Studii și Cercetări Științifice Chimie și Inginerie Chimică, Biotehnologii, Industrie Alimentară

Scientific Study & Research Chemistry & Chemical Engineering, Biotechnology, Food Industry 2013, 14 (3), pp. 181 - 184

ISSN 1582-540X

ORIGINAL RESEARCH PAPER

(Cy₂NH₂)₂SO₄.2SnMe₃SO₄Cy₂NH₂; 2(Cy₂NH₂)₂SO₄.5SnMe₃SO₄Cy₂NH₂: SYNTHESIS AND INFRARED STUDY

Daouda Ndoye, Libasse Diop*

Université Cheikh Anta Diop, Faculté des Sciences et Techniques Département de Chimie, Laboratoire de Chimie Minérale et Analytique (LACHIMIA), Dakar, Sénégal

*Corresponding author: <u>dlibasse@gmail.com</u>

Received: February, 22, 2013 Accepted: July, 19, 2013

Abstract: Allowing $(Cy_2NH_2)_2$.SO_{4.2}H₂O or Cy_2NH_2 .HSO₄ to react with SnMe₃Cl in ethanolic media in two specific ratios the sulphato complexes (mentioned in this paper title) were obtained and their infrared study was carried out. Discrete structures containing the complex-anion $[SO_4(SO_4SnMe_3)_2]^{4-}$ consisting of a central bidentate sulphate linked to SnMe₃ groups which are then coordinated to monodentate sulphate anions or the complex-anion $[(SO_4)_6(SnMe_3)_5]^{7-}$ consisting of planar SnMe₃ groups, monodentate or bidentate sulphate anions, these complex-anions dimerizing through cations via hydrogen bonds, are suggested.

Keywords: coordinating sulphate, dimeric structures, NH...O hydrogen bonds, planar SnMe₃ residue, tin (IV) polynuclear complex-anion

INTRODUCTION

The organotin (IV) molecules are known as wood preservatives, anti fouling paints, drugs, etc. [1]. This is why several groups including our [2-9] have been focusing on the synthesis of new compounds of this family.

In this paper we have initiated the study of the interactions between $(Cy_2NH_2)_2.SO_4.2H_2O$ or $Cy_2NH_2HSO_4$ and $SnMe_3Cl$ which has yielded the two studied complexes, infrared study of each complex was carried out, then structures were suggested on the basis of the infrared data.

MATERIALS AND METHODS

By mixing amino-immino-methanesulphonic and sulphuric acids with dicyclohexylamine both in 1/1 ratio in water and after a solvent evaporation at 60 °C, crystals of $(Cy_2NH_2)_2SO_4.2H_2O$ (**L**₁) (notice the cleavage of C-S bond of amino-immino-methane sulphonic acid leading to a sulphate) and a powder of $Cy_2NH_2HSO_4$ (**L**₂) were obtained according to elemental analyses: [% found (% calculated)]:

- L₁: C 57.98(58.03); H: 10.52(10.55); N: 5.60(5.64);
- L₂: C: 51.64(51.59); H: 8.97(9.02); N: 4.97(5.01).

When ethanolic solutions of $(Cy_2NH_2)_2$.SO₄.2H₂O and $Cy_2NH_2HSO_4$ are mixed with ethanolic solutions of SnMe₃Cl in 1/1 ratio and 1/2 ratio respectively, clear solutions are obtained and stirred for two hours. When submitted to a slow solvent evaporation, these solutions yield respectively white crystals and a white powder which elemental analyses data have allowed to suggest the following formulae.

Elemental analyses [% found (% calculated)]:

for A₁: % **C**: 48.22 (48.04); % **H**: 8.54 (8.94); % **N**: 4.17 (5.39) and for A₂: % **C**: 47.16 (47.36); % **H**: 8.40 (8.54); % **N**: 4.02 (4.95) allowed us to suggest the following formulae: $(Cy_2NH_2)_2SO_4.2SnMe_3SO_4Cy_2NH_2$ and $2(Cy_2NH_2)_2SO_4.5SnMe_3SO_4Cy_2NH_2$. The elemental analyses were performed by the Department of Chemistry, University of Bath (UK). The infrared spectra were recorded by a FTIR-Nicolet (4000-400 cm⁻¹) spectrometer at the University of Addis Ababa (Ethiopia), the sample being as Nujol mulls, using CsI windows. Infrared data are given in cm⁻¹ – IR abbreviations: (br) broad (vs) very strong, (s) strong, (m) medium, (sh) shoulder, (w) weak), (vw) very weak. All the chemicals were purchased from Aldrich and used without any further purification.

RESULTS AND DISCUSSION

Let us consider the infrared data (cm^{-1}) of:

- A₁: [v₃(SO₄): 1204sh, 1192sh, 1119vs, 1067sh, 1053sh; v₁(SO₄): 972w, 956w; v₄(SO₄): 670w, 619s, 592m; v_{as}(SnC₃): 548w];
- A_2 : [v₃(SO₄): 1151s, 1101s, 1051s; v₁(SO₄): 990w; v₄(SO₄): 629m, 616m, 602w; v₂(SO₄): 446w; v_s(SnC₃): 516tr; v_{as}(SnC₃): 550m].

The basic structure of A_1 while considering the complex-anion $[SO_4(SO_4SnMe_3)_2]^4$ consists of a central bidentate sulphate linked to SnMe₃ groups to which are then coordinated two monodentate sulphate anions. This entity dimerizes through cations by means of N-H....O bonds (Figure 1).

*Figure 1. Suggested structure for A*₁

For the second complex, the suggested structure is a tetramer in which each monomer complex-anion $[(SO_4)_6(SnMe_3)_5]^{7-}$ consisting of planar SnMe₃ groups, monodentate or bidentate sulphate anions dimerizes through cations by means of NH...O hydrogen bonds, these dimers dimerizing and leading to a tetramer (Figure2).

NB: In Figure 2 dashed lines indicate hydrogen bonded cations.

The appearance of $v_1(SO_4)$ and $v_2(SO_4)$ bands as very weak bands indicate a Td symmetry for the sulphate for the two studied complexes. The broad absorption around 2900 cm⁻¹ allows concluding to the presence of N-H....O hydrogen bonds. The appearance of $v_s(SnMe_3)$ band as a very weak band at 516 cm⁻¹ shows planar SnMe₃ groups according to Group Theory.

CONCLUSIONS

The two studied adducts have discrete structure (dimeric and tetrameric); the tin centre is in a pentagonal environment, the sulphate being mainly bidentate. Macromolecules have been obtained due to the presence of cations involved in hydrogen bonds.

ACKNOWLEDGMENTS

We thank Dr Mesfin Redi, Addis Ababa University-Ethiopia for performing the infrared spectra and Professor K. C. Molloy – University of Bath, UK - for performing the elemental analyses.

REFERENCES

- 1. Evans, C.J., Karpel, S.: Organotin Compounds in Modern Technology, *Journal of Organometallic Chemistry Library*, **1985**, <u>16</u>, Elsevier, Amsterdam;
- 2. Yin, H.D., Wang, C.H.: Crystallographic report: Crystal and molecular structure of triphenyltin thiazole-2-carboxylate, *Applied Organometallic Chemistry*, **2004**, **<u>18</u>**(8), 411-412;
- Kapoor, R.N., Guillory, P., Schulte, L., Cervantes- Lee, F., Haiduc, I., Parkanyi, L., Pannell, K.H.: Di(*p-tert*-butylphenyl)-*N*,*N*-di-(*iso*-butyl)carbamoylmethylphosphine oxide and its organotin and uranyl adducts: structural and spectroscopic characterization, *Applied Organometallic Chemistry*, 2005, <u>19</u>, 510-517;
- 4. Zhang, W.L., Ma, J.F., Jiang, H.: μ-Isophthalato-bis[triphenyltin-(IV)][Sn₂(C₆H₅)₆(C₈H₄O₄)], *Acta Crystallographica Section E*, **2006**, <u>62</u>, m460 m461;
- 5. Chandrasekhar, V., Boomishankar, R., Steiner, A., Bickley, J.F.: First Example of a Hydrogen-Bonded Three-Dimensional Pillared Structure Involving an Organotin Motif: Synthesis and X-ray Crystal Structures of {[ⁿBu₂Sn(H₂O)₃(L)Sn(H₂O)₃ⁿBu²]²⁺[L]²⁻}·2MeOH·2H₂O and {[Ph₃Sn(L)Sn(H₂O)Ph₃]_n}·THF (L = 1,5-Naphthalenedisulfonate), Organometallics, 2003, <u>22</u>, 3342-3344;
- Herntrich, T., Merzveiler, K.: [(Ph₃Sn)₃VO₄]·CH₃CN und [(Ph₃Sn)₃VO₄]·2 DMF, TriphenylzinnvanadatemitneuartigenKettenstrukturen, *ZeitschriftfürAnorganische und Allgemeine Chemie*, 2006, <u>632</u> (14), 2341-2344;
- Gielen, M., Kayser, F., Zhidkova, O.B., Kampel, V.T., Bregadze, V.I., De Vos, D., Biesemans, M., Mahieu, B., Willem, R.: Synthesis, Characterization and *In vitro*Antitumour Activity of Novel Organotin Derivatives of 1,2- and 1,7-Dicarba-*Closo*-dodecaboranes. *Metal Based Drugs*.1995, <u>2</u>, 37-42;
- Diallo, W., Diassé-Sarr, A., Diop, L., Mahieu, B., Biesemans, M., Willem, R., Kociok-Köhn, G., Molloy, K.C.: X-ray structure of tetrabutylammoniumchlorotrimethyltinhydrogenosulphate: the first cyclic dimer hydrogenosulphato hydrogen bonded adduct, *Scientific Study & Research -Chemistry & Chemical Engineering, Biotechnology, Food Industry*, 2009, 10 (3), 207-212;
- De Barros, D., Diop, L., Mahieu, B.: On the existence of « tetrahedral » SnMe₂(PhCO₂)₂ and [SnMe₂(PhCO₂)₃]⁻ in new benzdato adducts: Synthesis and spectroscopic studies, *Main Group Metal Chemistry*, 2009, <u>32</u> (6), 341-344.