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FLOW OF AN UNSTEADY DUSTY FLUID BETWEEN
TWO OSCILLATING PLATES UNDER VARYING PULSATILE
PRESSURE GRADIENT

B. C. PRASANNAKUMARA*, B. J. GIREESHA and C. S. BAGEWADI

Abstract. An analytical study of unsteady dusty fluid flow between two
oscillating plates has been considered. The flow is due to influence of non-
torsional oscillations of plates and pulsatile pressure gradient. Flow analysis is
carried out using differential geometry techniques and exact solutions of the
problem are obtained using Laplace Transform technique. Further graphs
drawn for different values of Reynolds number and on basis of these the
conclusions are given. Finally, the expressions for skin-friction are obtained at
the boundaries.

1. INTRODUCTION

The fluid flow embedded with dust particles is encountered in a wide
variety of engineering problems concerned with atmospheric fallout, dust
collection, nuclear reactor cooling, powder technology, acoustics,
sedimentation, performance of solid fuel rock nozzles, rainerosion, guided
missiles and paint spraying etc.

P.G.Saffman [17] has discussed the stability of the laminar flow of a
dusty gas in which the dust particles are uniformly distributed. Michael and
Miller [12] investigated the motion of dusty gas with uniform distribution of
the dust particles occupied in the semi-infinite space above a rigid plane
boundary. Marble [11] has applied techniques of fluid mechanics for
investigation of two-phase flow of gas and solid particles.
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dusty fluid; velocity of dust phase and fluid phase, unsteady flow, Reynolds
number, pulsatile pressure gradient.
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He introduced the concept of temperature and diameter of the solid
particles in his analysis. P.Mitra et.al. [13, 14] have made investigation of
various aspects of hydromagnetic dusty fluid flows between two parallel
plates. T.M.Nabil [15] studied the effect of couple stresses on pulsatile
hydromagnetic poiseuille flow, N.Datta [5] obtained the solutions for pulsatile
flow of heat transfer of a dusty fluid through an infinitely long annular pipe.
Later, A.Eric [6] has studied the quantitative assessment of steady and
pulsatile flow fields in a parallel plate flow chamber. Thierry Feraille and
Gregoire Casalis [18] discussed the channel flow induced by wall injection of
fluid and particles. These authors studied the different type of flows in only
Cartesian and polar coordinate system.

During the second part of 20th century, some researchers like Kanwal
[10], Trusdell [19], Indrasena [9], Purushotham [16], Bagewadi,
Shantharajappa and Gireesha [1, 2, 3] have applied differential geometry
techniques to investigate the kinematical properties of fluid flows in the field
of fluid mechanics.

Further, the authors [2,3] have studied two-dimensional dusty fluid
flow in Frenet frame field system. Recently the authors [7,8] have studied the
flow of unsteady dusty fluid under varying different pressure gradients like
constant, periodic and exponential. This paper involves study of flow of dusty
fluid between two infinite oscillating plates in anholonomic co-ordinate
system. Here we consider as the flow is due to influence of non-torsional
oscillations of plates and time dependent pressure gradient. The exact
solutions for the fluid and particle velocities are determined by the Laplace
Transform method. The graphs drawn for different values of Reynolds
number and on basis of these the conclusions are given. Finally, the skin-
friction on the plates are then obtained in the closed form.

2. EQUATIONS OF MOTION
The governing equations of motion of unsteady viscous
incompressible fluid with uniform distribution of dust particles are [17]:
For fluid phase

(21) Vu=0 (Continuity)
U - - = o= kN - -
(2.2) E+(U.V)u——p Vp+g+wW* u+—(v—u) (Linear Momentum)
Yo

For dust phase
(2.3 Vv=0 (Continuity)
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—

(2.4) % +(V-V)V = %(U —V) (Linear Momentum)

We have following nomenclature:
u — velocity of the fluid phase, v—velocity of dust phase, p—density of the

gas, §= -V, @—gravitational potential, p-—pressure of the fluid,
N —number density of dust particles, v —Kkinematic viscosity,
k = 67au — Stoke's resistance (drag coefficient), a—spherical radius of dust
particle, m—mass of the dust particle, x—the co-efficient of viscosity of fluid
particles, t —time.

- - o«

Let s,n,b be triply orthogonal unit vectors tangent, principal normal,
binormal respectively to the spatial curves of congruences formed by fluid
phase velocity and dusty phase velocity lines respectively as shown in the
figure-1.
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Figurel: Frenet Frame Field System
Geometrical relations are given by Frenet formulae [4]

i) §:ksﬁ,@:r55—ksg,a—b:—rsﬁ
0s 0 0s
. on_, ,-db < 8S_ v .-
i) —=k,s,—=-0,5,—=0o,b-k/n
(2.5) ) KeS IO T
86 e aﬁ "e ag "e N
11D} %:kbs,%:—abs,%=abn—kbb

iV) Vg = Hns + Hbs ; Vﬁ = ebn - ks ; VB = an
where 0/0s, olon and o/ob are the intrinsic differential operators along fluid

phase velocity (or dust phase velocity ) lines, principal normal and binormal.
The functions (k,k;,k;) and (z,,o,0,) are the curvatures and torsion of the

above curves and 6., and 6, are normal deformations of these spatial curves
along their principal normal and binormal respectively.
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3. FORMULATION AND SOLUTION OF THE PROBLEM
Let us consider an unsteady flow of an incompressible viscous fluid
with uniform distribution of dust particles between two oscillating plates
separated by a distance h under conservative body forces as shown in the
figure 2.

7

—-
&

b=0

Figure 2: Geometry of the flow.

The flow is due to the influence of non-torsional oscillations of the
plates and time dependent pressure gradient. Both the fluid and the dust
particle clouds are supposed to be static at the beginning. The dust particles
are assumed to be spherical in shape and uniform in size. The number density
of the dust particles is taken as a constant throughout the flow. Under these
assumptions the flow will be a parallel flow in which the streamlines are along
the tangential direction and the velocities are varies along binormal direction
and with time t, since we extended the fluid to infinity in the principal normal
direction.

For the above described flow the velocities of fluid and dust are of the
form

U=ugs, V=V,
where (ug,u,,u,) and (v,,v,,v,) are velocity components of fluid and

dust particles respectively.
By virtue of system of equations (2.5) the intrinsic decomposition of
equations (2.2) and (2.4) give the following forms:

2
(3.1) 8U_s:£6_p+\}[8 s CI’US]JFI(?N(VSUS)

ot p 0s b2

(32) 22k = -1P ooy Ms _y 2
pon ob
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(33) 0= —E@H{usksrs - 2kg%ﬂ

p ob
ov k
(3.4) ES:E(US_VS)

35) vk =0.
where C, = (o/” +k!*> +k!"* + 5,'*) is called curvature number [3].
From equation (3.5) we see that v’k, =0 which implies either v, =0
or k, =0. The choice v, =0 is impossible, since if it happens then u, =0,
which shows that the flow doesn't exist. Hence k, =0, it suggests that the

curvature of the streamline along tangential direction is zero. Thus no radial
flow exists.

The equations (3.1) and (3.4) are to be solved when subjected to the
following initial and boundary conditions;

Initial condition; att=0;ug =0,vg =0

" iont “iat
Boundary condition; for t > 0; ug = ale'a)l +ae 'I' ‘at b=0 and
72l atb=h
where a;, a,, ¢, and c, are complex constants such that u, becomes real on

the plates, @, &w, are frequency of oscillations.

Assumed that a pulsatile pressure gradient is imposed on the system,
i.e., for t >0, we can write it as

R C +acos(pt)
0s

Y2

where C and « are constants and £ is the frequency of oscillation.
Let us consider the following non-dimensional flow variables,
u; =uh/U, v, =v.h/V, p" = ph’/pU? b" =b/h, t" =t/(h*/U);

and non dimensional flow parameters,
2

(01,0,) = U(a)l’a)z)’

Ug =C€ +Cot

’ ! ! ! h
(a;,8;,C,C;) = U(avaz’cycz)

where h is the characteristic of length and U is the characteristic of velocity.
Using the above non-dimensional quantities we get the non-
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dimensionalized form of the equations (3.1), (3.4) and the boundary
conditions as follows;

2 3 2
ou 0 h 0°ug h kNh
(3.6) T B 23 ———Crlg +———(vs —Us)
ot 0s Re gp Re pU
2
Vg _ kh
(3.7) Eszm(us_vs)
Ug = alemlt + aze_'o—lt, at b =0 and
(3.8) Ug = cle'62t +c2e_'02t, at b =1,

where Re =Uh/v the Reynold's number.
We define Laplace transformations of u, and v, as

(39 U, =[eudtand V, = [e v dt
0 0

Applying the Laplace transform to equations (3.6), (3.7) and to (3.8),
then by using initial conditions one obtains
C o h d?Us hc h?|
(310) XUg = | T4 [+ 25— "Ug+— (Vs —Uyg)
X x“+p Re db Re Ur

2
(311) XV, = U, -vq)
Ur
Ug = — 2 ® 4p=0and
X—lop X+101
312) Uy = A, 2 gp=g

X—i0'2 X-I-iO'2

where | - mN and 7 :%. Equation (3.11) implies

Y2
h2
(3.13) Vo=—+U,
(h*+xU7)
Eliminating V, from (3.10) and (3.13) we obtain the following equation
d’U C oxX

3.14 s QWU, = =+
(3.19 db’ QY [x x2+,6’2}
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2
where Q% =h’C, + xRe| g, — |
h |~ (xUz+h?)

The velocities of fluid and dust particle are obtained by solving the
equation (3.14) and satisfying the boundary conditions (3.12) as

U, =L {L as HsinhQ(b—h)—sinh(Qb)Jrl}Jr

Q2| 52+ﬂ2 sinh (Qh)
sinh(Qb) | (x+iop)cy +(X—iop)Co
+— +
sinh (Q) X2 + o2
+sinh Q(b-1)| (x+ioy)a; +(x—ioq)ay
sinh (Q) x2 + ol
Using U, in (3.13) we obtain V as
v, = h? c, s {sinh Q(b - h) —sinh (Qb) +1}+
Q2(h2 +xU7)| S N +,52 sinh(Qh)
h2sinh(Qb) | (X+iop)ey + (X —icg)Cy .
(h? +xU7)sinh(Q) | x2 + o3
h2sinhQb-1) | (x+icp)ag +(x—ioq)ay
(h? +xUr)sinh(Q) | x2 +of

By taking inverse Laplace transform to U, and V., one can obtain u, and
V,, as

U = C1l(wqcos oot —wo sin opt) +i(wo COS oot + g Sin oot)]
s =
(A/2 + B/2)

Col(wqcos oot —wosinoyt) —i(yy CoS oyt + iy Sin oot)]
(A/2 + B/2)
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_al[(¢l cosoqt — ¢y sinoqt) + (¢ cosoyt + ¢ sinoyt)]
EZ+F?)

_a2 [(# cosont — @y sinoyt) —i(@y cosort + ¢ Sinoqt)]
(E?+F?)

t . .
D7 Lt i & L0 02)0 + 01 —i0p)ep)(0° +xU)”
Re r=0 (x +02)[(h? +xU7)? +1h%]

+

2 [(xy +i0,)0y + (Xp —i675)C,](h2 + X,U7)?
(X3 +03)[(h? +x,U7)? +1h°]

+

o X1 . s 2 2
%Eo(l)rrsin((bl)rﬂ){e ' [(Xl(:zlffl)azﬁ(le '01)3.3](h 3+X1UT)
= 1 +o)l(h" +xU7)" +1h7]

. &2 [(xy +i07)a + (o —i o)A ](h% + x,U7) >
(X3 + o) [(h? +x,U7)% +1h°]

a[Xicosp—XosinA] | 4doh = sin(2r +1)7b
* 2 22 2 |
(k& +k§)(G'“+H'?) | MRer=0 2r+1

xlexlt(x1Ur+h2)2 xzexzt(x2U7+h2)2
T2 2 22 3.2 2 2.2 .3
(X + MUz +h")"+h7) (X5 + 87 )(XUz+h")" +h71)

4Ch = sin(2r +1)ab
7ZRe r=0 2r +1

exlt(x1Ur+h2)2 eXZt(XZUr+h2)2
2.2 3 2\2 .3

% (0qUz +h2)2 +13) %o ((xoUz +h2)2 +h3))

C [SinhM(b—l)—SinhMb+SinhM}

M 2 sinhM
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V. = h2c1[(91 COS oot — @y sin o t) + (05 €os oyt + Oy sin oot)]
; (A2 + B2)(h? + (,U 7))

hzcz[(el COS oot — @5 sin oot) —1(6, COs oot + 6 sin o,t)]
(A% +B?)(h? + (c,U7)?)

B _hzal[(kl cosoyt — Ay sinoqt) +i(A, cosoqt + Aq Sinoqt)]
(E”? +F'?)(h? + (o1UD)?)

B _hzaz [(Aq cosoit — Ay sinogt) —i(Ay cOsSoqt + Aq Sinoqt)]
(E? + F'?)(h? + (o1UD)?)

e [(xg +i0)cy + (g —i5,)C](h2 + X UT)
(x2 +63)[(h? + xUr)? +1h®]

3 o0
ZUKE N rsin(mb)!

Re r=0

X 2 (%, +i65)c; + (Xp —ic7)Co](h% + X,UT)
(x2 +63)[(h? + x,Ut)2 +1h%]

J’_

2h3n [exlt [(x +ioy)ay + (X —ioy)ay](h? + xU1)

§ ~1)"rsin((b -1)r
e r:O( ) ren®=hrm (x2 +6H)[(h? + xUt)% +1h?]

X e’ [(x, +ic1)ag + (Xg —ic1)ag](h? + x,Ut)2
(x2 +62)[(h? + x,Ut)2 +1h%]

o[XqcosBt—XosinBt] | 4oh & sin(2r +1)nb
2,2 2 2 |t 2 2
(k& +kE)G'“ +H') | ™Rer=0 r+1

y x1€ £ (xUt +h?)? s xzexzt (x,Ut +h?)?
(2 + B2 (Ut +h?)2 + 03 (x3 +B2)(xoUt +h?)% + 1))

+

ach = sin@2r+1)ab| et (Ut +h?)2 . e"2 (x,Ur + h?)?
MRer=0  2r+1 | x (Ut +h?)2+h3)  x,((xoUt +h?)2 +h3)
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C[sinhM(b—l)—sinhMb+sinhM}

M 2 sinhM

" - [hzcl[(elcOScszt—ezsincszt)+i(9200502t+615in02t)]]
(A2 +B?)(h? +(c,Un)?)

_h2c2[(61 C0Sot —05 sincot) —i(0, cosoot + 01 Sinoat)]
(A2 +B'H)(h? +(cUn)?)

B _hzal[(kl cosoqt — Ay sinoygt) +i(Ao cosoyt + A4 Sinoyt)]
€% +F )0 +(olUn)?)

B _h2a2 [(A1 cosoqt — A, sinoyt) —i(A, cosoqt +Aq Sinoyt)]
(€% +F2)(0? +(o1U0n)%)

gt [(% +i0)¢1 + (X —i07)Cp1(h° + xUr)
(X2 +63)[(? +xUn)? +1h°%]

3 a0
2nm Z(l)rrsin(rrcb)[

Re r=0

2 [(xy +i02)0y + (X —i52)C,](h2 + X,Ur)
+
(X3 +63)[(h? +xU1)% +1n%]
[ +io)ay + (% —iop)as](h? + xU7)
(<2 +o2)[(h? + xU7)2 +1n®]

3 [e 0]
207 Sy rsin(o —1)m)[

Re r=0

X 2 (%, +ioy)ag + (X —icy)ag](h? +xU7)
(X3 + o) [(h% +xU7)? +1h°]

. ah?[(X1h? + X AU) cos & — (X h? — X1 AJ7)sin A] +40413 ®© sin(2r +1)b
(k& +k2)(G'2 +H'®)(h* +(BUr)?) MRe r=0 2r+1

y xlexlt (x1Ur+h2) N xzexzt (x2Ur+h2)
02 + AUz +h2)2 +1031) (%2 + B2)((xUz +h?)2 +h3)

. 4Chsisin(2r+1)7zb et (xUz +h?) X e’ (x,Ur +h?)
mR, = 2r+l X (xUz+h?)?+h’)  x,((x,Uzr+h*)*+h’)
C [sinhM (b—1)—sinh Mb+sinh M
M ? sinhM '
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The results of u, and v, describe the fluid and particle velocities
respectively for the general cases. For instance,
sifa=a,=0&c =c¢,=u/2 and w, = w the we can obtain the results for
the lower plate is fixed and upper plate is moving (u,cosat) i.e., the
generalized Couette flow,
«if 3, =a,=0 & (c,¢,) = (u,/2i,—u,/2i) and w, = @ then one can obtain the
velocity profile for the flow due to the movement of upper plate (u,sin ot
lower plate is fixed) i.e., the generalized Couette flow,
o if (a,a,) = (uy/2i,—u,/2i) & c,=c, =0 and @ =® then we obtain the
velocity profile for the flow due to the movement of lower plate (u,sinat,
upper plate is fixed) i.e., the generalized Couette flow,
o if (a,a,) = (Uy/2i,—u,/2i) & (c,,c,) = (u,/2i,—-u,/2i) and o, =w,=w i.e,
both lower and upper plates are moving with the oscillations
U, Sinat, u, sin wt respectively

* if o, =w, =0 then both lower and upper plates are moving with uniform

velocity.
All the above results are very similar with those of Mitra et. al.
[13,14].
Shearing Stress (Skin Friction): The Shear stress at the boundaries
b=0 and b =1 are given by
cosat[(A'e, +B' ) +i(A' B, — B'ay)]-sin ot[(A' S, — B'ay) —i(A'a, + B' )]
DO = /ucl 12 12
(A“+B")
{cos ot[(A'e, +B' ) —i(A' B, —B'a,)]-sino,t[(A' S, - B'a,) +i(Ae, + B'ﬂl)]}
HC, 2 pe
(A“+B")
[c0301t[(E'51+F'52)+i(E'52—F'al)]—sinalt[(E'az—F'51)—i(E'51+F'52)]}
_luai 12 12
(E"+F'")
cosayt[(E'S, + F'S,) —i(E'S, — F'8,)]-sin ot[(E'S, — F'8,) +i(E'S, + F'6,)]
_/ua2 (EIZ + F!Z)

_Zﬂhﬂz irz exlt[(Xl+iO'2)Cl+(X1—i02)C2](h2+X1Uz')2
R, & (X7 +o2)[(h* +xU7)* +1h]
2 [(x, +i0,)c, + (X, —15,)c,])(h? + x,U7)?

(X22 +O'22)[(h2 + XU 7)% +1h%]
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2

20h? & | €% +ic)a, +(x —ic)a,]) (0 +xU7)
T ; ; T
R 5 (¢ + ) [ +xUz)’ +IIF]

+e*zt[(xz+ial)a1+(xz—ica)aﬂ(h%xzuf)z]

(X + ) [(° +xU7)° +In]
N peh

(€ +K)G7 +H)
i4ﬂ0hi_ e (xUr +h°Y .\ &2 (x Uz + h?)? ]
R (8 AU+ R 08 + A (U +hE) )

[-(ksM; + KM, ) cos/t + (kM —kM?)sin/i]

4hs) e Uz +h?)? . e (x Uz + h?)?

S X (Uz+h2)°+0h) %, (( Uz +h?)? +h) MsinhM

[(coshM —1)}

— ﬂc ’ ! H ! !
Dl —(A'Z—_i_lB,Z){COSUZt[(A M5 +B M6)+|(A MG -B MS)]
—sin o, [(AM, — B'M,) —i(A'M, + BM,)]|

+ﬁ["’°3"*“‘\“s+B’M6)—i(A'M6 ~BM,)]

—sin o, [(AM — BIM,) +i(AM, + BM,)]-|

[ cosatl(E'S, + F',) +i(E'S, - F'8)]-sin ot[(E'S, - F'6,) —i(E'3, + F'5,)]
lual (E!2 + F!Z)

cOsGA[(E'S, + F'8,)~i(E'S, — F'8,)]-sin o t[(E'S, — F'S,) +i(E', + F'8,)]
_'uaz (E72+F12)

207" o] €06+ + (% i) )0+ xUD)°
R, = (2 +2)[(h? +xU7)? +1h°]
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e 2[(x, +io,)c, + (X, —io,)c,](h? + x,U7)?
(X5 +02)[(h?* +x,U7)? +1h°]
th i e U[(x, +io,)a, + (X —io,)a,](h? + xU7)?
= (x2 +o2)[(h?* + xU7)? +1h?]

+ e*? [(Xz +ioy)a, + (X, —igy)a,](h? +x,Ur)*
(x5 +07)[(h? +x,U7)?> +1h°]

uaoh

(k2+k )(G/2+H,2)[ (ksM, + K M,)cos Bt + (kM , —k,M *)sin f3t]

_4uch i elpUrh®)’  e?(Ur+h?y
R, 4| 0¢+ AUz +h®)?+1) " (x2 + 3)((xUz +h?)2 +hil)

r

4 hi e (xUz +h?)? . e? (x,Ur +h?)? .\ [(coshM—l)}
R, & x((xUr+h*)?+h%) %, ((Uz+h?)?+h) M sinh M

A = sinhabcos gb, B = cosha,bsin gb, A"=sinh ¢, cos g

B' = coshe,sin g, E =sinh g, (b-1)cosd,(b-1),

F = cosho(b-1)sing,(b-1), E'=sinh g, cosd,, F'=coshd,sing,
v, = AA'+BB,y,=BA'-AB', ¢ =EE'+FF', ¢, = FE'-EF/,

6, = hy,+olry,, 6,=h’y,-o Uy,

A = h2¢1+O-1UT¢2’ A = h2¢2 —oUrg,

K = hC + oRhU4d K = o,R,(h*(1+1)+cU%c?)
' h* +(o,U7)? h(h* +(o,U7)?)
\/k k2 k2 k2+k2 \/—k+ Jk2 4k K =HC, + _oRhud
% PYRNPSEEEYY
h* +(oU7)°
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= ORI +olU’r) 5_\/k3+\/k§+kf 5_\/—k3+,/k§+kj
4 - — —

o) 2 S
k = hzcr{m} kezﬂ?e(h4(1+|)+ﬂzuzrz),
(e (' + (AU

VK +y ke +kE V—Ks +y kS +KZ
= = ,
2 2

G = sinib—-1)y cogb—1), —sinhubcosw,b+sinhy, cosw,,

H = coslb—1) sinb—1)u, —coshubsings,b+coshyy sing,,
G = sinhy cosu,, H' =coshy sing,, M =/h*C,
X, = k(GG +HH)+ky(GH —HG), X, =k;(HG' ~HG) —k, (GG + HH)
1
" 2RUr
1
2R Ur
1
2RUr
1
2RUr

X, = ((h*C, +r?z%)hUr +R, (1+)h?)

+

((h*C, +r22%)hUr + R (1+)h? | —4R U?(h’C, +r7?),

X, =

((h*C, +r’z%)hUr+R,(1+1)h?)

((hC, +r22%)hUz + R, (1+ hh? ' —4RUM?(h’C, +r7?)

CONCLUSION

The figures 3 to 12 represents the velocity profiles for the fluid and
dust particles respectively, which are parabolic in nature. It is observed that
the path of fluid particles much steeper than that of dust particles. Further one
can observe that if the dust is very fine i.e., mass of the dust particles is
negligibly small then the relaxation time of dust particle decreases and
ultimately as = — 0 the velocities of fluid and dust particles will be the same.
Also we see that the fluid particles will reach the steady state earlier than the
dust particles. We know that Reynolds number (Re) means the inertial force
to viscous force. From graphs one can observe the impressive effect of
Reynolds number on the velocity field. It is seen that the Reynolds number is
favorable to the velocity fields i.e., for a constant value t, the velocity profiles

for both fluid and dust particles increases as Reynolds number increases.
The graphs are drawn for the following values
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h=1 g=1,C=2, =2, =05 C, =1, u,=1, 0,,0,=2, U =1,
I=1,t=0.2.

Fiuid velocity
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Figure 3: Variation of fluid velocity with b for a, =a,=0&c, =c, =u,/2

Figure 4: Variation of particle velocity with b for
a=a,=0&c =c,=u/2

o 02 04 & 06 03 1
Figure 5: Variation of fluid velocity with b for
a =a,=0&(c,c,) = (u,/2i,—u,/2i)
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Dust velocity
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Figure 6: Variation of particle velocity with b for
a =a,=0&(c,c,) = (u,/2i,—-u,/2i)

. Fluid velocity
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Figure 7: Variation of fluid velocity with b for
(a,,a,) = (u,/2i,—u,/2i) & ¢, =¢c, =0
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Figure 8: Variation of particle velocity with b for
(a,,8,) = (u,/2i,~u,/2i) & c,=¢c, =0
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Figure 9: Variation of fltiid velocity with b for
(a,,a,) = (u,/2i,—u,/2i) & (c,,c,) = (u,/2i,—u,/2i)
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Figure 10: Variation of particle velocity with b for
(a,,a,) = (u,/2i,—u,/2i) & (c,,c,) = (u,/2i,—u,/2i)
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Figure 11: Variation of fluid velocity with b for
a=a,=u/2&c =c,=u,/2
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Figure 12: Variation of particle velocity with b for
a=a,=u/2&c =c,=u/2
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