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INFINITESIMAL MOTIONS OF THE METRICAL2 -~
STRUCTURES ON THE TANGENT BUNDLE

VICTOR BLANUTA and VALER NIMINET

Abstract. We define the notion of almost metrical 2— 7 structure on the
tangent bundle and study the main properties of such a structure. We study
here the existence and arbitrariness of a d-connection FI'(N) and determine
all these connections. Finally we determine the infinitesimal motions of this
structure and study the properties of these motions.
INTRODUCTION

In [7] M. Yawata studied the infinitesimal transformations and
motions on a vector bundle establishing the main properties of these. We
define an almost metrical 2 — 7z structure on TM as a pair of d-tensor fields

(gp},gij) where go}(x, y) is a d-tensor field of type (1.1) with the
property(p}(/)kj = 1’5}, and 9; (X, y) is a d-tensor field of type (0, 2),
symmetric and nonsingular. [1], [2]

ForA =#+/—1, we have an almost Hermitian 2— 7 d-structure and
for 4 = +1, we have an almost metrical product d-structure 2 -z d-structure
on TM.

We study the existence and arbitrariness of a d-connection FF(N) for
which ("}Ik =0, (o} k=0, gjjx =0, 9; |,=0 and determine all d-connections
with these properties [1], [2]. These connections and the composition of the
mapping give us a groupG,__ .

In [3] we have determined the infinitesimal motions of (oij establishing
the fundamental equations and the main consequences.
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Here, we determine the infinitesimal motions of the metrical 2 -7«
structures (go; » 0 ) and give the main properties of these structures.

Some notations and fundamental result are taken from the book [6].

1. PRELIMINARIES
Let M be an n-dimensional differentiable manifold of the class C* and
(TM, 7, M) its tangent bundle. Let (Xi) be the local coordinates of a point X
in M. Then a point ueM has the canonical coordinate system
(x, y)=(x, y') where z(u)=x
A local coordinate transformation on TM is given by

X

X' =X (x‘,xz,...,x”), det|— = 0,
Ox’
(1.1) |
y =Xy
ox!

The vertical distributionV :ueTM —V, e T, TM is the kernel of the
differential of the projectionz :TM — M .
Denoting by 8i and %(i, J,k,...a,b,c,...=1, 2,...,n) the local natural
X

basis of the module of the vector field X(TM), we observe that ia is a local

basis of V. Hence V is an integrable n-dimensional distribution on TM.
A nonlinear connection N on TM is a distribution of the class C* given
by N:ueTM — N,CT,(TM) such that
12)T,TM =N, ®V,;
N is called a horizontal distribution on TM and locally it is spanned by the
adapted basis
(1.3) 5, =0, - N/9,

where 0, = i, 0, = ﬂ. and N }, are C” functions called the coefficients of

OX, oy
the nonlinear connection N. (§i, 5i) is a local basis of F(M )-module of the
vector fields X (TM) adapted to the supplementary distributions N and V. Its
dual basis (dxi, 5yi) is given by

(1.4) (dxi, 5yi): dy' + Njdx’.



INFINITESIMAL MOTIONS OF THE METRICAL 2 — 7 STRUCTURES ON THE 83
TANGENT BUNDLE
A vector field X € X (TM ) is uniquely expressed in the form
(1.5) X =X"+ XY, X" eN, X" eV
and 1-form @ also given by
(1.6) o= 0" +0"; 0" (X" )=0,0" (X")=0
A tensor field t e Tg (TM ) is called distinguished tensor field (shortly
d-tensor field) if it has the properties:
(1.7) t(@,..., @, X;,...X)=0
H v o[

H
for any o, =o oo o, =w' (i=1...,r) and X,=X! or

X, =X/, (b=1,2,...,n)
For example X "™, X" are d-tensor fields and @’ , @' are d-fields 1- forms.
LetJ : X(TM)— X(TM) be the tangent structure defined by
(1.8) 3(5,)=8",3(6')=0

Then a linear connection Von TM is called distinguished connection

(shortly d-connection) if it satisfies
1.9 (v,y") =0, (v,YV)' =0 and v, J =0;
for any vector fields X, Y on TM.

We write V'; =V > V\; =V, v, v" and VY being the h-and v-
covariant derivatives in the algebra of d-tensor fieldsT,(TM)c T(TM ),
respectively.

A d-connection V on TM is determined by a triad VI = (N ;, F jik, C}k)
which is called the coefficients of V:

(1.10) V. 8; =F 6V, 0, =F,0;; V,6,=C}0;;V, 0, =Cj0,

With respect to the adapted basis {5i , 6,} the torsion tensor T has the
following components

(LIDT(5,,6,)=TLs, +RL8, T(6,, 5,)=CLo, +PLd, T(,, ;)= 640
where the coefficients T jik, R}k,
(L12)T; =L} - Ly, R} =6,Nj —5,N;, Py =0, N} - L, 5 =Cj —Cy

The curvature d-tensor fields have the following components:

Pjik, and S}k are given by
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R(Sha d; )6 = thk6|’ R(Sh’ o ) Rf:jkéi

(1.13) R(ah,Sj)S =P Ra 5,6, =PL&,,
R(Gy, 0, B, =Sk, R(G,0, ba S
2. ALMOST METRICAL 2 — 7 STRUCTURES ON TM

Definition 2.1 A d-tensor field g of type (0,2) on TM is called
metrical structure if it is symmetric and non singular.
Let g = (g i (X, y)) be a metrical structure, then we have

(2.1) g; (X, y): gjj (y, X) and det(gij (X, y));t 0

We denote by g" reciprocal d-tensor field of g; and define the d-
tensor fields: O} and “Of by

(2.2) O} =2 (615! + 90"} Ol = (#1% - 90"
which are called Obata s operators of metrlcal d-structures g;;

Definition 2.2 A d-connection FI'= (N Fi.C! ) is called
compatible with metrical d-structure g; (shortly metrical d-connection) if it
satisfies

(2.3) Ok = 0; g k=0
where | and .| are the h-, respectively the v-covariant derivatives with respect
to a d-connection FI'(N)= (F jik , C}k )

Definition 2.3. An almost 2 -7 d structure on TM is a tensor field
go} (X, y) of type (1.1) satisfying

(24) pp; =2,
where A is a complex number different from zero. Generally we assume

U=2p-7, are almost 2 - structure go; (X, y) we can associate the d-tensor
field of type (2, 2) on TM.

A T C U LT IO L
(2'5)®dk25(5h§k1_?¢h¢k]}v (th—2(5 5J +?(oh¢kjj'

Definition 2.4. A d-connection FI' = (N Fi C ) iscalleda 2—-r

Jk ’
connection compatible with almost 2~z structure ¢; if it satisfies

(2.6) ¢}\k =0, (”; k=0
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Definition 2.5. Let (0} be an almost 2— 7 structure and g; a metrical

d-structure on TM satisfying
1
(2.7) 9y = ?gij(phgok]

Then a pair of d-tensor fields go}, g; on TM is called an almost

metrical 2 — 7 d-structure.

Definition 2.6. A d-connection FI' = (N F! ko C ) is called
compatible with almost metrical 2 — z d-structure (shortly 2—7z metrical d-
connection) if it satisfies:

(2.8) Uik =0, g5 = O’go}\k =0, (0; k=0
We have the following theorem on the existence of 2 — 7 metrical connections

OI OI

Theorem 2.1. Let Ff‘:(Nj,ij,éj) be an arbitrary d-

connection, then the d-connection with the coefficients
. h

1 r rl
Fio =Fi+— {9 O b +23 —(0"0" | —o"p, Ik)}
2.9) n

* 1 1 r rl
Ch =Ct— {g O b +23 —(0"¢" |, —o"p, Ik)}

IS a 2—x metrical d-connection, where | | are the h-and-v-covariant

*

derivatives with respect to F r.
We shall determine a 2—7 metrical connection using the method
given by R. Miron and M. Hashiguchi [6]

o |

Theorem 2.2. Let Flo“ =(N i, Fic, C,j be a fixed d-connection on

TM and ( Fic C;k) the coefficients of the d-connection given by

N.k—NJ xh
(2.10) Fy=" ij +c,. Xy +®Om Y,
ci="C\ +o o Zn

where X7,Yy,Z5 are arbltrary d-tensor fields.
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Let FI'(N) be a 2—7 metrical d-connection and FT'(N) another
2 — 7 metrical d-connection. Using Theorem 2.2 we may write the relations
between the coefficients of FI'(N) and FT'(N) in the form:

(2.11) Fy =F4 + @O X 8; Cji =C + @ OY, 0

where X },Y,! are arbitrary « —tensor fields.

The mapping FF(N)—) IEF(N) given by (2.11) is called a
transformation of 2 — 7 metrical d-connections.

Theorem 2.3. The set G, (N) of the transformations of 2- 7

metrical d-connections (2.11) is Abelian group with the composition of the
mappings

3. INFINITESIMAL MOTIONS OF A METRICAL ALMOST 2 — 7 d -STRUCTURE
Letp)(X,Y) be an almost 2 -7z d-structure on TM. In the paper [3]
we have studied the infinitesimal transformation on TM.
3.1) X =x" v (x)dt,
Sy =yl ymomyidt
which have the property L (p} =0.
Now , we can give

Definition 3.1. The infinitesimal transformation (3.1) is called an
infinitesimal motion of a metrical almost 2 — 7 d-structure if it satisfies

(3.2) Loj(x, y)=0, Lg;(x. y)=0

Applying the results from the papers [3], [6] we get:
Theorem 3.1. An infinitesimal transformation (3.1) is an infinitesimal

motion for d-structure (qo] gij), if and only if the following equations are
satisfied:

0,0, — oV +pro " =0

(3_3){ 2} = POV + 0 V"

0,95 + 90V +09in 0V =0

where 6, is the operator
(3.4) Hv =Vhah + yhahviai
Theorem 3.2 If (3.2) are satisfied, then the d-tensors have the

properties

(3.5 LO, =L Oj =L} =0.



INFINITESIMAL MOTIONS OF THE METRICAL 2 — 7 STRUCTURES ON THE 87
TANGENT BUNDLE

Consequently, we can use the d-connection FI" which have the
properties (2.8). One oh these d-connections is given by (2.9).

In this case we have:

Theorem 3.3. With respect to the d-connection (2.1) the equations
(3.3) are equivalent to the following equations:

- (D?VI I +¢rl1v\r} + (yhv\:] _Vhy\rr? )amgo} =0

(3.6) . T\
gth\:1 + gihv\r} +(yhv\h _Vhy\h )amgij =0

where o, :im.

Theorem 3.4. If y"vi —v"y! =0 then (3.4) reduce to the classical

system of equations:
(3.7) _(D?VI I ‘H/’rlqv\r} =0, ghjv\? + gihvn + gijv\r} =0
Proof. By a straightforward calculation we get
(Iv_t})lk =0, (evt'j —tj0,v' +t;81vr)+ F o Iv_tj“ -Fy Iv_tr'n
Lty =0, (58] + Fat] = FTty )= thd,v' +th, 0 v" +t],,0,0"
Taking account of theorem (3.4)in our paper [3] we get:
Theorem 3.5. If (3.1) is an infinitesimal motion of the 2-xd-

structure (go; gij) then for a d-connection compatible with ((0] 9jj ) we have
r v r mpr m.,r m.,r ”k' ' i

0y LFye +0, LF+ "R, +y™ —vmy | 10,9) =0

gLl +o LC) + i + 2, (v, vy Jpuol =0

9y I\,'C:k * Gir I\,'Clrk = {Vrllk +0, ymvlrn _me\:n argij =0

— g} LFs+ 0l LF + VR + (v, —v"y ) 8,0} =0

(3.14)

where the motion denote h-covariant derivation with respect to the
Berwald connection, that is, v, =o,v' + By v", B, =0, N,.

“||”

Remark. The equations (3.8) are the first conditions of integrability of
the system of the equations (3.4).
Theorem 3.6 Let assume the conditions:
1. Nonliniar connection N is integrable.

2. ymy|:n _me\lrrn =0
3. v, =0
Then, the system of equations (3.8) reduce the classical one:
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(3.0) -9; IV-Frli + o, |\7FjL =0; 9y I\TFjrk 0y |V—Fi|: =0;
A |\TCri|< +; I;erk =0; gy Iv‘erk + 0 IV-CiL =0

All this theory can be particularized in the case 4 =++—1 when the d-
structure, ((p'l » O ) is an almost Hermitian d-structure on the total space of the

tangent bundle and A =21, when the d-structure (go}, gij) is a metrical

almost product d-structure on TM.
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