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INFINITESIMAL MOTIONS OF THE METRICAL π−2  
STRUCTURES ON THE TANGENT BUNDLE 

 
VICTOR BLĂNUŢĂ and VALER NIMINEŢ 

 
Abstract. We define the notion of almost metrical π−2  structure on the 
tangent bundle and study the main properties of such a structure. We study 
here the existence and arbitrariness of a d-connection ( )NFΓ  and determine 
all these connections. Finally we determine the infinitesimal motions of this 
structure and study the properties of these motions. 

INTRODUCTION 
 In [7] M. Yawata studied  the infinitesimal transformations and 
motions on a vector bundle establishing the main properties of these. We 
define an almost metrical π−2 structure on TM as a pair of d-tensor fields 
( )ij

i
j g,ϕ  where ( )yxi

j ,ϕ  is a d-tensor field of type (1.1) with the 

property i
k

j
k

i
j δλϕϕ 2= , and ( )yxgij ,  is a d-tensor field of type (0, 2), 

symmetric and nonsingular. [1], [2] 
For 1−±=λ , we have an almost Hermitian π−2  d-structure and 

for 1±=λ , we have an almost metrical product d-structure π−2  d-structure 
on TM. 

 We study the existence and arbitrariness of a d-connection ( )NFΓ  for 
which 0|,0,0|,0 || ==== kijkijk

i
j

i
kj ggϕϕ  and determine all d-connections 

with these properties [1], [2]. These connections and the composition of the 
mapping give us a group mG ,2 π− . 

In [3] we have determined the infinitesimal motions of j
iϕ  establishing 

the fundamental equations and the main consequences. 
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 Here, we determine the infinitesimal motions of the metrical π−2  
structures ( )ij

i
j g,ϕ  and give the main properties of these structures. 

 Some notations and fundamental result are taken from the book [6]. 
 

1.  PRELIMINARIES 
 Let M be an n-dimensional differentiable manifold of the class ∞C and 

),,( MTM π  its tangent bundle. Let ( )ix  be the local coordinates of a point x 
in M. Then a point Mu∈  has the canonical coordinate system 
( ) ( )ii yxyx ,, ≡  where ( ) xu =π  
 A local coordinate transformation on TM is given by 

 (1.1) 
( )

⎪
⎪
⎩

⎪⎪
⎨

⎧

∂
∂

=

≠
∂
∂

=

j
j

i
i

j

i
nii

y
x
xy

x
xxxxxx

~~

,0
~

det,,,,~~ 21 K
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 The vertical distribution TMTVTMuV uu ∈→∈:  is the kernel of the 
differential of the projection MTM →:π .  

Denoting by 
ix∂

∂  and ( )ncbakji
y a ,,2,1,,,,,, KKK =
∂
∂  the local natural 

basis of the module of the vector field x(TM), we observe that ay∂
∂ is a local 

basis of V. Hence V is an integrable n-dimensional distribution on TM.   
  A nonlinear connection N on TM is a distribution of the class ∞C given 
by ( )TMCTNTMuN uu→∈:  such that  

uuu VNTMT ⊕=)2.1( ; 
N is called a horizontal distribution on TM and locally it is spanned by the 
adapted basis 

(1.3) j
j

iii N ∂−∂= &δ  

where ii
i

i yx ∂
∂

=∂
∂
∂

=∂ &, and i
jN , are ∞C  functions called the coefficients of 

the nonlinear connection N. ( )ii ∂&,δ  is a local basis of ( )MF -module of the 
vector fields ( )TMX  adapted to the supplementary distributions N and V. Its 
dual basis ( )ii ydx δ,  is given by  

(1.4) ( ) ji
j

iii dxNdyydx +=δ, . 
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 A vector field ( )TMXX ∈  is uniquely expressed in the form 
(1.5) VXNXXXX VHVH ∈∈+= ,,  

and 1-form ω  also given by 
(1.6) ( ) ( ) 0,0; ==+= HVVHVH XX ωωωωω  

 A tensor field ( )TMTt r
S∈  is called distinguished tensor field (shortly 

d-tensor field) if it has the properties: 
(1.7) ( ) 0,,,, 11 =sr XXt KK ωω  

for any H
r ωω =  or ( )riV

a ,,1K== ωω  and H
bb XX =  or 

( )nbXX V
bb ,,2,1, K==  

 For example VH XX ,  are d-tensor fields and VV ωω ,  are d-fields 1- forms. 
 Let ( ) ( )TMXTMXJ →:  be the tangent structure defined by 

(1.8) ( ) ( ) 0, =∂∂= ii
i JJ &&δ  

 Then a linear connection ∇ on TM is called distinguished connection 
(shortly d-connection) if it satisfies 

(1.9) ( ) ( ) 0,0 =∇=∇
HV

x
VH

x YY  and ;0=∇ Jx  
for any vector fields X, Y on TM. 
 We write H

X
V
XX

H
X VN ∇∇=∇∇=∇ ,,  and V∇  being the h-and v-

covariant derivatives in the algebra of d-tensor fields ( )TMTTMTd ⊂)( , 
respectively. 
 A d-connection ∇ on TM is determined by a triad ( )i

jk
i
jk

i
j CFN ,,=Γ∇  

which is called the coefficients of ∇ :  
 (1.10) i

i
jkii

i
jkji

i
jkji

i
jkj CCFF

kkkk
∂=∂∇∂=∇∂=∂∇=∇ ∂∂
&&&&&

&& ;;; δδδ δδ  

 With respect to the adapted basis { }ii ∂&,δ  the torsion tensor T has the 
following components 

 (1.11) ( ) ( ) ( ) i
i
jkjki

i
jki

i
jkjki

i
jki

i
jkjk TPCTRTT ∂=∂∂∂+=∂∂+= &&&&&& δδδδδδ ,,,,,  

where the coefficients i
jk

i
jk

i
jk

i
jk SandPRT ,,,  are given by  

(1.12) i
kj

i
jk

i
jk

i
kj

i
jk

i
jk

i
kj

i
jk

i
jk

i
kj

i
jk

i
jk CCLNPNNRLLT −=−∂=−=−= δδδ ,,, &  

 The curvature d-tensor fields have the following components:  



VICTOR BLĂNUŢĂ and VALER NIMINEŢ 84 

 (1.13)
( ) ( )
( ) ( )
( ) ( )⎪
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⎧
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i
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i
hjkkjh
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&&&&&&

&&&&&
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,,,
, 

2.   ALMOST METRICAL π−2  STRUCTURES ON TM 
Definition 2.1 A d-tensor field g  of type (0,2) on TM is called 

metrical structure if it is symmetric and non singular. 
 Let ( )( )yxgg ij ,=  be a metrical structure, then we have 
 (2.1) ( ) ( )xygyxg ijij ,, =  and ( )( ) 0,det ≠yxgij  

 We denote by ijg  reciprocal d-tensor field of ijg  and define the d-

tensor fields: ij
hkO and ij

hkO*  by  

 (2.2) ( ) ( )ij
hk

i
k

i
h

ij
hk

ij
hk

i
k

i
h

ij
hk ggOggO −=+= δδδδ

2
1,

2
1 *  

which are called Obata’s operators of metrical d-structures ijg  

 Definition 2.2 A d-connection ( )i
jk

i
jk

i
j CFNF ,,=Γ  is called 

compatible with metrical d-structure ijg  (shortly metrical d-connection) if it 
satisfies 

(2.3) 0|;0| == kijkij gg , 
where | and  .| are the h-, respectively the v-covariant derivatives with respect 
to a d-connection ( ) ( )i

jk
i
jk CFNF ,=Γ . 

Definition 2.3. An almost π−2  d structure on TM is a tensor field 
( )yxi

j ,ϕ  of type (1.1) satisfying 

(2.4) i
j

k
j

i
k δλϕϕ 2=  

where λ  is a complex number different from zero. Generally we assume 
02 τ⋅= pu  are almost π−2  structure ( )yxi

j ,ϕ  we can associate the d-tensor 
field of type (2, 2) on TM.  

 (2.5) ⎟
⎠
⎞

⎜
⎝
⎛ +−−=Φ⎟

⎠
⎞

⎜
⎝
⎛ −=Φ j

k
i
h

j
k

i
h

ij
hk

j
k

i
h

j
k

i
h

ij
hk ϕϕ

λ
δδϕϕ

λ
δδ 2

*
2

1
2
1,1

2
1 . 

Definition 2.4. A d-connection ( )i
jk

i
jk

i
j CFNF ,,=Γ  is called a π−2  

connection compatible with almost π−2  structure i
jϕ  if it satisfies 

 (2.6) 0|,0| == k
i
j

i
kj ϕϕ  
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Definition 2.5. Let i
jϕ  be an almost π−2  structure and ijg a metrical 

d-structure on TM satisfying 

 (2.7) j
k

i
hijhk gg ϕϕ

λ2

1
=  

 Then a pair of d-tensor fields ij
i
j g,ϕ  on TM is called an almost 

metrical π−2  d-structure. 
Definition 2.6. A d-connection ( )i

jk
i
jk

i
j CFNF ,,=Γ  is called 

compatible with almost metrical π−2 d-structure (shortly π−2  metrical d-
connection) if it satisfies: 
 (2.8) 0|,0,0|,0 || ==== k

i
j

i
kjkijkij gg ϕϕ  

We have the following theorem on the existence of π−2 metrical connections 

Theorem 2.1. Let  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Γ

i

j

i

jk

i

j CFNF
oooo

,,  be an arbitrary d-

connection, then the d-connection with the coefficients 

 (2.9.) 
( )
( )

⎭
⎬
⎫

⎩
⎨
⎧ ϕϕ−ϕϕ

λ
++=

⎭
⎬
⎫

⎩
⎨
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++=
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h
r

r
jkrs

rh
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h
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ggFF

||1|
4
1

||1|
4
1

2
*

2
*

o

o

 

is a π−2  metrical d-connection, where I | are the h-and-v-covariant 

derivatives with respect to 
o

ΓF . 
 We shall determine a π−2  metrical connection using the method 
given by R. Miron and M. Hashiguchi [6] 

Theorem 2.2. Let ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Γ

i

j

i

jk

i

j CFNF
oooo

,,  be a fixed d-connection on 

TM and ( )i
jk

i
jk CF ** ,  the coefficients of the d-connection  given by 

 (2.10) 
m
hk

lr
mb

hb
ji

i
jk

i
jk

m
rk

lr
mb

hl
jl

l
k

h

jl
h
jk

h
jk

h
j

h

j
k
j

ZOCC
YOXCFF

XNN

Φ+=
Φ++=

−=

*

* ,

,
o

o

 

where m
rk

m
rk

h
j ZYX ,,  are arbitrary d-tensor fields. 
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 Let ( )NFΓ  be a π−2  metrical d-connection and ( )NFΓ  another 
π−2  metrical d-connection. Using Theorem 2.2 we may write the relations 

between the coefficients of ( )NFΓ  and ( )NFΓ  in the form: 
  (2.11) p

rk
mr
pl

hl
mj

h
jk

h
jk

p
rk

mr
pl

hl
mj

h
jk

h
jk YOCCXOFF Φ+=Φ+= ;  

where p
rk

p
rk YX ,  are arbitrary α –tensor fields.  

 The mapping ( ) ( )NFNF Γ→Γ  given by (2.11) is called a 
transformation of π−2  metrical d-connections. 

Theorem 2.3. The set ( )NG π−2  of the transformations of π−2  
metrical d-connections (2.11) is Abelian group with the composition of the 
mappings 
 
3.  INFINITESIMAL MOTIONS OF A METRICAL ALMOST π−2  d -STRUCTURE 

 Let ( )YXI
J ,ϕ  be an almost π−2  d-structure on TM. In the paper [3] 

we have studied the infinitesimal transformation on TM. 

(3.1) 
( )

dtmvyyy
dtxvxx

imii

iii

∂+=

+=

`

,`  

which have the property 0=i
jv

Lϕ . 

 Now , we can give 
Definition 3.1. The infinitesimal transformation (3.1) is called an 

infinitesimal motion of a metrical almost π−2  d-structure if it satisfies 
 (3.2) ( ) ( ) 0,,0, == yxgLyxL ijv

i
jv

ϕ  

Applying the results from the papers [3], [6] we get:  
Theorem 3.1. An infinitesimal transformation (3.1) is an infinitesimal 

motion for d-structure ( )ij
i
j g,ϕ , if and only if the following equations are 

satisfied: 

(3.3) 
⎪⎩

⎪
⎨
⎧

=∂+∂+
=∂+∂−

0
0

m
jim

m
imjijv

m
j

i
m

i
m

m
j

i
jv

vgvgg
vv

θ
ϕϕϕθ

 

where vθ  is the operator 
(3.4) i

i
h

h
h

h
v vyv ∂∂+∂= &θ  

Theorem 3.2 If (3.2) are satisfied, then the d-tensors have the 
properties 

(3.5) 0* =Φ== ij
hkv

ij
hkv

ij
hkv

LOLOL . 
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 Consequently, we can use the d-connection ΓF  which have the 
properties (2.8). One oh these d-connections is given by (2.9). 
 In this case we have: 
 Theorem 3.3. With respect to the d-connection (2.1) the equations 
(3.3) are equivalent to the following equations: 

(3.6) 
( )

( ) 0

0|

||||

|||

=∂−++

=∂−++−

ijm
m
h

hm
h

hh
jih

h
ihj

i
jm

m
h

hm
h

hh
j

i
hk

ih
j

gyvvyvgvg

yvvyvv
&

& ϕϕϕ
 

where mm y∂
∂

=∂& . 

 Theorem 3.4. If 0|| =− m
h

hm
h

h yvvy  then (3.4) reduce to the classical 
system of equations: 

(3.7) 0;0| |||| =++=+− h
jij

h
jih

h
ihj

h
j

i
hh

ih
j vgvgvgvv ϕϕ  

Proof. By a straightforward calculation we get 

 
( ) ( )

( ) m
k

i
j

m
j

i
mIk

i
m

m
jIk

i
m

m
jk

m
j

i
mk

i
jkv

i
jIkv

i
mv

m
jk

m
jv

i
mk

r
j

i
r

r
r

r
j

i
jvk

Ik

i
jv

vtvtvttFtFttL

tLFtLFvtvtttL

∂+∂+∂−−+=

−+∂+∂−=

Imδθ

θδ
 

 Taking account of theorem (3.4)in our paper [3] we get:  
 Theorem 3.5. If (3.1) is an infinitesimal motion of the π−2 d-
structure ( )ij

i
j g,ϕ  then for a d-connection compatible with ( )ij

i
j g,ϕ , we have  

 (3.14) 

( ){
( ){
( ){ }
( ){ }⎪

⎪

⎩

⎪
⎪

⎨

⎧

=∂−∂+=+

=∂−∂+++−

=∂−+++

=∂−+++−

0
0

0}
0

||||

||||

||||

||||

ijr
r
m

mr
m

m
kkr

r
jkvir

i
rkvrj

i
jr

r
m

mr
m

m
k

r
k

r
jkv

i
r

i
rkv

r
j

i
jrk

r
m

mr
m

mr
mk

mr
jkvir

r
ikvrj

i
jrk

r
m

mr
m

mr
km

mr
jkv

i
r

i
rkv

r
j

gyvvyvCLgCLg
yvvyvCLCL

yvvyRvFLgFLg
yvvyRvFLFL

&&

&&

&

&

ϕϕϕ
ϕ
ϕϕϕ

 

where the motion “||” denote h-covariant derivation with respect to the 
Berwald connection, that is, r

km
r
mk

mr
mk

r
k

r
k NBvBvv ∂=+= &,|| δ .  

 Remark. The equations (3.8) are the first conditions of integrability of 
the system of the equations (3.4). 
 Theorem 3.6 Let assume the conditions: 

1. Nonliniar connection N is integrable. 
2. 0|| =− r

m
mr

m
m yvyy  

3. 0| =i
kv  

Then, the system of equations (3.8) reduce the classical one: 
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 (3.0) 
0;0
;0;0

=+=+−

=+=+−
r
ikvrj

r
jkvir

r
jkv

i
r

i
rkv

r
j

r
ikvrj

r
jkvir

r
jkv

i
r

j
rkv

r
j

CLgCLgCLCL
FLgFLgFLFL

ϕϕ

ϕϕ
 

 All this theory can be particularized in the case 1−±=λ  when the d-
structure, ( )ij

i
j g,ϕ  is an almost Hermitian d-structure on the total space of the 

tangent bundle and 1±=λ , when the d-structure ( )ij
i
j g,ϕ  is a metrical 

almost product d-structure on TM. 
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