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Abstract:  The propagation of acoustic waves affects people’s daily 
life but especially the working conditions in certain industrial areas, 
including in the chemical and food sectors. In order to dampen noise and to 
improve the quality of the working environment, the phenomenon of 
pressure wave propagation must be studied. The paper analyzes the 
unidirectional pressure waves produced by a pneumatic machine operating 
at a constant speed. The hyperbolic equations with non-linear derivatives 
were studied using the method of finite difference and an original program 
was created to obtain the visualisation of the speed and pressure oscillations 
along the pipeline. The graphical representations of the oscillation speed and 
the pressure wave at different sections along the pipe have led to interesting 
conclusions that could be used to develop methodologies and systems for 
attenuating the pressure pulsation and therefore the noise. 
 
Keywords:  attenuation of noise, finite difference method, pneumatics, 

wave propagation.  
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INTRODUCTION 
 
The phenomenon of pressure wave propagation often takes place naturally in the 
environment and is also present in many technical applications. The most illustrative 
example from nature, which influences the comfort of daily life, is the propagation of 
sonorous waves, of noise. In industry, the use of pneumatic systems have the main 
advantage of being non-polluting and for this reason, being preferred in sectors which 
imposed this condition, such as pharmaceutical or food industry. Depending on the 
design of the systems, the repetitive processes that the pneumatic cylinders execute can 
cause pressure waves propagating on the pipes. This this phenomenon produces noise, 
solicitation of pipes, connections and sealing elements, to mention only some of the 
most obvious effects. In fact any unsteady process in liquid and gas is accompanied by 
acoustic waves and therefore by noise.  

The waves propagation, of different frequencies and pressures, depending of the source, 
have complex effect on living organisms. The problems of noise and its effect on human 
body, physiological and psychological, was studied starting from the middle of twenty 
century [1 – 3] and continued until today [4, 5].The issue has grown in importance with 
the increasing number of sources of noise induced by modern society, such as the road 
and air traffic [6, 7].  
The diminishing of the noise could be realized in three ways: at source, on the route of 
transmission and to the receiver. It is obvious that the best way is to combat noise in the 
place where it occurs, followed by the second way. The third solution is still applied in 
industrial halls, in construction, but it is not convenient in everyday life. Considering 
the first to ways, it is important to identify and to solve the equations which describe the 
noise propagation. Afterwards, the amortization solutions could be found, depending on 
the type and source of the waves and ingenious dispositive could be designed.    
The phenomenon of waves propagation is described by equations with non-linear partial 
derivatives of a hyperbolic type, which create difficulties to found analytical solutions 
and had led to a reconsideration of numerical methods of integration. 
From a chronological point of view, the method of finite difference was among the first 
numerical methods developed, but, as compared to other more recent techniques (finite 
elements, spectral methods etc.), it maintains its advantages: a high level of efficiency, 
simplicity of use, low cost, no important calculation resources being needed. 
The application of numerical methods in meteorology strated in 1922 with „Weather 
Prediction by Numerical Process”, by Richardson L. F. and continues until today [8]. 
The problem of the network step dimension and of the convergence of the results 
obtained by numerical and analytical means was studied by Altford in 1974 [9] in the 
field of oil explorations. It was demonstrated that the finite difference method offers 
correct solutions to a sufficiently fine network step. The same conclusion was reached 
by other authors who have used the parallel between pressure wave propagation and 
electric current propagation, a parallel which generated a series of studies [10, 11]. 
Starting with 1960 s the use of the finite difference method for the calculation of 
pressure wave propagation was also the subject of many papers [12 – 14]. 
Numerical methods have been used throughout time in order to find solutions for the 
propagation of waves in various situations. They have been used in geography, in 
meteorology, in seismology, in medicine, the flowing of blood through the arteries 
being a form of pressure wave propagation [15 – 18].  
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One of the problems that come with the use of numerical methods is that of the stability 
of the obtained solutions. In fact, numerical methods offer an approximation of the real 
solution and thus involve errors. Some consistent studies of this subject were developed 
[19, 20], emphasizing the importance to correctly identify the limits of the stability 
domain for the approximate solutions obtained in the case of wave propagation. 
Despite the enthusiasm manifested by a part of the researchers in the application of 
newer numerical methods, the finite difference method hasn’t lost its usefulness and 
attractiveness and important works, which systematizes the steps that are necessary in 
the application of the finite difference method in the case of wave propagation were 
published in the last years [21 – 23]. 
The use of the finite difference method initially requires the establishing of the system 
of differential equations or of partial derivates appliable to any point of the field and its 
transformation into a system appliable only to certain points of the field which define 
the discretization network of the field. The main disadvantage of this method is 
represented by the use of the discretization rectangular network, which creates 
difficulties when it is used for fields with irregular forms or curved surfaces. In the 
analysis we propose, these problems do not exist, and the analysis of the stableness field 
of the solutions has been successfully solved, which leads to interesting conclusions 
regarding this phenomenon. 
The stability of numerical solutions, essential in this situation, was studied through the 
construction of the error propagation diagram, by which it has been proved that in this 
case, too, the stableness of an equation with partial derivates is contained in its very 
form, and that, apart from this, it also depends on the value of the characteristic 
parameters (Strouhal and Reyolds’s number), the fineness of the network (the ratio of 
the adimensional space and time steps) and its way of working.  
 
 
MATERIALS AND METHODS 
 
Defining the analyzed case 
 
The researches which are the subject of the presented paper had as starting point the 
noise produced by reciprocating compressors that provides compressed air in different 
industrial branches and also those produced by lobe blowers used in wastewater 
treatment plants.  
For the purpose of these researches it was considered the case of pressure waves 
produced in pipes as a result of the action of a piston activated by a crank rod 
mechanism. In fact this device simulated the functioning of any pneumatic machine 
working at a constant speed, so the conclusions obtained could be extended in other 
similar cases.  
We consider the pipe of constant section and infinite length (to avoid the problems 
produced by the reflected wave), and the processes involving the gas atrest as being of 
an adiabatic type. 
Given these hypotheses, the phenomenon is defined by the equations of: fluid 
movement, mass conservation and the adiabatic evolution of the gas: 
 

0
1

 XXt PVVV


        (1) 
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0 XXt VV       (2) 
 

pKP       (3) 

In these equations  is the adiabatic exponent, and Kp is a coefficient which establishes 
the ratio between pressure and density. 
It can be observed that the expression of the pressure wave propagation speed is 
obtained from the relation (3). 
 

.21 constRTcKP p   
       

 (4) 
 

Given the initial hypotheses, the variations of the c wave propagation speed due to 
density and temperature, which are valid in the real case, are neglected, and this speed is 
considered as being constant.  
The boundary conditions that can be used are related to speed, as they are established by 
the movement of the piston which produces the pressure waves. Therefore the equations 
will be worked on in order to eliminate the other unknown items and to obtain only a 
speed relation V(X,t) for which solutions will be looked for in the field. Since we 
started from the hypothesis of the gas at rest (V=0), the equations of the system will be 
re-written by taking this into account and by replacing the pressure derivate according 
to x in the (relation 1) with the corresponding expression according to density. By 
deriving the (5) equation according to the time, and the (3) equation according to the 
space, and by also using the continuity equation, the movement equation becomes 
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




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
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






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  XtXt

p
t

tt
KVV .   (5) 

 

Going further, the ),( tX function being uniform and limited, it is eliminated on the 

basis of Schwartz’s commutative relation of the second order mixt derivate tXXt   , 

and thus from the  system of two equations (1) and (2) it can be obtaine a sigle relation, 
having the following expresion: 
 

0
11

22 22 
 tXtX

VV
c

V
c

V


     (6)  
 

A non-linear equation with second order partial derivates of the hyperbolic type has 
been obtained, for whose solution a numerical integration method will be used, since the 
function is continuous, uniform and limited, and the initial and boundary conditions 
ensure the uniqueness of the solution.  
For a more general relevance of the solution, the (4) relation is adimensionalized by 
using the new variables and adimensional functions: 
 

;
R

X
x    ;

c

V
v    

0t

t
  , 

 

resulting from the use of characteristic measures: R – the radius of the crank in the 
mechanism; c – the sound speed, that is, the speed with which the oressure wave is 
propagated; t0 – the period of piston oscillation. 
By using these notations, the (6) relation will take the form: 

0
1

0

2

22
0

2

2

22 


 


vv

Rt

c

c
v

tc

R
v xx

.    (7) 
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We observe that the Sh
ct

R


0

ratio is Strouhal’s similitude criterion, which represents 

the homochronicity criterion and the (7) relation then becomes:  
 

        v Sh v Shv v
x x2 2

2 1 0 
    (8) 

 

Taking into account that Strouhal’s criterion is influenced by the relatively great value 
of the c speed, which is one of the chosen characteristic measures, we notice the very 
small value of Strouhal’s number, due to the great difference between the R radius and 
the 0ct  wave length 
 

1
0



R

ct

R
Sh .     (9) 

 
The application of the finite difference method 
 
The iterative algorithm for the approximation of the numerical solution of an equation 
with partial derivates consists in a procedure of replacement of the respective equation 
by an algebric equation constituting a system of equations with finite difference in the 
nodes of a network that discretizes the considered field. The closer the network nodes 
are, the better the precision of the method will be. Also, since equations with partial 
derivates generally admit infinity of solutions, in order to uniquely characterize the 
process one must add to the equation a sufficient number of specific conditions [22, 23. 
Consequently, a rectangular network is constructed with different adminesional 
steps  x , through which the phenomenon is studied. The developments of the 
speed function are noted in the network nodes, from which the expressions of the partial 
derivates are extracted which are necessary for the obtaining of the algebraic relation 
associated to the equation with partial derivates of a hyperbolic type.  
By replacing the expression of these derivates in the adimensional (8) equation, there 
follows, in an initial form, the relation: 
 

    
0

4
1

22 4231
2

4022
2

301 

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

 x
vvvv

Sh
vvv

Sh
x

vvv
  (10) 

 

Since movement in the network is done by always advancing with point 2, it is useful to 
remove the speed expression in this node according to the other measures (v0, v1, v3, v4, 

Sh, 

x

).  An associated algebraic relation is obtained: 
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  (11) 

 

The analysis of the speed evolution in time, in sections situated at different lengths of 
the pipe, requires the establishing of certain numerical values. Starting from the real 
case analysed, a speed is adopted at first: n = 1500 rot∙min-1 (N0 = 25 rot∙sec-1) 
The dimensional time step t and the adimensional step  of the network are 
established according tot he relations: 
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,
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t

t;s,
N

t





10
040

0040

0040
10

040
25

11

0

0

0
0




   (12) 

 

For the radius of the crank in the mechanism the value R = 0.08 m is adopted, and for 
the wave propagation speed, c = 343m∙s-1. Taking in consideration these values, it 

follows that 0058309,0
1343

08,025

0







ct

R
Sh . 

 
Boundary and initial conditions 
 
The study of the movement is performed by considering the starting point at a value of 
/2, so for t=0, the piston is in the middle of the return stroke. This leads to the 
following expression for the X stroke and V speed (in dimensional terms) of the piston: 
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There follows the only boundary condition which we impose for the adimensional 
equation: 
 

 





 

2
2sin),0(


c

R

c

V
v     (14) 

 

which, for the initial moment  = 0, becomes: 
 

   
c

R
v


0,0       (15) 

 

For the calculation of speed in the considered network nodes, we adopt the value in the 
initial point v (0,0) and on the whole (C) characteristic (Figure 1), and, for (C-1), we 
adopt the values obtained for a  step before the initial moment (down the 0 axis), 
corresponding to an anterior time, when the piston has not yet reached the /2 position.  
 
The stability of the numerical solution 
 
Following the analysis of the initial and boundary conditions, and of the characteristic 
on which the wave is propagated, we admit that the network can be covered in the first 
phase in the  direction. For this way of network covering, we will study the appearance 
and propagation of a calculation error. 
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Figure 1. Network built in the area 

 
The relation of error propagation on the time axis  
It can be observed that the error recurrence relation will have a double trace due to the 
calculation errors in the 0 and 4 points.  
By taking this thing into account and by calculating the difference  
 

2222 v)vv(v   , 
 

we can obtain the generalized expression of the error recurrence formula for the 
movement on the axis of time: 
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(16) 
 

In a compressed notation, the (16) relation can be written in this form: 
 

111 

  nnnnn vCvCv        (17) 

 

By analysing the error propagation relation we observe that its relaxation depends on 

the fineness of the network, therefore on the step ratio, present in the 
RS

x
Sh 


 term, 

which we have called the Strouhal number of the network and noted by RS . The (15) 

relation will now have the simplified form: 
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In order to determine the conditions for the reduction of the approximate calculation 
error is resulting from the used method, and to find a stable solution. Two main 
conditions have been identified, which are presented below. 
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The boundary case of cancelling the denominator  
The main condition for the existence of a solution to the (17) relation is that the 
denominator should be other than zero.There follows from here a condition for speed 
which dependent on Strouhal’s number: 
 

 
101

4
113 ,

S
v

S
vv RR 





.    (19) 
 

Coefficients Cn şi Cn-1 should be less than 1 
Considering that the spatial step is very small ( x ) and the frequency of oscillations is 

very high, in order to simplify calculations, the v1-v30 approximation can be made, 
only for the denominator term, which needs to be other than zero. It follows that: 
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and, with the simplification imposed above, this becomes 
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The condition obtained for the network step involved again the Strouhal’s number. 
The second 11 nC  coefficient 
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It follows that the second coefficient does not generate any stability problems.  
Since all stability conditions also involve the term noted as RS , we go back to it and 

also search for the stability condition. 
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The relation we have obtained represents a (local) network Sh, therefore the ratio 
between the spatial step and a chosen time step – the fineness of the network – also 
influences the stability of the solution. 
 
Drawing the diagrams of calculation error propagation  
The following methodology for the drawing of the error relaxation diagram is used: an 
initial error vi = 1 is adopted and its propagation is followed graphically in a network 
supposed to be perfectly stabilized, considering the simplifying hypothesis 31 vv  , and 

using the iterative procedure. 
In this case, the error propagation relation will be 
 

111 )()( 

  nRnnRnn vSCvSCv   ,   (23) 

 

considering at the first step  
 

1nv ;   01 nv
 

 

The two coefficients from the (23) relation have these expressions: 
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     (24) 

 

Different values are given to SR and the way in which the error propagates, is 
graphically drawn (Figure 2), searching for those SR values through which a stable 
solution is obtained. The SR boundary stability values are obtained from the condition 
 

  vn+1=vn=vn-1,     (25) 
 

a relation which is valid when the error is maintained the same. In the present case, the 
boundary values for which the error is equally transmitted are: SR = 0.7072, SR = 1.4140  
The conclusion is that, for this way of covering the network, in parrallel with time axis, 
the error is not diminished and a stable solution cannot be obtained. The graphic 
representation (Figure 2) contains also other values of SR (Strouhal of the network). 
 
 

 

Figure 2. Chart error propagation for network browsed parallel with time axis  

 
We will now consider the covering of the space-time network according to the direction 
of the diagonal to the grid that is, going parallel with the direction of wave propagation. 
For this way of covering the network, the error propagation relation will have a simple 
trace, therefore the calculation error will be transmitted to the network from a single 
point, point 3, situated behind in relation to the direction of network covering.  
We will use the same reasoning and we will follow the same steps as in the previous 
case. This time the conditions obtained are: SR1 > -1.0018318 and SR2 > 0.998168. 
It follows that, to reduce the approximate calculation error and to obtain a stable 
solution, the SR values should be greater than 0.998168. 
 
Drawing the diagrams of calculation error propagation 
In order to draw the error relaxation diagram we use the same methodology presented 
above: an initial error vi=1 is supposed and the error convergence is studied according 
to the relation vn+1=Cn(SR) vn , for different SR values (Figure 3). 
The boundary values for error relaxation, that is, the values for which the error is 
maintained at a constant level, are obtained from the vn+1= vn condition, from which it 
follows that SR = 0.998168 and we adopt SR = 1.  



TOPLICEANU, MURARU, FURDU and PUIU 
 

                                                                                                                             St. Cerc. St. CICBIA  2021 22 (1) 98

To exemplify, several values are given and it is observed that the error tends to zero 
(Table 1, for SR=1.1 and Table 2, for SR=1.5).  
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Table1.The error value  for SR=1.1  
v1=0.8232 v5=0.3775 v9=0.1732 v13=0.07946 v17=0.03645 

v2=0.6773 v6=0.3107 v10=0.1425 v14=0.0654 v18=0.0300 

v3=0.5574 v7=0.2557 v11=0.11732 v15=0.0538 v19=0.02469 

v4=0.4587 v8=0.2104 v12=0.09656 v16=0.04429 v20=0.02032 
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Table 2. The error value  for SR=1.5 
v1= 0.442   v4=0.0380 v7=0.00382 v10=0.00028 v13=0.00002446 

v2=0.1952 v5=0.0168 v8=0.00145 v11=0.0001252 v14=0.0000108 

v3=0.0860 v6=0.007426 v9=0.000641 v12=0.0000553 v15=0.00000477 

 
 

 
 

Figure 3. Chart error propagation on the 3-2 direction 
 
The error relaxes (decreases) only when the network is covered diagonally, in the 3-2 
direction, therefore in parallel with the movement characteristic and, the error is more or 
less attenuated, according to the value given to SR (Figure 3). 
In order to cover the network of x  steps and to determine the speed values in nodes 
of the grid, a program was built, which allows the calculation of speeds in the domain 
and, subsequently, of pressures. In this respect, the Matlab medium has been used. 
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Determining the pressure oscialltion values and making the graphic representation 
 
We search for the pressure expression and then for its solution also by means of 
numerical methods, benefiting from the already determined speed values in the network 
nodes.  
Since we know the working hypotheses from the previuos section, we re-write the 
equations that describe the phenomenon: 
 

0
1

 Xt PV


      (26) 

 

0 Xt V       (27) 
 

pKP 
 
        (28) 

 

The equations are worked on in a manner similar to that which has been used to obtain 
the speed expression and the same variables and adimensional functions presented 
above are used. 
Given that the only boundary condition we can use is in the piston section, the initial 
section, we must determine the pressure variation according to time at the level of this 
section, after which we will be able to cover the network. 
It must also be added that, for the determination of pressure values in the network nodes 
the half step is used, and, consequently, the expression used for the pressure calculation 
through the numerical method will have this form:  
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            (29) 

 

By means of this relation, if we know the speed values determined previously, we can 
calculate the pressure values for the whole domain. 
The adimensional 1)0,0( p value is imposed for the initial section, the piston section 

and the initial moment. 
 

 
 
RESULTS AND DISCUSSIONS 
 
The use of the (11) and (26) relations for the determination of speed and pressure values 
in the nodes of the considered network, of (,x) coordinates, required the development 
of a calculation programme, as was toldbefore. The programming medium Matlab was 
used, in order to obtain the graphic representations of pressure and velocity. 
At first, the values on the time axis (0,) were calculated by using the (13) boundary 
condition for speed, which is determined by the movement of the piston actuating 
mechanism (Figure 4), after which, by using these values as initial working data for the 
programme, the speed and pressure values for the entire network were obtained, and 
thus the oscillation speed and the pressure in the pipe were established. 
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Figure 4. The movement of the piston actuating mechanism 

 
The graphic transposition of the results obtained mathematically is presented in figures 
5 ÷ 9, which foreground the success of the numerical integration method that was used, 
and the information obtained as a result of the graphic visualization allow us to draw 
interesting coherent conclusions on the studied phenomenon. 
The graphic representations have been made for various values of the SR number, which 
also leads to various values of the x/ ratio. This will permit to analysis the influence 
of the finesse of the network on the results obtained.  
For all SR used, in the initial (x = 0) section, corresponding to the piston section, the 
speed chart has a permanent character, as it represents the movement produced by the 
crank rod mechanism in fact, whereas the average pressure in this section has a 
decreasing variation (Figure 5). 
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Figure 5. The variation of pressure (in up) and velocity (in down) in the initial section 
for SR=1 and SR =1.1 

 
At the initial moment considered to be /2, the piston is at the return stroke, which 
causes a small decrease of pressure below the initial value of p0=1, after which, at the 
forward stroke of the piston (a movement in the positive sense of the ox axis), there 
appears an increase of pressure that is much higher than the initial value in the pipe, 
because, at each advancing sequence of the piston, an ever denser mass is pushed, due 
to the previous compressions.  
On the other hand, at the return stroke, the movement of the piston to the initial position 
is done through a pressure mass that is already decreased, so the fluid quantity which it 
causes to move is much smaller. The repetition of the piston movement leads to a 
drastic decrease of the average pressure value at the level of the considered section.  
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The same process is manifested in the other sections of the pipe, the decrease of the 
average pressure value being accompanied by an increase in the local particle oscillation 
speed (Figures 6 and 7).  
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Figure 6. The variation of pressure (in up) and velocity (in down) at 10 adimensional 

space steps (x=10δx)  for SR=1 and SR =1.1 
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Figure 7. The variation of pressure (in up) and velocity (in down) in the initial section 

for SR = 1.5 and x=5δx 
 
The behavior described above, can be also observed for other SR numbers, in the piston 
section and in the other sections of the pipe, so for different lengths of pipe.  
It is important to note that different SR numbers mean different dimensional space steps, 
taking in consideration that the time step remains constant, which explain the 
modifications in the graphics allure, modification which will be explained in the next 
paragraphs. 
The decrease of the average pressure value in time can be interpreted from the physical 
point of view as a pipe emptying phenomenon due to a gas movement caused by the 
compression waves. Therefore, although the fluid was at rest at the initial moment, the 
wave propagation generated by the piston actuated by the crank rod mechanism leads to 
a movement or circulation of the fluid in the pipe.  
The decrease of the average pressure value is simultaneous with a process of decrease in 
the pressure wave amplitude which is affected by an attenuation phenomenon. 
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The wave attenuation is due both to the fact that in a low pressure environment the 
action of the piston creates waves of ever smaller amplitude, and to the fact that a 
relative flowing of the fluid appears on both sides of the wave front, from the maximum 
to the minimum, as a natural pressure equalizing phenomenon, which thus reduces the 
oscillation amplitude value.  
The oscillatory speed transmitted to the fluid by the piston in the initial section increases 
to positive values in the next sections along the pipe, while the average pressure value 
decreases, which emphasizes the same fluid flowing phenomenon. The speed oscillation 
is no longer related to the rest value (v = 0), but to ever higher positive values.  
There appears a metamorphosis of the pressure wave as a result of the variation in the 
local wave propagation speed due to the local modification of density.  
The analysis of the graphic representations for various sections and various Strouhal 
numbers SR network foregrounds the appearance of a temporary mass accumulation 
phenomenon, manifested more significantly at bigger distances along the pipe (SR = 1.1; 
SR = 1.5, step 50, (Figure 8) and for higher SR numbers (SR =2; step 5 and 10, Figure 9). 
We remind that a higher number means a higher dimensional space step. 
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Figure 8. Mass accumulation phenomenon (pressure in up and velocity in down) 
 
This phenomenon is caused by the fact that the fluid masses moved by the pressure 
wave propagation meet a fluid mass at rest which reduces their movement. 
Consequently, a mass accumulation is produced, a higher pressure than in the rest of the 
pipe, which eventually determines, according to the sanctioned physical phenomenon, a 
flowing of the gas towards the lower pressure end.  
The graphic representations obtained for various SR numbers foregrounds the 
importance of the value of this parameter, and, implicitly, of the fineness of the 
network, for the aspect and stability of the solution. 
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Figure 9. Mass accumulation phenomenon (pressure in up and velocity in down) 
 
Summarizing, the study about the propagation the pressure waves generated by a 
pneumatic machine working at a constant speed, emphasized the followings aspects: 
- a non-permanent rapid phenomenon of pressure wave propagation based on the 
impenetrability of matter; 
- a non-permanent slow phenomenon which asymptotically tends to a permanent state 
and which consists in the decrease of the average pressure in time 
- a pressure wave attenuation consisting in the decrease of the pressure oscillation 
amplitude; 
- a metamorphosis of the pressure wave shape due to the local variation of the wave 
propagation speed, caused in its turn by the local modifications of density; 
- the change of the fluid state from rest to movement, which eventually causes the 
emptying of the pipe 
 
 
CONCLUSIONS  
 
Using numerical integration methods allows the numerical solving of the phenomena 
defined by non-linear hyperbolic equations and a pertinent analysis of the evolution of 
these phenomena in time and space. 
The finite difference method can be successfully applied in the case of pressure waves 
propagated in a pipe, allowing us to study the internal variations at the level of 
oscillation speed and pressure and on this basis there can be developed methodologies 
and systems for the attenuation of pressure pulsation effects such as noise. 
The correctness of the results obtained by means of the finite difference method largely 
depends on the fineness of the network built in the field. The limits of the method are 
generated by the error reduction conditions, the stability conditions, which are in fact 
generated by any numerical solution.  
Having as starting point the conclusions obtained, different technical solutions can be 
developed for an effectively controlled dampening of the pressure pulsation. Taking in 
consideration the natural attenuation of the pressure which appears after a number of 
space steps, it can be concluded that a system which will force the wave to go through a 
device until the attenuation process takes place could be a good way to diminish the 
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noise. Other solutions which take in consideration the pulsating character of the wave 
and intend to use this for an efficient damping device are being explored by the authors 
and are the subject of a patent.    
The analysis developed in this paper can be adapted to any situation of pressure wave 
propagation in a pipe: it can be applied for adiabatic moving fluids (V≠ 0), for 
barotropic processes, for ideal or viscous fluids. It requires only basic knowledge of 
fluid mechanics and skill in the use of the mathematical apparatus. 
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