

α-(3,7-DIOXA-r-1-AZABICYCLO[3.3.0]OCT-c-5-YL METHOXY)-DIAZINES (I): SYNTHESIS AND STEREOCHEMISTRY. EXTENTION IN \boldsymbol{s}-TRIAZINE SERIES*

Camelia Berghian ${ }^{1,2}$, Nelly Pléé, Alain Turck ${ }^{2}$, Mircea Darabantu ${ }^{1,2}$
${ }^{1}$ Department of Organic Chemistry, "Babes-Bolyai" University, 11 Aranyi Jànos Str., RO-400028 Cluj-Napoca, Romania, darab@chem.ubbcluj.ro ${ }^{2}$ Institut de Recherche en Chimie Organique Fine (I.R.C.O.F.), Université de Rouen, BP 08, F-76131 Mont Saint-Aignan Cedex, France

Abstract

The synthesis of the title compounds, consisting in the replacement of chlorine in commercial α-chlorodiazines and cyanuryl chloride by the 3,7-dioxa-r-1-azabicyclo[3.3.0]oct-c-5-ylmethoxy group (Williamson method) is described. The stereochemistry of this new series is analysed in terms of different conformational chirality exhibited in solution (${ }^{1} \mathrm{H}$ DNMR) vs. solid state (X-Ray Diffractometry), meso against chiral forms respectively. In solid state, the inclusion capacity of some chiral networks as well as their supramolecular aggregation is pointed out.

Keywords: pyrazines, pyrimidines, s-triazines, oxazolidines, $N M R$, chirality, X-Ray Diffractometry.

INTRODUCTION

The 3,7-dioxa-1-azabicyclo[3.3.0]octane heterocyclic saturated system \mathbf{A} is readily available by double cyclocondensation between TRIS ${ }^{\circledR}$ (2-amino-2-hydroxymethyl-1,3-

[^0]propandiol) and carbonyl compounds, yielding 5-hydroxymethyl-3,7-dioxa analogous \mathbf{B} of the core alkaloid, namely pyrrolizidine \mathbf{C} (Scheme 1) [1-4].

B
DOABO-CH2OH
Scheme 1.

Although compounds having \mathbf{A} as basic skeleton are of high biological interest, fertilisers, biocides, pesticides and anticancer agents [5-14], only few of the results reported previously validated this class as appropriate for further functionalisation. The later was ensured classically by the a priori selection of the substituted starting carbonyl compound, usually an aldehyde (Scheme 1). Only compounds A bearing a hydroxymethyl group at C-5 (e.g. B, Scheme 1) were mentioned to be suitable for functionalisation at this site by acylation [3-5, 7, 8, 12, 15], thionation [16] and by DessMartin oxidation [13]. Depending on the new group linked at C-5, the reported structures are all of pharmaceutical [7, 8, 12, 13] and of supramolecular interest [17].
Succeeding to our developments in synthesis and stereochemistry of substituted 3,7-DiOxa-r-1-AzaBicyclo[3.3.0]-c-5-Octanes* (hereafter throughout abbreviated as DOABO, Scheme 1) [18-20], we recently established that some compounds of type B (Scheme 1, $\mathrm{R}=\mathrm{H}, \mathrm{Ph}$) can be easily converted into 5 -alkoxymethyl derivatives, via potassium alkoxides, in much milder conditions than those used earlier by Broadbent in 1976 (Williamson method) [7, 20]. Not only were they efficient nucleophiles against aliphatic halo compounds, but in a single testing example, against a α-chloro- π-deficient system such as 2,6 -dichloropyrazine [20]. An extension of this result required a larger series of competent substrates. Referring to our previous data about the nucleophilic replacement of chlorine in certain π-deficient systems [26, 27], we considered certain α chlorodiazines and cyanuryl chloride as a challenging choice for investigating more elaborated building blocks with potential biological and / or supramolecular interest. Hence, we preliminarily report here the synthesis and stereochemistry of a new class as 3,7-dioxa- r-1-azabicyclo[3.3.0]oct-c-5-ylmethoxydi(s-tri)azines D (Scheme 1).

[^1]
RESULTS AND DISCUSSION

Syntheses

Two known DOABO derivatives $\mathbf{1 a}$, \mathbf{b} [19, 20] were reacted with potassium hydride in conditions depicted in Scheme 2.

a: $\mathrm{R}=\mathrm{H} ; \mathbf{b}: \mathrm{R}=\mathrm{Ph}$
i: 1.05 eq. $\mathrm{KH} / \mathrm{THF} / 40^{\circ} \mathrm{C} / 1.0-1.5 \mathrm{hrs}$.

Abbreviations:
$\mathbf{R}=\mathbf{H}:(2 \mathrm{H}) \mathrm{DOABO}-\mathrm{CH}_{2} \mathrm{O}$
$\mathbf{R}=\mathbf{P h}:(2 \mathrm{Ph}) \mathrm{DOABO}-\mathrm{CH}_{2} \mathrm{O}$

Scheme 2.

The study of the reaction between potassium alkoxides $\mathbf{2 a}, \mathbf{b}$ and α-chlorodiazines was performed by using throughout $1.05 \times \mathrm{n}$ equivalents of $\mathbf{2 a}, \mathbf{b} /$ equivalent of diazine possessing " n " chlorine atoms. All syntheses were systematically TLC and NMR monitored. New type compounds were prepared in pyrazine, pyrimidine and s-triazine series (Scheme 3, 4, Table 1-3).

3a, b

4a-f

5a-c

3a: $\mathrm{R}^{1}=\mathrm{H}$
3b: $\mathrm{R}^{1}=\mathrm{Cl}$
i: 2a, b/THF, $T\left({ }^{\circ} \mathrm{C}\right)$, t (hrs.)

Scheme 3.

Only 2a exhibited a "methoxide-like reactivity" regarding the quantitative results. Indeed, in a competitive experiment, equimolar amounts of 2-chloropyrazine 3a: 2a : potassium methoxide gave the equimolar ratio between 2 -methoxypyrazine and $\mathbf{4 a}$. When 2b, having C-2, -8 disubstituted DOABO unit with phenyl groups was used as nucleophile, the yields decreased slightly, $\mathbf{4 a}$ (85%) vs. $\mathbf{4 b}$ (79%). The unfavourable influence of substitution at C-2, -8 was best illustrated when the results of the on-pot replacement of the two chlorine atoms in 2,6-dichloropyrazine, 2b vs. 2a were compared. Treatment of $\mathbf{3 b}$ with 2.1 eq. of $\mathbf{2 b}$ yielded a complex mixture of monochloro derivative $\mathbf{4 c}$, the (2 Ph)DOABO- $\mathrm{CH}_{2} \mathrm{O}$ substituting pyrazinone 4 d (issued most probably from the partial hydrolysis of $\mathbf{4 c}$ during the aqueous work-up) and, in traces
only, the desired product $\mathbf{4 e}$. Using 2a as nucleophile, compound $\mathbf{4 f}$ was obtained in a clean procedure as was described in a previous publication of us [20].

Table 1. Results in the synthesis of α-(3,7-dioxa-r-1-azabicyclo[3.3.0]oct-c-5-ylmethoxy)-pyrazines. Preparation of compounds 4a-f

Reaction	Product 4a-f		$\begin{gathered} T \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} \mathrm{t} \\ \text { (hrs.) } \end{gathered}$	Yield(\%)
	\mathbf{R}^{2}	\mathbf{R}^{3}			
$\mathbf{3 a + 2 a} \rightarrow 4 \mathrm{a}$	H	(2H)DOABO- $\mathrm{CH}_{2} \mathrm{O}$	40	16	85
$3 \mathrm{a}+2 \mathrm{~b} \rightarrow 4 \mathrm{~b}$	H	(2Ph)DOABO- $\mathrm{CH}_{2} \mathrm{O}$	60	20	79
$\begin{aligned} \mathbf{3 b}+\mathbf{2 b} & \rightarrow \mathbf{4 c} \\ & \rightarrow \mathbf{4 d} \\ & \rightarrow 4 \mathrm{e} \end{aligned}$	Cl OH (2Ph)DOABO-CH2O	$\begin{aligned} & \text { (2Ph)DOABO-CH2O } \\ & \text { (2Ph)DOABO-CH2 } \\ & \text { (2Ph)DOABO-CH2 }-\mathrm{CH}_{2} \mathrm{O} \end{aligned}$	65	52	$\begin{gathered} 34^{\mathrm{a}} \\ 17^{\mathrm{a}} \\ 8^{\mathrm{a}} \end{gathered}$
$\mathbf{3 b}+\mathbf{2 a} \rightarrow \mathbf{4}$	$(2 \mathrm{H}) \mathrm{DOABO}-\mathrm{CH}_{2} \mathrm{O}$	(2H)DOABO-CH2O	$\begin{aligned} & 65 \\ & \text { r.t. } \end{aligned}$	$\begin{gathered} 3 \\ 14 \end{gathered}$	76

${ }^{\text {a Partial conversions of } \mathbf{3 b} \text { based on the efective amounts isolated by column chromatography. }}$
Next, the 4,6-dichloropyrimidine produced the series 5a-c (Scheme 3, Table 2).
Table 2. Results in the synthesis of α-(3,7-dioxa-r-1-azabicyclo[3.3.0]oct-c-5-ylmethoxy)-pyrimidines. Preparation of compounds 5a-c

Compound	$\mathbf{R}^{\mathbf{1}}$	$\mathbf{R}^{\mathbf{2}}$	\boldsymbol{T} $\mathbf{(} \mathbf{C})$	\mathbf{t} (hrs. $)$	Yield $(\%)$
$\mathbf{5 a}$	$(2 \mathrm{H}) \mathrm{DOABO}-\mathrm{CH}_{2} \mathrm{O}$	$(2 \mathrm{H}) \mathrm{DOABO}-\mathrm{CH}_{2} \mathrm{O}$	45	24	81
$\mathbf{5 b}$	$(2 \mathrm{Ph}) \mathrm{DOABO}-\mathrm{CH}_{2} \mathrm{O}$	$(2 \mathrm{Ph}) \mathrm{DOABO}-\mathrm{CH}_{2} \mathrm{O}$	65	21	31^{a}
$\mathbf{5 c}$	$(2 \mathrm{Ph}) \mathrm{DOABO}-\mathrm{CH}_{2} \mathrm{O}$	Cl			23^{a}

${ }^{\text {a }}$ Partial conversions of 4,6-dichloropyrimidine based on the efective amounts isolated by column chromatography.

With 2a as nucleophile, the synthesis of $\mathbf{5 a}$ occurred with good yield. As in the α chloropyrazine series, the use of $\mathbf{2 b}$ gave different results since complete replacement of chlorine was possible but with low yield: the separable mixture of $\mathbf{5 b}$ and $\mathbf{5 c}$ was obtained, suggesting that the second substitution of chlorine in $\mathbf{5 c}$ was difficult.
Based on literature data reporting the reaction between alcohols and cyanuryl chloride in neutral or basic conditions, we also attempted the one-pot trisubstitution of chlorine in cyanuryl chloride using our nucleophiles (Scheme 4, Table 3) [28-31].

Scheme 4.

SCIENTIFIC STUDY \& RESEARCH * Vol. VII (1) * 2006 - ISSN 1582-540X

A crucial dependence on the substitution at $\mathrm{C}-2,-8$ on the DOABO group combined with a modulated nucleophilicity as $\mathrm{K}(\mathbf{2 a}, \mathbf{2 b})$ or $\mathrm{Li}(\mathbf{2 c}, \mathbf{2 d})$ alkoxide form was observed. The mass spectra of $\mathbf{6 a}, 7 \mathbf{7 a}$ (ESI and FAB^{+}respectively) fully confirmed the envisaged structures. The bias between $\mathbf{6 b}$ and $\mathbf{7 b}$ could also be solved by MS-(FAB $)$ spectrometry only. Next, with the isolated $\mathbf{6 a}, \mathbf{7 a}, \mathbf{6 b}$ and $\mathbf{7 b}$ in our hands, the content of the crude reaction mixtures (Table 3) based on their ${ }^{1} \mathrm{H}$ NMR spectra was determined.

Table 3. Results in the synthesis of α-(3,7-dioxa-r-1-azabicyclo[3.3.0]oct-c-5-

Starting material	Nucleophile	$\begin{gathered} T \\ \left({ }^{T} \mathbf{C}\right) \end{gathered}$	$\underset{(\mathrm{hrs} .)}{\mathrm{t}}$	Results	
				Compounds in crude r.m. (\%)	Yield (\%)
1a	2 a	65	36	6 a (100)	34
	2 c	$-78 \rightarrow$ r.t.	20	7 a (100)	82
1b	2 b	$\begin{gathered} 0 \\ 65 \end{gathered}$	$\begin{gathered} \hline 1 \\ 40 \end{gathered}$	7b (51); $\mathbf{6 b}$ (10); 1b (39)	37
	2d	$\begin{gathered} -60 \rightarrow \text { r.t. } \\ \text { r.t. } \\ 65 \end{gathered}$	$\begin{gathered} 20 \\ 48 \\ 4 \end{gathered}$	7b (46); 6b (8); 1b (46)	29

Stereochemistry

Preliminary conformational considerations

As pyrrolizidine \mathbf{C} (Scheme 1), the skeleton of its 3,7-dioxa analogous \mathbf{A} is heterofacial. All its (hetero)atoms are prostereogenic centres [20]. Except H-5, the substitution test of any of the hydrogen atoms generates configurational chirality [19, 20]. The basic molecule itself \mathbf{A}, a cis fused double oxazolidine system, as well as its c - C - 5 -achiral monosubstituted derivatives (e.g. $\mathbf{B}, \mathrm{R}=\mathrm{H}$, Scheme 1), can exist in a number of flexible conformations upon pseudorotation occurring at each oxazolidine ring. Few experimental studies confirmed this flipping [19, 20, 23] since determining the frozen conformation in solution is a quite difficult task. Our previous results of the ab initio RHF/6-31G* calculations [19, 20] predicted that the DOABO skeleton is involved in three different conformational equilibriums depicted in Scheme 7.

They suggested the oriented flexibility of the bicycle, ascertained as a single oxazolidine ring inversion / equilibrium. It occurs regardless of the configurational nature, achiral or non-chiral, of the structure. The four stereoisomers were discriminated based on the sense of puckering in the two oxazolidine rings, syn/anti O-3/O-7, revealed as fused O-envelope conformers. The substitution test shows that the steric relationships between homofacial protons, aminalic H-2, -8 or aliphatic H-4, -6 , are different in the two types of conformers, enantiotopic in diastereomeric meso forms (s, s) or (a, a) but diastereotopic in chiral forms (a, s) or (s, a).

${ }^{\mathrm{a}}$ Typical $\Delta \mathrm{E}$ values in vacuum and gas phase [19, 20].

Scheme 7.

Scheme 8.

In order to designate enantiomeric and meso form conformations, the two torsion angles in the aminalic part of the skeleton, C-5-N-1-C-2-O-3 and C-$5-\mathrm{N}-1-\mathrm{C}-8-\mathrm{O}-7$ were selected and defined by using the helicity rules descriptors M and P. As shown in Scheme 7, the occurrence of the meso (M, P) conformer can be reasonably ruled out since it was found much less stable than the alternative meso (P, M) diastereomer and the chiral conformers $(M, M) \equiv(P, P)$. Only the equilibriums $(M, M) \leftrightarrows(P, M) \leftrightarrows(P, P)$, consisting of two diastereomeric inversions and, overall, an enantiomeric interconversion, are to be considered. However, the magnitude of the corresponding $\mathbf{\Delta} \mathbf{E}_{2}$ values precluded an a priori assignment of the frozen conformation, in gas phase as well as in solution [20]. We note that the apparently restrictive rotation about the C-O-C bonds only was proved by our inspection
of some earlier X-Ray crystallographically determined structures in this class [20, 24, 25].

Scheme 9.

For the present study, we enlarged the analysis to compounds comprising two, even three identical DOABO units tied together by an achiral linker \mathbf{L} (Scheme 8, 9).* Obviously, the linker should be highly symmetric, i.e. $\mathrm{C}_{\mathrm{nh}}, \mathrm{C}_{\mathrm{nv}}$ groups, such as di(tri)methoxy-di(s-tri)azine fragments. They are statistically achiral, considering the angular geometry of the $-\mathrm{O}-\mathrm{CH}_{2}$ - sequence.

The stereoisomerism depicted in Scheme 8, 9 is exacerbated although, by neglecting all the DOABO meso (M, P) type forms (Scheme 7), the conformational analysis is simplified. In this purpose, we applied our previous proposal, namely local stereochemistry, referring to compounds possessing only one DOABO unit (Scheme 7) and global stereochemistry defining molecules built on two or three DOABO units (Scheme 8, 9) [20]. In this approach, "dimeric" DOABO derivatives can exist as two global meso forms, I and II, and four global chiral forms, two racemates III-IV and \mathbf{V} -

[^2]VI. "Trimeric" DOABO derivatives, the s-triazines $\mathbf{7 a}, 7 \mathbf{b}$, provide three global meso forms, VII, XII and XIII, and eight global chiral forms, four racemates, VIII-IX, XXI, XIV-XV and XVI-XVII. The common feature is that each conformer I \rightarrow VI and VII \rightarrow XVII can be generated, step by step, in a single oxazolidine ring inversion / equilibrium, following statistically the pathways depicted in Scheme 8, 9.

Determining the stereochemistry in solution by ${ }^{1} H-D N M R$

A stereochemical analysis, focused on compounds $\mathbf{4 a}, \mathbf{4 f}, \mathbf{5 a}, \mathbf{5 b}, \mathbf{7 a}$ and $\mathbf{7 b}$ was carried out by ${ }^{1} \mathrm{H}$ DNMR at low temperature ($293-173 \mathrm{~K}$) in $\left[\mathrm{D}_{8}\right] \mathrm{THF}$ on 400 MHz time scale. The results (Table 4, 5), as rate constant at coalescence $\left(\mathrm{k}_{\mathrm{c}}\right)$ and the free enthalpy of activation $\left(\Delta \mathrm{G}^{\neq}\right)$of DOABO ring inversion were available by applying the Eyring equations [21, 32].

At room temperature, all compounds were flipping structures mediating the conformtations depicted in Scheme 7-9. Therefore, all data in Table 4, 5 refer to a single oxazolidine ring inversion / equilibrium placed in different environments, created by the number of DOABO units (1-3) / compound. Based on the very small $\Delta \mathbf{E}_{\mathbf{2}}$ values (Scheme 7), all equilibriums were seen as first order reactions and equally populated. Upon cooling, the (2 H)DOABO groups could be ananchomerised below 273 K following the spectral sequence $\mathrm{AB} \rightarrow \mathrm{A}_{2} \rightarrow \mathrm{AB}$ (Table 4). The two "internal clocks", aminalic C-2(8) and aliphatic C-4(6) methylenes were "synchronised", except in the case of the most crowded compound $7 \mathbf{7 a}$. In contrast, the (2 Ph)DOABO groups could be frozen only in the case of the trisubstituted s-triazine $\mathbf{7 b}$. No coalescence was displayed by the (2 Ph)DOABO- $\mathrm{CH}_{2} \mathrm{O}$ fragments disubstituting the pyrimidine $\mathbf{5 b}$. The calculated $\Delta \mathrm{G}^{\neq}$values were in agreement with literature data [33]. Their magnitude also confirmed the faster flipping aptitude of the structures (2 Ph)DOABO against $(2 \mathrm{H}) \mathrm{DOABO}$, for example our starting materials $\mathbf{1 b}$ against 1a [20].

The frozen conformations detected were all mono, double or triple local meso (P, M) forms DOABO conformers, building global meso forms of type I (Scheme 8, $\mathbf{4 f}$ and 5a) and of type VII (Scheme 9, 7a, 7b). The isochronous aminalic or aliphatic homofacial protons (Table 4), which were found throughout enantiotopic, motivate this conclusion.

Table 4: ${ }^{1} H$ DNMR data $\left[\delta(p p m),\left[D_{8}\right] T H F\right]$ of compounds $4 \boldsymbol{a}, 4 f, 5 \boldsymbol{a}, 5 \boldsymbol{b}, 7 \boldsymbol{a}, 7 \boldsymbol{b}$

4a: $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=(2 \mathrm{H}) \mathrm{DOABO}-\mathrm{CH}_{2} \mathrm{O} \quad$ 5a: $\mathrm{R}=(2 \mathrm{H}) \mathrm{DOABO}-\mathrm{CH}_{2} \mathrm{O} \quad$ 7a: $\mathrm{R}=(2 \mathrm{H})$ DOABO $-\mathrm{CH}_{2} \mathrm{O} \quad \mathrm{R}=\mathrm{H}-\mathrm{c},(2 \mathrm{H})$ DOABO $-\mathrm{CH}_{2} \mathrm{O}$ 4f: $\mathrm{R}^{1}=\mathrm{R}^{2}=(2 \mathrm{H}) \mathrm{DOABO}-\mathrm{CH}_{2} \mathrm{O} \quad$ 5b: $\mathrm{R}=(2 \mathrm{Ph}) \mathrm{DOABO}-\mathrm{CH}_{2} \mathrm{O} \quad$ 7b: $\mathrm{R}=(2 \mathrm{Ph}) \mathrm{DOABO}-\mathrm{CH}_{2} \mathrm{O} \quad \mathrm{R}=\mathrm{Ph},(2 \mathrm{Ph}) \mathrm{DOABO}-\mathrm{CH}_{2} \mathrm{O}$

No.	$\begin{gathered} T_{\mathrm{i}}(\mathrm{~K}) \\ T_{\text {coales. }}(\mathrm{K}) \\ T_{\text {calc. }}(\mathrm{K})^{\mathbf{a}} \\ \hline \end{gathered}$			δ Aliphatic methylenes $\mathbf{H - 4 (6)}$${ }^{(9)(9)}-c \quad$		$\begin{gathered} \delta^{\mathbf{d}} \\ \text { Hetar. } \end{gathered}$
4a	293	4.42	4.40	3.84	3.81	H-3: 8.20
	268	4.41		3.83		H-3: 8.21
	253	4.42	4.40	3.84	3.82	H-3: 8.23
4f	293	4.42	4.40	3.84	3.81	H-3, -5: 7.78
	263	4.41		3.82		H-3, -5: 7.79
	183	4.45	4.38	3.88	3.81	H-3, -5: 7.85
5a	293	4.39	4.38	3.78	3.76	H-5: 6.12
	273	4.39		3.77		H-5: 6.15
	173	4.45	4.35	3.85	3.76	H-5: 6.35
7 a	293	4.40	4.38	3.78		-
	273	4.39		3.80	3.78	-
	213	4.43	4.37	3.84	3.76	-
5b	293	-	5.59	4.00	3.91	H-5: 5.75
	173	-	5.58	3.96	3.96	H-5: 6.12
7b	293	-	5.58	3.98	3.92	-
	233	-	5.58	3.96		-
	193	-	5.58	3.99	3.94	-

${ }^{\text {a }}$ Temperature at which the parameters Δv and ${ }^{2} J$ were extracted from the spectrum and used for calculation of parameters k_{c} and $\Delta \mathrm{G}^{\neq}$. ${ }^{\mathrm{b}}$ Doublets with ${ }^{2} J=5.2-5.6 \mathrm{~Hz}$ and singlets in $\mathbf{5 b}, 7 \mathbf{b}$ above T_{i} and below $T_{\text {coales. }}$. ${ }^{\text {c }}$ Doublets with ${ }^{2} J=8.4-9.0 \mathrm{~Hz}$. ${ }^{\text {d }}$ Protons having ortho relationships with DOABO-CH2O groups.

Table 5: ${ }^{1} H D N M R$ data, $k_{c}\left(s^{-1}\right)$ and ΔG^{\neq}(kJ/mol) values of DOABO oxazolidine ring inversion in compounds $4 \boldsymbol{a}, 4 \boldsymbol{f}, 5 \boldsymbol{a}, 5 \boldsymbol{b}, 7 \boldsymbol{a}$ and $7 \boldsymbol{b}$

No.	Oxazolidine ring inversion data										
	CH_{2} groups in aminalic zones					CH_{2} groups in aliphatic zones					
	$\begin{gathered} T_{\text {caales }} \\ \text { (K) } \end{gathered}$	$\begin{aligned} & T_{\text {calc }} \\ & (\mathbf{K}) \end{aligned}$	$\begin{gathered} \Delta v \\ (H z) \end{gathered}$	$\begin{gathered} { }^{2} J \\ (H z) \end{gathered}$	$\begin{gathered} \mathbf{k}_{\mathrm{c}} \\ \left(\mathbf{s}^{-1}\right) \end{gathered}$	$\begin{gathered} T_{\text {caales }} \\ \text { (K) } \end{gathered}$	$\begin{aligned} & T_{\text {calc }} \\ & (\mathbf{K}) \end{aligned}$	$\begin{gathered} \Delta v \\ (H z) \end{gathered}$	$\begin{gathered} { }^{2} J \\ (\mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \mathbf{k}_{\mathrm{c}} \\ \left(\mathbf{s}^{-1}\right) \end{gathered}$	$\begin{aligned} & \Delta \mathbf{G}^{\neq} \\ & (\mathbf{k J} / \\ & \mathbf{m o l}) \end{aligned}$
4a	268	253	6.8	5.6	68.0	268	253	9.0	9.0	105.7	55.5
4f	263	183	28.8	5.2	139.8	263	183	29.0	8.6	159.1	53.2
5a	273	173	38.1	5.4	179.1	273	173	37.9	8.7	192.9	54.8
7a	273	213	23.0	5.4	117.3	293	213	29.4	8.9	162.5	59.3
5b	-	-	-	-	-	173	-	-	-	-	-
7b	-	-	-	-	-	233	193	19.9	9.1	132.8	47.1

Determining the stereochemistry in solid state by X-Ray Diffractometry
Compounds $\mathbf{4 b}, \mathbf{4 f}, \mathbf{5 b}$ and $\mathbf{7 b}$ supplied crystals suitable for study by X-Ray Diffractometry (Scheme 10, Figure 1-4).

Figure 1. 1-1: ORTEP viewing of compound 4b; 1-2: the non-bonding interactions in the elementary cell.

Figure 2. ORTEP viewing of compound chiral $4 f$.

3-1.

3-2.
Figure 3. 3-1: ORTEP viewing of compound 5b; 3-2: the non-bonding interactions in the network

Figure 4．ORTEP viewing of compound 7b．
Inspection of all ORTEP diagrams showed exclusively the chiral O－syn－O－anti opposite orientation of the two cis fused oxazolidine rings as O－envelope conformers．The corresponding torsion angles $\mathrm{C}-4^{(,)(川)}-\mathrm{C}-5^{(,)(川)}-\mathrm{N}-1^{(,)(川)}-\mathrm{C}-2^{(,)(川)}$ and $\mathrm{C}-6^{(,)(川)}-\mathrm{C}-5^{(,)(\varphi)}$－ $\mathrm{N}-1^{(,)(,)}-\mathrm{C}-8^{(,)(,)}$were small enough，ranging between $0.19-7.2^{\circ}$ ．In contrast，the torsion angles in the aminalic zone，used to assign the conformational chirality of the DOABO skeleton（Scheme 7，11），were noteworthy， $16.8-28.9^{\circ}$ in $\mathrm{O}-3^{(,)(,)}$－syn rings and $21.3-28.0^{\circ}$ in $\mathrm{O}-7^{(\cdot)(,)}$－anti rings．

The torsion angles describing the rotamerism of the $c-5^{()(,)}-\mathrm{di}(s$－tri）azinyloxymethyl motif pointed to its almost coplanar，bisectional，s－trans and out arrangement with respect to the medium plane of the bicycle．The most significant deviations from coplanarity， $13-17^{\circ}$ ，were observed regarding the s－trans conformation of the bulky substituents about the bonds $\mathrm{C}-9^{(,)(,)}-\mathrm{O}-10^{(,)(,)}$．The rest of deviations were considerably smaller， $0.2-6.0^{\circ}$ ．

We note that this spatial arrangement，found in solid state，should also be plausible in solution，but as non－chiral meso（ P, M ）form－s－trans out rotamer．Indeed，upon cooling （Table 4），the diazine protons，having an ortho vicinity with the DOABO－ $\mathrm{CH}_{2} \mathrm{O}$ groups， were all deshielded as environment created by their near coplanarity with one of the lone pair of the oxygen atoms in the $\mathrm{CH}_{2} \mathrm{O}$ connections．

We also observed that the chirality of the DOABO skeleton was，in fact，the major consequence of a cross endo－anomeric effect，consisting in two and identically oriented delocalisations in the syn－anti aminalic part of the bicycle（Scheme 10）．

Thus，the contraction of the bonds $\mathrm{N}-1^{(,)(,()}-\mathrm{C}-8^{(,)(,)}$vs． $\mathrm{N}-1^{(,)(,()}-\mathrm{C}-5^{(,)}($,$) （selected as$ reference），was significant in all compounds，around $0.030 \AA$ ．It has been recently explained by Pavia［25］and then by us［20］in terms of a hyperconjugative interaction
(endo-anomeric effect) involving the orbitals $1 \mathrm{pN}-1^{(\cdot)(,)}$ ax. (donor) $\rightarrow \sigma^{*} \mathrm{C}-8^{(,)(,)}$- O $7^{(,)(,())}$(acceptor). It was due to their near antiperiplanar position created by the frozen oxazolidine O-anti-envelope conformation. The corresponding major non-bonding structure XVIII suggests the increased basicity of the $\mathrm{O}-7^{(\cdot)(, \cdot)}$-anti atom.

A second noticeable contraction was detected regarding this time the bonds $\mathrm{O}-3^{(,)(,)}-\mathrm{C}-$ $2^{(,)(,)}$. They were shorter than $\mathrm{O}-7^{(,)(,()}-\mathrm{C}-8^{(,)(, \cdots)}$ with about $0.17 \AA$, covering however a larger domain of fluctuation, $0.05-0.050 \AA$. As above, this contraction originates in the O-syn-envelope geometry of the ring favouring the close to antiperiplanar arrangement of the orbitals $1 \mathrm{pO}-3^{(,)(,)} \mathrm{eq} . \rightarrow \sigma^{*} \mathrm{C}-2^{(,)}(,())-\mathrm{N}-1^{(,)(,)}$, hence a second as weaker delocalising interaction. The matching minor non-bonding structure is XIX and consistent to a lower basicity of the $\mathrm{O}-3^{(\mathrm{P})(,()-s y n}$ atom.

However, the essential characteristic of our polysubstituted compounds $\mathbf{4 f}, \mathbf{5 b}$ and $\mathbf{7 b}$ in solid state was their crystallisation as global chiral forms. The same sense of chirality is exposed by the DOABO groups in duplicate $(\mathbf{4 f}, \mathbf{5 b})$ and in triplicate (7b) (Figure 2-4). The network of $\mathbf{4 f}$ consisted in global chiral form units of type \mathbf{V} (Scheme 8) in a high occupation factor, 0.87 and global meso form units (not depicted, type II, Scheme 8) in a low occupation factor, 0.13 . Compound $\mathbf{4 f}$ was a non-stoichiometric solvate of dichloromethane, located in the channels of the network with an occupation factor of 0.96. The dominant incidence of global chiral against meso form units appeared to us mandatory to the inclusion aptitude of chiral $\mathbf{4 f}$. Indeed, the alternative meso $\mathbf{4 f}$ structure exhibited strong geometric distortions; discussed previously by us [20] hence, lower inclusion ability.

Stronger dichloromethane incorporating capacity manifested the network of the s triazine 7b (Figure 4), found as triple chiral form of type XV (Scheme 9). It was ascertained to be a stable equimolar adduct with dichloromethane (omitted in Figure 4 for reason of simplicity).

Important non-bonding interactions were identified in the networks of compounds $\mathbf{4 b}$ and $\mathbf{5 b}$.

The elementary cell of $\mathbf{4 b}$ was a tetramer (Figure 1-2), based on two different types of intermolecular interactions, (a) and (b). The interatomic distances that we associated to these interactions are: (a) $\mathrm{H}-6-t(\mathrm{DOABO}) \ldots \mathrm{N}-4$ (pyrazine) $2.550(3) \AA$ and $\mathrm{N}-$ 1 (pyrazine)...H-para(C-2-pseudo-equatorial-bisectional phenyl ring) 2.636(2) A. They are smaller than the corresponding sum of the van der Waals radii ($\Sigma \mathrm{vdW}$ N...H) 2.74 \AA [34]. The interactions (a) close two identical cavities \boldsymbol{A}, meanwhile the interactions (b) lock the central cavity \boldsymbol{B}. Two $\mathbf{4 b}$ partners, having an opposite sense of chirality of the DOABO groups, are the building blocks of each cavity.

The network of compound $\mathbf{5 b}$ was a polymeric structure (Figure 3-2) in which the nonbonding interactions between the $\mathbf{5 b}$ units are of the same type $\mathrm{H}-4$ '-c...O-7-anti 2.464(1) \AA and $\mathrm{H}-4-c$...O-7'-anti 2.449(1) \AA, ($\Sigma \mathrm{vdW} \mathrm{O} . . . \mathrm{H} 2.60 \AA$) [34]. Their magnitude is slightly different since the two DOABO groups in monomeric $\mathbf{5 b}$ were geometrically not quite identical. Consequently, two cavities labeled \boldsymbol{C} and \boldsymbol{D} are
observed, comprising each two $\mathbf{5 b}$ units with a reverse sense of the global chirality one against the other.

CONCLUSIONS

The Williamson procedure is a simple methodology starting from c-5-hydroxymethyl-3,7-dioxa- r-1-azabicyclo[3.3.0]octanes in reaction with α-chlorodiazines and cyanuryl chloride. The nucleophilicity of the DOABO- $\mathrm{CH}_{2} \mathrm{OH}$ reagents in alkoxide form depends on the type of substituents at positions C-2, -8 of the bicycle and the cation against the π-deficiency of the substrates. The conformation analysis of some structures by X-Ray Diffractometry and ${ }^{1} \mathrm{H}$ DNMR indicates exclusively a chiral against meso form frozen conformation of the DOABO skeleton in solid state vs. solution respectively. The cross endo-anomeric effect in the aminalic O-C-N-C-O DOABO sequence is responsible for the chiral conformation in solid state. The rotamerism of the $c-5-\mathrm{di}(s$-tri)azinyloxymethyl group against bicycle is bisectional and s-trans out. In solid state, an inclusion aptitude of the solvent by the chiral networks is found as well as non-bonding interaction creating specific self-assembly. The attempt at exploiting these findings in synthesis will be discussed in part II of our preliminary report.

EXPERIMENTAL

Current NMR spectra were recorded on a Brucker ${ }^{\circledR}$ AM300 ($300 \mathrm{MHz}{ }^{1} \mathrm{H}, 75 \mathrm{MHz}{ }^{13} \mathrm{C}$) instrument. ${ }^{1} \mathrm{H}$ DNMR analysis of compounds $\mathbf{4 a}, \mathbf{4 f}, \mathbf{5 a}, \mathbf{5 b}, \mathbf{7 a}$ and $\mathbf{7 b}$ was carried out on a Brucker ${ }^{\circledR}$ AM400 ($400 \mathrm{MHz}{ }^{1} \mathrm{H}, 100 \mathrm{MHz}{ }^{13} \mathrm{C}$) instrument. TLC was performed by using aluminium sheets with silica gel $60 \mathrm{~F}_{254}\left(\mathrm{Merck}^{\circledR}\right)$.; flash column chromatography was conducted on Silica gel Si $60\left(40-63 \mu \mathrm{~m}\right.$, Merck $\left.^{\circledR}\right)$. All synthesis were performed under dry nitrogen atmosphere. THF was freshly distilled from Na /benzophenone prior to use. Crystallographic Data (excluding structure factors) for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication numbers CCDC: compound 4b CCDC 283623. Unit cell parameters: a $13.0640(11)$ b $8.8414(7)$ c $17.2561(14)$ space group P1 21/c 1(14). Compound $\mathbf{4 f}$ CCDC 199978. Unit cell parameters: a 12.251 b 11.072 c 15.243 space group P2(1) / n. Compound 5b CCDC 238894. Unit cell parameters: a 27.3536(3) b 11.8334 c $23.7369(3)$ space group C2/c. Compound 7b CCDC 272371. Unit cell parameters: a $8.9574(2)$ b $12.2323(2)$ c $24.6520(4)$ space group P-1. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK [fax: +44(0)-1223-336033 or e-mail: deposit@ccdc.cam.ac.uk] [35-37]. The ${ }^{1} \mathrm{H}$ NMR assignments of compounds $\mathbf{4 a}, \mathbf{4 f}, \mathbf{5 a}, \mathbf{5 b}, \mathbf{7 a}$ and $\mathbf{7 b}$ are listed in Table 4. The synthesis of compound $\mathbf{4 f}$ was reported by us elsewhere [20]. The step by step exploring of the synthesis of compounds $\mathbf{6 a}, \mathbf{6 b}, 7 \mathbf{a}$ and $\mathbf{7 b}$ is reported elsewhere [3537].

General procedure for the preparation of compounds 4a-e, 5a-c

In a 100 mL three necked round bottom flask potassium hydride (1.000 g as 30% oily suspension, $0.300 \mathrm{~g} 100 \%, 7.48 \mathrm{mmol}$) was rapidly introduced and washed with stirring three times with dry ligroin (optionally pentane, hexane) (30 mL). THF (50 mL) was then introduced with stirring to yield a fine grey suspension. Fine powdered $c-5-$ hydroxymethyl-3,7-dioxa-1-azabicyclo[3.3.0]-c-5-octanes 1a, b (7.12 mmol) was added and the mixture was heated at $40{ }^{\circ} \mathrm{C}$ for $1.0-1.5 \mathrm{hrs}$. until no more hydrogen was formed and a fine suspension was obtained. The corresponding α-chlorodiazine (6.78/n mmoles, $\mathrm{n}=$ number of chlorine atoms to be replaced) was rapidly injected as THF (10 mL) solution, at room temperature (see Table 1, 2 for temperatures and time reaction). The TLC monitoring was performed until the starting materials were absent or in small traces only. Double visualisation was required if 2a was the nucleophile: first UV 254 nm , then I_{2} bath, for the detection of $\mathbf{1 a}$. During condensation, the reaction mixture turned coloured and potassium chloride was formed. The reaction was quenched at room temperature with water (100 mL) and dichloromethane (100 mL) with vigorous stirring. After separation, the organic layer was washed with water (about $3 \times 50 \mathrm{~mL}$) to $\mathrm{pH}=7.5-8.0$ then dried over MgSO_{4}. After filtering, the organic solution was evaporated under vacuum to dryness to yield the crude product, which was directly crystallised from an appropriate solvent or purified by flash column chromatography to yield the title compounds.

2-[(3,7-Dioxa-r-1-azabicyclo[3.3.0]oct-c-5-yl)methoxy]-pyrazine (4a). (85 \%) yellowish crystalline powder, mp $128-129{ }^{\circ} \mathrm{C}$ (pentane). [Found: C, 53.50 ; H, 6.09 ; N, 18.55. $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires: C, $\left.53.81 ; \mathrm{H}, 5.87 ; \mathrm{N}, 18.82 \%\right]$. R_{f} (75% ligroin/acetone) $0.40 . v_{\max }(\mathrm{film} \mathrm{NaCl}) 2868(\mathrm{~m}), 1524(\mathrm{~s}), 1465(\mathrm{~m}), 1413(\mathrm{~s}), 1361(\mathrm{~m}), 1289(\mathrm{~s}), 1134$ (m), 1032 (s), 1002 (s), 915 (s), 832 (m), 692 (m) cm ${ }^{-1} . \delta_{\mathrm{C}}$ (75 MHz CDCl$)_{3}$) heteroaromatic: 160.1 (1 C, C-2), 140.9 (1 C, C-6), 137.5 ($1 \mathrm{C}, \mathrm{C}-3$), 136.1 ($1 \mathrm{C}, \mathrm{C}-5$); DOABO-CH2 $\mathrm{O}_{2}: 88.6$ (2 C, C-2, -8), 74.4 (2 C, C-4, -6), 71.9 (1 C, C-5), 69.0 (1 C, 5OCH_{2}). MS (EI, 70 eV); m/z (rel. int. \%): 223 (6), 178 (14), 163 (13), 114 (100), 98 (17), 86 (9), 68 (26), 58 (11), 42 (18), 41 (59).

2-[(c-2,c-8-Diphenyl-3,7-dioxa-r-1-azabicyclo[3.3.0]oct-c-5-yl)methoxy]-pyrazine

 (4b). (79 \%) yellowish crystalline powder, mp $134-136{ }^{\circ} \mathrm{C}$ (flash column chromatography, eluent ligroin : AcOEt 3:1 v/v). [Found: C, 70.17; H, 5.94; N, 10.95. $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires C, $\left.70.38 ; \mathrm{H}, 5.64 ; \mathrm{N}, 11.19 \%\right] . R_{f}\left(75 \%\right.$ ligroin/AcOEt) 0.56. $v_{\max }$ (film KBr) 2877 (s), 1586 (m), 1540 (s), 1418 (s), 1388 (m), 1312 (s), 1135 (s), 1065 (s), 932 (s$), 834(\mathrm{~s}), 800(\mathrm{~m}), 763(\mathrm{~s}), 738$ (s$), 696(\mathrm{~s}), 617(\mathrm{~m}), 537(\mathrm{~m}), 499(\mathrm{w}), 465$ $(\mathrm{m}) \mathrm{cm}^{-1} . \delta_{\mathrm{H}}\left(300 \mathrm{MHz} \mathrm{CDCl}{ }_{3}\right)$ (hetero)aromatic: $8.09(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}, \mathrm{H}-5), 8.04$ (1 H, s, H-3), $8.01(1 \mathrm{H}, \mathrm{dd}, J=2.6,1.3 \mathrm{~Hz}, \mathrm{H}-6), 7.52(4 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{Ph}), 7.36-7.30$ (6 $\mathrm{H}, \mathrm{m}, \mathrm{Ph})$; DOABO-CH2 $\mathrm{O}: 5.61(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2,-8-t), 4.27\left(2 \mathrm{H}, \mathrm{s}, 5-\mathrm{OCH}_{2}\right), 4.10(2 \mathrm{H}, \mathrm{d}$, $J=9.0 \mathrm{~Hz}, \mathrm{H}-4,-6-c), 4.00(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{H}-4,-6-t) ; \delta_{\mathrm{C}}(75 \mathrm{MHz} \mathrm{CDCl} 3$) (hetero)aromatic: 160.1 (1 C, C-2), 140.8 (1 C, C-6), 139.7 (2 C, Cq., Ph), 137.4 (1 C, C-3), 136.1 (1 C, C-5), 129.0 ($2 \mathrm{C}, \mathrm{CH}, \mathrm{Ph}$), 128.7 (4 C, CH, Ph), 127.6 (4 C, CH, Ph); DOABO-CH2O: 97.8 (2 C, C-2, -8), 73.6 (2 C, C-4, -6), 73.3 (1 C, C-5), 70.2 (1 C, 5OCH_{2}). MS (EI, 70 eV); m/z (rel. int. \%): (M') 375 (<1), 269 (30), 173 (100), 155 (33), 128 (21).
2-Chloro-6-[(c-2,c-8-diphenyl-3,7-dioxa-r-1-azabicyclo[3.3.0]oct-c-5-yl)methoxy]-

 pyrazine (4c). (as 34% conversion of $\mathbf{3 b}$, Table 1) white crystalline powder, mp 128 $129{ }^{\circ} \mathrm{C}$ (flash column chromatography, eluent ligroin : AcOEt 2:1 v/v). [Found: C, 64.59; H, 4.60; N, 10.51. $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Cl}$ requires: C, 64.47; H, 4.92; N, 10.25%; ; R_{f} (67% ligroin/AcOEt) $0.35 . v_{\max }($ film KBr) $3060(\mathrm{~m}), 2990(\mathrm{~m}), 2878$ (s), 1568 (s), 1528 (s), 1435 (s), 1409 (s), 1309 (s), 1209 (s), 1179 (s), 1131 (s), 1091 (s), 1064 (s), 1006 (s), 949 (m), 923 (s), 961 (s), 762 (s), 736 (s), 697 (s), 637 (m) $\mathrm{cm}^{-1} . \delta_{\mathrm{H}}(300 \mathrm{MHz}$ CDCl_{3}) (hetero)aromatic: $8.14(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 7.89(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3) ; 7.54-7.52(4 \mathrm{H}, \mathrm{m}$, Ph), 7.40 - 7.31 ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); DOABO-CH2O: 5.63 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2,-8-t$), $4.30(2 \mathrm{H}, \mathrm{s}, 5-$ OCH_{2}), $4.10(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{H}-4,-6-c), 4.00(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{H}-4,-6-t) ; \delta_{\mathrm{C}}(75$ MHz CDCl 13) (hetero)aromatic: 159.0 (1 C, C-6), 145.7 (1 C, C-2), 139.5 (2 C, Cq., Ph), 136.1 (1 C, C-3), 133.3 (1 C, C-5), 129.0 (2 C, CH, Ph), 128.8 (4 C, CH, Ph), 127.5 (4 $\mathrm{C}, \mathrm{CH}, \mathrm{Ph}$); $\mathrm{DOABO}-\mathrm{CH}_{2} \mathrm{O}: 97.9$ (2 C, C-2, -8), 73.4 (2 C, C-4, -6), 73.2 (1 C, C-5), $70.6\left(1 \mathrm{C}, 5-\mathrm{OCH}_{2}\right)$. MS (EI, 70 eV); m/z (rel. int. \%): ($\mathrm{M}^{+}-1$) $408(<1), 267(22), 266$ (100), 160 (10), 105 (28).
6-[(c-2,c-8-Diphenyl-3,7-dioxa-r-1-azabicyclo[3.3.0]oct-c-5-yl)methoxy]-1H-pyra-

 zin-2-one (4d). (as 17% conversion of $\mathbf{3 b}$, Table 1) white crystalline powder, mp 199 $201{ }^{\circ} \mathrm{C}$ (flash column chromatography, eluent ligroin : AcOEt 1:1 v/v. [Found: C, 67.42; $\mathrm{H}, 5.63 ; \mathrm{N}, 10.46 . \mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires: C, 67.51; H, 5.41; N, $\left.10.74 \%\right]$. R_{f} (50 \% ligroin/AcOEt) 0.60. $v_{\text {max }}$ (film KBr) 3062 (m), 2978 (m), 2877 (s), 2442 (s), 1822 (s), 1612 (s), 1537 (s), 1449 (s), 1376 (s), 1315 (s), 1269 (s), 1188 (s), 1135 (s), 1091 (s), $921(\mathrm{~s}), 836(\mathrm{~s}), 757(\mathrm{~s}), 732(\mathrm{~s}), 695(\mathrm{~s}) \mathrm{cm}^{-1} . \delta_{\mathrm{H}}(300 \mathrm{MHz} \mathrm{CDCl} 3)$ (hetero) aromatic: 7.77 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5$), 7.62 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$); 7.52 - $7.50(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.36-7.27$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $7.03(1 \mathrm{H}, \mathrm{bs}, \mathrm{NH})$; $D \mathrm{OABO}-\mathrm{CH}_{2} \mathrm{O}: 5.60(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2,-8-t), 4.17\left(2 \mathrm{H}, \mathrm{s}, 5-\mathrm{OCH}_{2}\right), 4.08$ ($2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{H}-4,-6-c), 3.98(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{H}-4,-6-t)$; $\delta_{\mathrm{C}}(75 \mathrm{MHz} \mathrm{CDCl} 3$) (hetero)aromatic: 158.1 (1 C, C-2), 157.0 ($1 \mathrm{C}, \mathrm{C}-6$), 139.6 ($2 \mathrm{C}, \mathrm{Cq} ., \mathrm{Ph}$), 129.1 (2 C, CH., Ph), 128.8 (4 C, CH., Ph), 127.6 (4 C, CH., Ph) 125.3 (1 C, C-3), 124.2 (1 C, C-5); alicyclic: 97.7 ($2 \mathrm{C}, \mathrm{C}-2,-8$), 73.6 ($2 \mathrm{C}, \mathrm{C}-4,-6$), $73.2(1 \mathrm{C}, \mathrm{C}-5), 70.5\left(1 \mathrm{C}, 5-\mathrm{OCH}_{2}\right)$; MS (EI, 70 eV); m/z (rel. int. \%): (M ${ }^{+}$) 391 (<5), 285 (50), 179 (15), 174 (100), 155 (13), 128 (17).
2,6-Bis[(c-2,c-8-diphenyl-3,7-dioxa-r-1-azabicyclo[3.3.0]oct-c-5-yl)methoxy]-pyra-

zine (4e). (as 8% conversion of $\mathbf{3 b}$, Table l) white crystalline powder; this compound was isolated only as a non separable mixture (38%) with $\mathbf{4 d}$ (62%) during the work up by flash column chromatography of the reaction between $\mathbf{3 b}$ and $\mathbf{2 b}$ (Table 1). $\delta_{\mathrm{H}}(300$ MHz CDCl 3) only distinct peaks are listed as $D \mathrm{OABO}-\mathrm{CH}_{2} \mathrm{O}: 5.63(4 \mathrm{H}, \mathrm{s}, \mathrm{H}-2,-8-t)$, $4.15\left(4 \mathrm{H}, \mathrm{s}, 5-, 5^{\prime}-\mathrm{OCH}_{2}\right)$, $4.07\left(4 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}, \mathrm{H}-4,-4\right.$ ', $-6,-6$ '-c); $\delta_{\mathrm{C}}(75 \mathrm{MHz}$ CDCl_{3}) (hetero)aromatic: 139.7 ($4 \mathrm{C}, \mathrm{Cq} ., \mathrm{Ph}$), 125.0 ($2 \mathrm{C}, \mathrm{C}-3,-5$); DOABO- $\mathrm{CH}_{2} \mathrm{O}$: 73.2 (4 C, C-4, -4' -6, -6’). MS (EI, 70 eV); m/z (rel. int. \%): (M ${ }^{+} 670(<1)$.

4,6-Bis[(3,7-dioxa-r-1-azabicyclo[3.3.0]oct-c-5-yl)methoxy]-pyrimidine (5a). (81 \%) white crystalline powder, mp $146-148{ }^{\circ} \mathrm{C}$ (pentane). [Found: C, 52.70 ; H, 5.88; N, 14.98. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{6}$ requires: C, $\left.52.45 ; \mathrm{H}, 6.05 ; \mathrm{N}, 15.29 \%\right] . R_{\mathrm{f}}$ (75% ligroin/acetone) $0.35 . v_{\text {max }}($ film NaCl) 2950 (w), 2858 (m), 1593 (s), 1563 (s), 1457 (m), 1421 (m),
$1341(\mathrm{~m}), 1195(\mathrm{~m}), 1137(\mathrm{~m}), 1095(\mathrm{~m}), 1039(\mathrm{~s}), 933(\mathrm{~m}), 674(\mathrm{~m}) \mathrm{cm}^{-1} . \delta_{\mathrm{C}}(75 \mathrm{MHz}$ CDCl_{3}) heteroaromatic: 171.0 (2 C, C-4, -6), 157.8 ($1 \mathrm{C}, \mathrm{C}-2$), 91.4 ($1 \mathrm{C}, \mathrm{C}-5$); DOABO-CH2O: 88.6 (4 C, C-2, -2 ', $-8,-8^{\prime}$), 74.4 (4 C, C-4, -4 ', $-6,-6$ '), 71.9 (2 C, C-5, $\left.-5^{\prime}\right), 69.4\left(2 \mathrm{C}, 5-, 5^{\prime}-\mathrm{OCH}_{2}\right) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}) ; \mathrm{m} / \mathrm{z}\left(\right.$ rel. int. \%): $\left(\mathrm{M}^{+}+1\right) 367(<1), 274$ (3), 252 (2), 168 (8), 128 (100), 98 (4).

4,6-Bis $[(c-2, c-8-d i p h e n y l-3,7-d i o x a-r-1-a z a b i c y c l o[3.3 .0] o c t-c-5-y l) m e t h o x y]-p y r i-~$

 midine (5b). (31%) white crystalline powder, $\mathrm{mp} 176-178{ }^{\circ} \mathrm{C}$ (flash column chromatography, eluent ligroin : AcOEt 3:1 v/v). [Found: C, 71.53; H, 5.93; N, 8.07. $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{6}$ requires C, 71.63 ; H, 5.71; N, 8.35%]. R_{f} (75% ligroin/AcOEt) 0.59. $v_{\text {max }}$ (film KBr) 2876 (m), 1595 (s), 1455 (s), 1430 (m), 1314 (w), 1256 (s), 1166 (m), 1089 (m), 989 (w), $921(\mathrm{~m}), 838(\mathrm{~s}), 752(\mathrm{~m}), 694(\mathrm{~m}), 470(\mathrm{~m}) \mathrm{cm}^{-1} . \delta_{\mathrm{C}}(75 \mathrm{MHz} \mathrm{CDCl} 3)$ (hetero)aromatic: 170.8 (2 C, C-4, -4' -6, -6'), 157.8 (1 C, C-2), 139.6 (4 C, Cq., Ph), 129.0 ($4 \mathrm{C}, \mathrm{CH}, \mathrm{Ph}$), 128.8 ($8 \mathrm{C}, \mathrm{CH}, \mathrm{Ph}$), 127.6 ($8 \mathrm{C}, \mathrm{CH}, \mathrm{Ph}$); DOABO- $\mathrm{CH}_{2} \mathrm{O}: 97.8$ (4 C, C-2, $-2^{\prime},-8,-8$ '), 73.6 (4 C, C-4, $-4^{\prime},-6,-6$ '), 73.2 (2 C, C-5, -5^{\prime}), 70.7 (2 C, 5-, 5'OCH_{2}). MS (EI, 70 eV); m/z (rel. int. \%): (M ${ }^{+}$) 670 (31), 692 (14), 564 (9), 280 (100).4-Chloro-6-[(c-2,c-8-diphenyl-3,7-dioxa-r-1-azabicyclo[3.3.0]oct-c-5-yl)methoxy]pyrimidine (5c). (23%) yellowish crystalline powder, mp 145-147 ${ }^{\circ} \mathrm{C}$ (flash column chromatography, eluent ligroin : AcOEt 3:1 v/v). [Found: C, 64.32; H, 5.14; N, 10.19. $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Cl}$ requires C, 64.47 ; H, 4.92; N, $\left.10.25 \%\right]$. R_{f} (75% ligroin/AcOEt) 0.80 . $v_{\max }$ (film KBr) 3091 (m), 2874 (m), 1573 (s), 1454 (s), 1334 (m), 1258 (m), 1213 (m), 1088 (s), 1009 (s), 931 (w), 871 (w), $804(\mathrm{~m}), 753$ (s$), 696(\mathrm{~s}), 535(\mathrm{w}) \mathrm{cm}^{-1} . \delta_{\mathrm{H}}(300$ MHz CDCl 3) (hetero)aromatic: $8.50(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 7.51-7.48(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.37-7.28$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 6.53 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5$); DOABO-CH2O: $5.60(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2,-8-t), 4.33(2 \mathrm{H}, \mathrm{s}, 5-$ $\left.\mathrm{OCH}_{2}\right), 4.06(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{H}-4,-6-c), 3.96(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{H}-4,-6-t) ; \delta_{\mathrm{C}}(75$ $\mathrm{MHz} \mathrm{CDCl}_{3}$) (hetero)aromatic: 170.0 ($1 \mathrm{C}, \mathrm{C}-6$), 161.3 ($1 \mathrm{C}, \mathrm{C}-4$), 158.5 ($1 \mathrm{C}, \mathrm{C}-2$), 139.5 (2 C, Cq., Ph), 129.1 ($2 \mathrm{C}, \mathrm{CH}, \mathrm{Ph}$), 128.8 ($4 \mathrm{C}, \mathrm{CH}, \mathrm{Ph}$), 127.5 (4 C, CH, Ph), 108.2 (1 C, C-5); $D \mathrm{OABO}-\mathrm{CH}_{2} \mathrm{O}: 97.8$ (2 C, C-2, -8), 73.4 (2 C, C-4, -6), 73.1 ($1 \mathrm{C}, \mathrm{C}-$ 5), 70.8 ($1 \mathrm{C}, 5-\mathrm{OCH}_{2}$). MS (EI, 70 eV); m/z (rel. int. \%): $\left(\mathrm{M}^{+}+1\right) 410$ (4), 386 (<1), 304 (100), 280 (42), 174 (98), 156 (23), 129 (11), 91 (18).

2-Chloro-4,6-bis[(3,7-dioxa-r-1-azabicyclo[3.3.0]oct-c-5-yl)methoxy]-s-triazine (6a). (34%) yellowish crystalline powder, $\mathrm{mp} 91.8-93.4^{\circ} \mathrm{C}$ (flash column chromatography, eluent ligroin : acetone 2:1 v/v). [Found: C, 44.91; H, 5.19; N, 17.63. $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Cl}$ requires: C, 44.84; H, 5.02; N, 17.43 \%]. $R_{\mathrm{f}} 0.75$ (66% ligroin/acetone). $v_{\text {max }}(\mathrm{KBr}$) 2971 (m), 2868 (s), 1731 (s), 1390 (m), 1252 (s), 1138 (m), 1038 (s), 926 (s), 885 (w), $792(\mathrm{~m}), 673(\mathrm{~s}), 610(\mathrm{~s}), 505(\mathrm{w}) \mathrm{cm}^{-1} . \delta_{\mathrm{H}}(300 \mathrm{MHz} \mathrm{CDCl} 3$) $4.39(4 \mathrm{H}, \mathrm{s}, \mathrm{H}-2,-2$, , -8 , -$8^{\prime}-c$), $4.37\left(4 \mathrm{H}, \mathrm{s}, \mathrm{H}-2,-2^{\prime},-8,-8^{\prime}-t\right), 4.06\left(4 \mathrm{H}, \mathrm{s}, 5-, 5^{\prime}-\mathrm{OCH}_{2}\right), 3.73(4 \mathrm{H}, \mathrm{d}, J=9.0$ Hz, H-4, -4', $-6,-6 '-c$), $3.68\left(4 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{H}-4,-4{ }^{\prime},-6,-6{ }^{\prime}-t\right)$; $\delta_{\mathrm{C}}(75 \mathrm{MHz} \mathrm{CDCl} 3$) 171.0 (3 C, C-2, -4, -6 s-triazine), 88.6 (4 C, C-2, -2', -8, -8'), 74.2 (4 C, C-4, -4', -6, 6'), 71.5 (2 C, C-5, -5 '), 66.9 (2 C, 5-, 5'-OCH2). MS (EI), m/z (rel. int. \%) 402 (< 1) [$\left.\mathrm{M}^{+}+1\right], 324$ (38), 256 (57), 145 (58), 127 (100).

2,4,6-Tris[(3,7-dioxa-r-1-azabicyclo[3.3.0]oct-c-5-yl)methoxy]-s-triazine (7a) (82 \%) white crystalline powder, mp 238.9-239.5 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$. [Found: C, 49.44; H, 5.98; N,
16.44. $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{9}$ requires: C, 49.41; H, 5.92; N, $\left.16.46 \%\right] . R_{\mathrm{f}} 0.30(50 \%$ ligroin/acetone). $v_{\max }(\mathrm{KBr}) 3444$ (m), 2969 (w), 2858 (s), 1589 (s), 1414 (s), 1334 (s), 1189 (m), 1141 (m), 1096 (s), 1044 (s), 1028 (s), 943 (m), 807 (s), 750 (m), 718 (w), $676(\mathrm{~m}), 572(\mathrm{~m}) \mathrm{cm}^{-1} . \delta_{\mathrm{C}}(75 \mathrm{MHz} \mathrm{CDCl} 3$) 173.3 ($3 \mathrm{C}, \mathrm{C}-2,-4,-6 s$-triazine), 88.5 (6 C, C-2, $\left.-2^{\prime},-2^{\prime \prime},-8,-8^{\prime},-8^{\prime \prime}\right), 74.3\left(6 \mathrm{C}, \mathrm{C}-4,-4 \prime,-4 \prime,-6,-6 \prime,-6^{\prime \prime}\right), 71.5\left(3 \mathrm{C}, 5-, 5^{\prime}-, 5^{\prime \prime}-\right.$ $\left.\mathrm{OCH}_{2}\right) 71.3\left(3 \mathrm{C}, \mathrm{C}-5,-5^{\prime},-5 \prime\right) ; \mathrm{MS}(\mathrm{ESI}), \mathrm{m} / \mathrm{z}\left(\right.$ rel. int. \%) $532\left[\mathrm{M}^{+}-1+\mathrm{Na}^{+}\right](100), 511$ (40) $\left[\mathrm{M}^{+}\right], 384(10)$.

2-Chloro-4,6-bis[(c-2,c-8-diphenyl-3,7-dioxa-r-1-azabicyclo[3.3.0]oct-c-5-yl)metho-xy]-triazine (6b) $(8 \%) . \delta_{\mathrm{H}}\left(300 \mathrm{MHz} \mathrm{CDCl}_{3}\right)$ as detected from the mixture with $\mathbf{7 b}$: $5.59(4 \mathrm{H}, \mathrm{s}, \mathrm{H}-2,-8-t), 4.31\left(4 \mathrm{H}, \mathrm{s}, 5-, 5^{\prime}-\mathrm{OCH}_{2}\right), 4.06(4 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{H}-4,-4$,,-6 , -$\left.6^{\prime}-c\right), 3.98\left(4 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{H}-4,-4\right.$, $\left.,-6,-6^{\prime}-t\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz} \mathrm{CDCl} 3), 171.8(3 \mathrm{C}, \mathrm{C}-2,-$ 4, $-6 s$-triazine), 139.3 (4 C, Cq., Ph), 127.5 ($8 \mathrm{C}, \mathrm{CH}, \mathrm{Ph}$). MS (FAB^{+}), m/z (rel. int. \%) $704(20)\left[\mathrm{M}^{+}-1\right]$.

2,4,6-Tris[(c-2,c-8-diphenyl-3,7-dioxa-r-1-azabicyclo[3.3.0]oct-c-5-yl)methoxy]-striazine (7b) (37 \%) white crystalline powder, mp $162.5-164.2{ }^{\circ} \mathrm{C}$ (flash column chromatography, eluent ligroin : acetone $3.5: 1 \mathrm{v} / \mathrm{v}$). [Found: C, $70.61 ; \mathrm{H}, 5.70 ; \mathrm{N}, 8.44$. $\mathrm{C}_{57} \mathrm{H}_{54} \mathrm{~N}_{6} \mathrm{O}_{9}$ requires: C, $\left.70.80 ; \mathrm{H}, 5.63 ; \mathrm{N}, 8.69 \%\right] R_{\mathrm{f}} 0.40$ (78 \% ligroin/acetone). $v_{\max }$ (KBr) 3063 (w), 2871 (m), 1571 (s), 1417 (s), 1334 (s), 1210 (m), 1131 (s), 1088 (m), $1068(\mathrm{~m}), 922(\mathrm{~m}), 820(\mathrm{w}), 762(\mathrm{~m}), 735(\mathrm{~s}), 698(\mathrm{~s}) \mathrm{cm}^{-1} . \delta_{\mathrm{C}}(75 \mathrm{MHz} \mathrm{CDCl} 3) 172.9$ (3 C, C-2, -4, -6 s-triazine), 139.5 ($6 \mathrm{C}, \mathrm{Cq} ., \mathrm{Ph}$), 129.1 ($6 \mathrm{C}, \mathrm{CH}, \mathrm{Ph}), 128.8$ ($12 \mathrm{C}, \mathrm{CH}$, Ph), 127.5 ($12 \mathrm{C}, \mathrm{CH}, \mathrm{Ph}$), 97.6 (6 C, C-2, $-2^{\prime},-2^{\prime \prime},-8,-8^{\prime},-8^{\prime \prime}$), 73.6 ($6 \mathrm{C}, \mathrm{C}-4,-4 ’,-4 "$, $-6,-6 ’,-6 "), 72.8$ (3 C, 5-, 5’-, 5"- OCH_{2}), 72.2 (3 C, C-5, -5 ', $-5 ’$); MS ($\mathrm{FAB}{ }^{+}$), m/z (rel. int. \%) 967.9 (100) $\left[\mathrm{M}^{+}+1\right]$.

ACKNOWLEDGEMENTS

The financial support from C.N.C.S.I.S. (Romania, Project 353/20, 2005) and A.U.F. (Project 6313PS571 2004, Bruxelles) is gratefully acknowledged.

REFERENCES

1. Senkus, M.: Journal of the American Chemical Society, 1945, 67, 1515.
2. \quad Senkus, M.: U. S. Patent 2,401,196; Chemical Abstracts, 1946, 40, P5446 ${ }^{4}$.
3. Pierce, S., Lunsford, D.C., Raiford Jr., R.W., Rush, J.L., Riley, D.W.: Journal of the American Chemical Society, 1951, 73, 2595.
4. Pierce, S., Lunsford, D.C.: Journal of the American Chemical Society, 1951, 73, 2596.
5. Tilford, C.H., Van Campen Jr., M.G., Shelton, R.S.: Journal of the American Chemical Society, 1947, 69, 2902.
6. Darabantu, M., Mager, S., Plé, G., Puscas, C.: Heterocycles, 1995, 41, 2327.
7. Broadbent, H.S., Burnham, W.S., Sheely, R.M., Olsen, R.K.: Journal of Heterocyclic Chemistry, 1976, 13, 337.
8. Barbulescu, N., Moga, S.G., Sintamarian, A., Cuza, O., Vasilescu, V.: Romanian Patent 83, 939; Chemical Abstract, 1985, 102, P149252r.
9. Nouguier, R., Crozet, M., Vanelle, P., Maldonado, J.: Tetrahedron Letters, 1985, 26, 5523.
10. Zayed, S. E.: Pakistan Journal of Scientific and Industrial Research, 1987, 30, 432; Chemical Abstract, 1988, 108, 94446y.
11. Vanelle, P., M. De Meo, M.P., Maldonado, J., Nouguier, R., Crozet, M.P., Laget, M., Dumenil, G.: European Journal of Medicinal Chemistry, 1990, 25, 241.
12. Mattson, A., Norin, T.: Synthetic Communications, 1994, 24, 1489.
13. Bonnet, D., Pascal, J., Grass-Masse, H., Melnyk, O.: Tetrahedron Letters, 2001, 42, 1875.
14. Japan, Jpn. Tokkyo Koho (1996) JP 08325147; Chemical Abstracts, 1997, 126, 139880.
15. Laurent, P.A., Riehl, M., Frazao, C.S.: Bulletin de la Société Chimique de France, 1967, 10, 3868.
16. Cobb, R.L.: U. S. Patent 3,843,726; Chemical Abstracts, 1975, $\underline{\mathbf{8 2}}, \mathrm{P} 861193 \mathrm{t}$.
17. Cardona, C., Gawley, R. E.: Journal of Organic Chemistry, 2002, $\mathbf{6 7}, 1411$.
18. Darabantu, M., Plé, G., Mager, S., Gaina, L., Cotora, E., Mates, A., Costas, L.: Tetrahedron, 1997, 53, 1891.
19. Darabantu, M., Plé, G., Maiereanu, C., Silaghi-Dumitrescu, I., Ramondenc, Y., Mager, S.: Tetrahedron, 2000, 56, 3799.
20. Darabantu, M., Maiereanu, C., Silaghi-Dumitrescu, I., Toupet, L., Condamine, E., Ramondenc, Y., Berghian, C., Plé, G., Plé, N.: European Journal of Organic Chemistry, 2004, 12, 2644.
21. Eliel, E.L., Wilen, H.S.: Stereochemistry of the Organic Compounds; John Wiley \& Sons, Inc., 1994; pp 221-239, 488-507, 1017, 1199.
22. Cookson R.C., Crabb, T.A.: Tetrahedron, 1968, 24, 2385.
23. Crabb, T.A., Hall, M.J., Williams, R.O.: Tetrahedron, 1973, 29, 3389.
24. Brush, J.R., Magee, R.J., O’Connor, M.J., Teo, S.B., Geue, R.J., Snow, M.R.: Journal of the American Chemical Society, 1973, 2034.
25. Monge, S., Sélambaron, J., Carré, F., Verducci, J., Roque, J. P., Pavia, A.A.: Carbohydrate Research, 2000, 328, 127.
26. Darabantu, M., Lequeux, T., Pommelet, J.C., Plé, N., Turck, A., Toupet, L.: Tetrahedron Letters, 2000, 41, 6763.
27. Darabantu, M., Lequeux, T., Pommelet, J.C., Plé, N., Turck, A.: Tetrahedron, 2001, 57, 739.
28. Dudley, J.R., Thuyrston, J.T., Schaefer, F.C., Holm-Hansen, D., Hull, C.J., Adams, P.: Journal of the American Chemical Society, 1951, 73, 2986.
29. Weber, A.J.M., Huysmans, W.G.B., Mijs, W.J., Bovee, W.M.M.J., Smidt, J., Vriend, J.: Recueil des Travaux Chimiques des. Pays-Bas, 1978, 97, 107.
30. Menicagli, R., Malanga, C., Peluso, P.: Synthtic Communications, 1994, 24, 2153.
31. Cronin, J.S., Ginah, F.O., Murray, R.A., Copp, D.J.: Synthetic Communications, 1996, 26, 3491.
32. Friebolin, H.: Basic One- and Two Dimensional NMR Spectroscopy; VCH Verlagsgesellschaft/VCH: Weinheim/New York, 1991; pp. 271.
33. Riedell, F.G.: Cyclic Organonitrogen Stereodynamics Eds. J. B. Lambert, Y. Takeuchi; VCH, New York, 1992; pp. 159.

SCIENTIFIC STUDY \& RESEARCH * Vol. VII (1) * 2006 * ISSN 1582-540X

34. Emsley, J.: Die Elemente; W. de Gruyter Editor, Berlin, New York, 1994; pp. 166, 178, 206.
35. Berghian, C., Plé, N., Turck, A., Darabantu, M.: Studia Universitatis "BabesBolyai" Serie Chemia, 2005, 1, 201.
36. Berghian, C., Lameiras, P., Toupet, L., Condamine, E., Plé, N., Turck, A., Maiereanu, C., Darabantu, M.: 2006, Manuscript under revision.
37. Berghian, C., Darabantu, M., Lameiras, P., Plé, N., Turck, A.: Heterocyclic Communications, 2005, 11, 517.

[^0]: - Paper presented at COFrRoCA 2006: Quatrième Colloque Franco-Roumain de Chimie Appliquée, 28 June - 2 July, Clermont-Ferrand, France

[^1]: *Stereochemical descriptor \boldsymbol{r} (reference) is used in order to simplify discussion arising from the basic stereochemistry of this molecule as cis fused double oxazolidine system, the lone pair at $\mathrm{N}-1$ being the fiducial substituent. ${ }^{21}$ This spatial arrangement, together with the absence of pyramidal inversion at $\mathrm{N}-1$ are already very well documented. ${ }^{7,11,18-20,22-25}$

[^2]: * In Scheme 8, 9, the DOABO homomorphic substitution at C-2, -8 was omitted for reason of simplicity.

