet) 

 kg/m3 

Molar 
fraction 

(X)* 
mol/mol 
solution 

Experiment
al density 

(ρexp) 
 kg/m3 

Neural 
network 
density 
(ρnet) 

 kg/m3 
19 0 867.8 865.6 0 867.8 866.1 
19 0.1220 856.3 857.7 0.1290 875.7 876.5 
19 0.2459 847.0 847.6 0.2486 887.2 887.3 
19 0.3720 838.0 837.6 0.3722 900.1 899.9 
19 0.4967 829.3 828.4 0.5082 916.2 915.6 
19 0.6200 819.2 819.4 0.6228 931.6 930.6 
19 0.7507 808.6 809.1 0.7456 950.0 949.8 
19 0.8755 796.8 798.0 0.8724 972.2 973.7 
19 1 786.0 785.6 1 995.6 993.1 
26 0 861.3 860.8 0 861.3 860.3 
26 0.1220 850.2 851.3 0.1290 869.8 870.7 
26 0.2459 841.3 841.2 0.2486 881.5 881.9 
26 0.3720 832.3 831.8 0.3722 894.4 894.8 
26 0.4967 823.4 822.8 0.5082 910.5 910.8 
26 0.6200 813.7 813.8 0.6228 925.8 925.7 
26 0.7507 802.9 803.2 0.7456 944.3 943.9 
26 0.8755 791.2 791.6 0.8724 966.0 967.0 
26 1 780.3 779.4 1 989.6 989.0 
32 0 855.8 855.6 0 855.8 855.5 
32 0.1220 845.0 845.6 0.1290 864.8 865.4 
32 0.2459 836.4 836.1 0.2486 876.6 876.6 
32 0.3720 827.4 827.0 0.3722 889.6 889.9 
32 0.4967 818.4 818.2 0.5082 905.6 906.3 
32 0.6200 809.0 809.0 0.6228 920.8 921.3 
32 0.7507 797.9 798.0 0.7456 939.3 939.0 
32 0.8755 786.4 786.3 0.8724 960.7 961.2 
32 1 775.3 774.7 1 984.4 984.6 
38 0 850.2 850.0 0 850.2 851.0 
38 0.1220 839.7 840.3 0.1290 859.8 860.1 
38 0.2459 831.5 831.2 0.2486 871.6 871.0 
38 0.3720 822.6 822.4 0.3722 884.7 884.5 
38 0.4967 813.4 813.6 0.5082 900.7 901.3 
38 0.6200 804.3 804.1 0.6228 915.9 916.6 
38 0.7507 793.0 792.9 0.7456 934.4 934.1 
38 0.8755 781.6 781.1 0.8724 955.4 955.4 
38 1 770.4 770.8 1 979.2 979.5 
44 0 844.7 844.4 0 844.7 847.3 
44 0.1220 834.5 835.2 0.1290 854.8 855.0 
44 0.2459 826.6 826.5 0.2486 866.7 865.1 
44 0.3720 817.7 817.9 0.3722 879.9 878.5 
44 0.4967 808.3 809.0 0.5082 895.9 895.7 
44 0.6200 799.6 799.3 0.6228 910.9 911.4 
44 0.7507 788.1 787.7 0.7456 929.5 929.1 
44 0.8755 776.8 776.4 0.8724 950.1 949.6 
44 1 765.5 767.7 1 974.0 973.9 
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After the establishing of modeling purpose (input and output variables), one important 
problem in the developing of a neural network is the determining the network 
architecture, that is the number of hidden layer and the number of neurons in each 
hidden layer. It is generally accepted that a large number of hidden layers do not 
necessarily improve the performance, but increases the difficulties in training [13]. 
Determining the number of hidden nodes depends on the nonlinearity of the problem 
and the error tolerance. Too many hidden nodes (an oversized network) cause the 
network to memorize the training set (i.e. over fitting) leading to poor performance of 
generalization. Too few nodes may not achieve the required error tolerance (i.e. under 
fitting) having difficulties in representing the nonlinear processes. 
In our work, the number of hidden layers and units was established by training many 
networks and selecting the one that balanced generalization performance against 
network size. The best network topology was determined based upon the mean squared 
errors (MSE) on the training data. A maximum number of epochs (iterations) were 
fixed. If, after a complete cycle, the overall error is still unacceptable, the neural 
network would be returned to the beginning of the training patterns and the process 
would be repeated. So, the training is considered terminated at the point where MSE 
becomes sufficiently small.  
The networks were trained using back-propagation algorithm. Hidden neurons as well 
as output layer neuron use hyperbolic tangent as nonlinear activation functions. All the 
network weights were initialized as random numbers in the interval (-0.5, 0.5). 
Consequently, a configuration of 2 input neurons (for the input variables: temperature 
and molar fraction), a single hidden layer with 5 neurons and an output layer with 1 
output neurons (for the output variable, the solution density) was used. The training 
errors, mean squared error (MSE) and percent error (E %) are given in Table 2. 
 

Table 2: The training errors of neural models 

Binary system Mean Squared Error 
(MSE) 

Percent Error 
(E %) 

Toluene - n-propanol 0.000524 0.104 
Toluene - iso-propanol 0.000150 0.0624 
Toluene - propanoic acid 0.000106 0.0709 

 
The relative simple structure of the networks, the short training time and the small 
number of data points needed for training prove that the degree of nonlineraity of the 
relations between input and output variables is not too high. 
A special software application - NeuroSolutions - was used in this paper in order to 
project and obtain predictions of neural networks. In this program, the following 
specifications are necessary: the network type (MLP), the input and desired output 
values, the stop condition of the training, the number of hidden layers, the number of 
processing elements in hidden layers, the activation functions, the learning rule, the 
maximum number of epochs and some configuration parameters to display the neural 
model development. 
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MODELING WITH EMPIRICAL EQUATIONS 
  
Based upon experimental data and using specialized software programs for curve fitting, 
a series of empirical equations, which compute the density as function of temperature 
and solution concentration, was determined. Examples of such equations are given in 
Tables 3a – 3c. 
The selection of these equations takes into account the accuracy in experimental data 
modeling and the simplicity of the equations. 
Empirical models presented in Table 3 allowed the determination of density for toluene 
- n-propanol, toluene - iso-propanol and toluene - propanoic acid solutions at any value 
of concentration and temperature of the experimental domain. Working with these 
equations is not difficult, but the introduction of the numerical coefficient for each type 
of system is necessary. The parameter correlation, with values closed to 1, shows the 
good concordance between experiment and model. 
 

Table 3a: Empirical equations for density of the binary system toluene – n-propanol 
No. eq. Equation Coefficients Correlation 

1. 543

2

XgXfXe
XdXctba

⋅+⋅+⋅+

⋅+⋅+⋅+=ρ  

a = 880.28181 
b = -0.75928 
c = -109.07711 
d = 470.88307 
e = -1323.42784 
f = 1504.7769 
g = -605.63705 

0.998 

2. 
XXeXd

Xctba

ln

1

5.03 ⋅⋅+⋅+

⋅+⋅+=
ρ  

a = 0.00113 
b = 1.10942⋅10-6 
c = 6.60923⋅10-5 
d = 2.46886⋅10-5 
e = -3.0811⋅10-6 

0.997 

3. 5.11 Xctba ⋅+⋅+=
ρ

 
a = 0.00113 
b = 1.10984⋅10-6 

c = 8.57292⋅10-5 
0.989 

4. Xcttba ⋅+⋅+= ln/ρ  
a = 890.96048 
b = -3.67159 
c = -60.02538 

0.989 

 
RESULTS AND DISCUSSION 
  
For modeling the density of the toluene - n-propanol, toluene - iso-propanol and toluene 
- propanoic acid solutions, three MLP (2:5:1) (2 input neurons for temperature and 
molar fraction, 5 intermediate neurons in a hidden layer and 1 neuron in output layer for 
density) were considered.  
Firstly, the predictions of neural networks were compared to training (experimental) 
data to verify how well the networks learned the behavior of the process. Table 1 
contains the experimental conditions (temperature and molar fraction), experimental 
density and neural network predicted densities. A good agreement between the two 
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categories of data is observed. The parameters average errors and correlations presented 
in Table 4 show this good concordance. 

 
Table 3b: Empirical equations for density of the binary system toluene – iso-propanol 
No. eq. Equation Coefficients Correlation 

5. 5.05.1

ln
XdXc

tba
⋅+⋅+

⋅+=ρ
 

a = 6.78462 
b = -0.00101 

c = -0.07011 
d = -0.02855 

0.999 

6. 35.22 XfXeXd
Xctba

⋅+⋅+⋅+

⋅+⋅+=ρ

a = 882.46790 
b = -0.83171 

c = -106.69767 
d = 283.49991 
e = -441.60287 
f = 184.26419 

0.999 

7. Xcttba ⋅+⋅+= ln/ρ  
a = 893.13011 
b = -4.01949 
c = -78.86977 

0.997 

8. Xctba ⋅+⋅+=ρln  
a = 6.78559 
b = -0.00101 
c = -0.0964 

0.991 

 
Table 3c: Empirical equations for density of the binary system toluene – propanoic acid 

No. eq. Equation Coefficients Correlation 

9. 543

2

XgXfXe
XdXctba

⋅+⋅+⋅+

⋅+⋅+⋅+=ρ

a = 882.81665 
b = -0.84337 
c = 50.24156 
d = 203.84702 
e = -388.50794 
f = 420.86221 
g = -157.8618 

0.999 

10. 5.05.2 XeXd
Xctba

⋅+⋅+

⋅+⋅+=ρ
 

a = 882.80267 
b = -0.84337 
c = 95.55183 
d = 42.10699 
e = -9.04571 

0.999 

11. 5.1Xctba ⋅+⋅+=ρ  
a = 886.1824681 
b = -0.84337693 
c = 125.419677 

0.998 

12. 5.1ln Xctba ⋅+⋅+=ρ  
a = 944.4821636 
b = -24.9031149 
c = 125.419677 

0.998 
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Table 4: Average errors and correlations for experimental and predicted densities 
System Average error Correlation 

Toluene - n-propanol -0.0003778 0.9987 
Toluene - iso-propanol 0.002556 0.9997 
Toluene - propanoic acid 0.003603 0.9998 

 
The generalization ability of the artificial neural networks is evaluated using a test 
dataset distinct from the training data. Consequently, several experimental data were left 
out the training set, representing validation data set. Tables 5 - 7 show the results of this 
stage of density modeling. Relative errors were calculated as: 

100Er
exp

expnet ⋅
ρ

ρ−ρ
=                                                               (1) 

where ρnet represent neural network prediction and ρexp is experimental density. 
 

Table 5: Validation of neural model for density of toluene - n-propanol solution 

Temperature 
(t) °C 

Molar fraction 
(X) mol/mol 

solution 

Experimental 
density (ρexp) 

kg/m3 

Neural network 
density (ρnet) 

kg/m3 

Relative error 
(Er) 

19 0.7513 823.4 822.869 -0.07516 
26 0.4954 834.4 833.569 -0.10538 
32 0.2459 842.0 842.494 0.058136 
38 0.5832 817.6 819.874 0.270452 
44 0.1238 838.6 839.068 0.046776 

 
The relative errors, extremely low, prove the validity of the neural models. 
It must be noted that the predictions of the neural models were very good, even for the 
validation data set, although the number of experimental points used for training was 
not very large. In this example, it was essential that the limits of experimental domain 
are large enough, corresponding to the practical purposes. In this way, precautions were 
taken to ensure that the training set is representative for the process under study. 
Another idea to emphasize is the importance of the neural network performance in the 
testing set rather than in the training set. In other words, the network should be design 
and trained in order to ensure good generalization and not only good performance in the 
training set. 
 

Table 6: Validation of neural model for density of toluene - iso-propanol solution 

Temperature
(t) °C 

Molar fraction 
(X) mol/mol 

solution 

Experimental 
density (ρexp) 

kg/m3 

Neural network 
Density (ρnet) 

kg/m3 

Relative error
(Er) 

19 0.6200 819.2 819.250 -0.00313 
26 0.3720 832.3 831.899 -0.05462 
32 0.1220 845.0 845.862 0.09955 
38 0.7507 793.0 792.861 -0.02733 
44 0.4967 808.3 809.236 0.106063 
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Table 7: Validation of neural model for density of toluene – propanoic acid solution 

Temperature
(t) °C 

Molar fraction 
(X) mol/mol 

solution 

Experimental 
density (ρexp) 

kg/m3 

Neural network 
Density (ρnet) 

kg/m3 

Relative error 
(Er) 

19 0.5082 916.2 915.520 0.076924 
26 0.2486 881.5 881.923 0.044811 
32 0.7456 939.3 938.946 0.047042 
38 0.3722 884.7 884.562 0.025149 
44 0.8724 950.1 949.492 0.074229 

  
The main purpose of the neural networks based modeling was to set up the possibility of 
obtaining the density values at any temperature and concentration from the domain of 
data used for training. This type of network testing has as results the curves in Figures 1, 
2 and 3 (corresponding to the three systems under study) in which density variation with 
molar fraction is drawn at 22, 29, 35 and 32°C as neural network predictions (curves 
noted 2, 3 and 4). In these Figures, experimental curves of 19 and 44°C are also 
presented as limits of experimental domain.  
Thus, the neural network predictions make available accurate values of density at any 
concentration and temperature in 19 - 44°C domain. 
Based on the good results obtained in the training and validation of neural models, the 
predictions of neural networks were extended out of the experimental domain, to higher 
temperatures (greater than 44°C) and to lower temperature (less than 19°C). Figures 4, 5 
and 6 present these results for three values of the molar fractions: 0.2, 0.5 and 0.7 and 
for the three systems on which this study focuses. In these Figures, the temperatures 
without experimental domain are marked with circles (10, 15, 45, 50, 55, 60°C). We can 
appreciate that the trend of the predicted density out of the experimental domain is 
qualitatively consistent. 
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Figure 1: Density variation with molar fraction for the system toluene - n-propanol 
obtained as neural network prediction at: 1 - 19°C; 2 - 22°C; 3 - 29°C; 4 - 35°C; 5 - 

44°C. 
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Figure 2: Density variation with molar fraction for the system toluene - iso-propanol 
obtained as neural network prediction at: 1 - 19°C; 2 - 22°C; 3 - 29°C; 4 - 35°C; 5 - 

44°C. 
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Figure 3: Density variation with molar fraction for the system toluene - propanoic acid 

obtained as neural network prediction at: 1 - 19°C; 2 - 29°C; 3 - 35°C; 4 - 42°C; 5 - 
44°C. 
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Figure 4: Neural network predictions out of the temperature experimental domain at 
different molar fractions (0.2, 0.5 and 0.7) and different temperatures (10, 15, 45, 50, 

55, 60°C) for the toluene - n-propanol solutions. 
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Figure 5: Neural network predictions out of the temperature experimental domain at 
different molar fractions (0.2, 0.5 and 0.7) and different temperatures (10, 15, 45, 50, 

55, 60°C) for the toluene - iso-propanol solutions. 
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Figure 6: Neural network predictions out of the temperature experimental domain at 
different molar fractions (0.2, 0.5 and 0.7) and different temperatures (10, 15, 45, 50, 

55, 60°C) for the toluene - propanoic acid solutions. 
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Another type of empirical modeling is represented by equations from Tables 3 which 
gives explicitly the dependence of density with temperature and molar fraction. For 
each of the three systems, the equations with the best correlations (numbered 1, 5 and 
10) and the simplest equations (4, 7 and 11) were chosen in order to compare their 
results with the neural network predictions. The comparisons were made at different 
temperatures: 26°C for toluene - n-propanol, 38°C for toluene - iso-propanol, 44°C for 
toluene - propanoic acid. Figures 7 - 9 present these examples. 
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Figure 7: Density variation with molar fraction for the system toluene - n-propanol 

obtained at 26°C with neural model and empirical equations 1 and 4. 
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Figure 8: Density variation with molar fraction for the system toluene - iso-propanol 

obtained at 38°C with neural model and empirical equations 5 and 7. 
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The empirical equations have the advantage of offering an explicit form of viscosity 
variation with temperature and molar fraction, but they are difficult in handling because 
of the numerical coefficients which must be replaced for each system. The neural 
models have also empirical parameters (network weights), but these are available for the 
whole experimental domain. In addition, the artificial neural networks are easy to build, 
have a simple topology, a short training time and provide accurate results.   
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Figure 9: Density variation with molar fraction for the system toluene - propanoic acid 

obtained at 44°C with neural model and empirical equations 10 and 11. 
 
 

CONCLUSIONS 
  
This paper presents experimental data of density for three binary solutions: toluene - n-
propanol, toluene - iso-propanol and toluene - propanoic acid, for different temperatures 
(19 ÷ 44°C) and molar fractions (X = 0 ÷ 1). 
Because the experiments are laborious, mathematical models, which allow calculate the 
density of the above systems at each temperature and concentration are required.  
The neural networks are adequate and recommended instruments for modeling 
nonlinear processes. The wide use of neural networks is based on their ability of 
learning from a set of numerical data (corresponding to the input and output desired 
variables), using an adjustment algorithm for the network’ parameters. Once trained, the 
network will be able to generate predictions faster than any other type of model. 
Three neural networks were built to predict the density of the toluene - n-propanol, 
toluene - iso-propanol and toluene - propanoic acid solutions. These MLP (2:5:1) work 
with temperature and molar fraction as input variables and have 5 neurons in a single 
hidden layer. Errors smaller than 0.4 % have been obtained in training and testing 
phases. The neural models make available accurate values of density at any molar 
fraction and temperature in the experimental domain used for network training (19 ÷ 
44°C) and replace, in this way, experiments. Qualitatively, we can appreciate that the 
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predictions of the neural models outside the temperature experimental domain are 
precise, as show the trend curves. 
Explicit correlations between density and temperature and molar fraction are given by 
empirical equations obtained with a curve fitting procedure starting from experimental 
data.  
A comparison between the empirical equations and neural models shows the advantages 
and disadvantages of the two modeling techniques. The empirical equations offer an 
explicit form of viscosity variation with molar fraction, but they are difficult to handle 
due to the numerical coefficients. The neural models are easy to design and provide in a 
simple and fast manner accurate results, but they work like a black box. 
One should note that both types of models are easy to obtain and provide good 
concordance with experimental data. 
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