
"Vasile Alecsandri" University of Bacău
Faculty of Sciences
Scientific Studies and Research
Series Mathematics and Informatics
Vol. 19 (2009), No. 2, 459 - 470

F# MODULES INTEGRATION IN DISTRIBUTED APPLICATIONS

DEVELOPMENT PROCESS

COSMIN TOMOZEI and MARIUS VETRICI

Abstract. The objective of this paper is to analyze distributed systems
development process with special emphasis on F# modules integration.
 Functions and classes written in F# prove to be valuable resources for a
higher level of security, execution speed and accuracy. The .NET integration
support makes the selection of this functional language for distributed
applications development rather straightforward. Examples of architectures
which implement modules written in F# will be given.

1. PRELIMINARY ASPECTS REGARDING DISTRIBUTED SYSTEMS

 Our paper is focused mainly on describing the way we reengineer
distributed systems, consisting of hardware, software and communication
resources in order to obtain a higher level of quality and efficiency.
 In [9] we have mentioned that a great number of specialists from the
industry and research are being involved in studying and implementing
software engineering and reengineering applications and strategies. The
results of their research are both theoretical and methodological.
 The development and reengineering of distributed applications have to
follow a set of rules regarding the objectives, the techniques, the programming
and modeling languages and testing and auditing processes.
 Due to the increasing level of software systems complexity, it is practically
impossible to start the development process from green field over and over
again. Fast changing of the objectives which have to be accomplished by
computer programs and IT systems in general presume that maintainability,
scalability and robustness must become the most significant metrics.

Keywords and phrases: distributed applications, F# modules, forward
engineering, reverse engineering, reengineering, C#, SOA
(2000) Mathematics Subject Classification: 68N01

COSMIN TOMOZEI and MARIUS VETRICI

460

In the same time, when talking about dimensions, volume of operations, or
necessity of computing large volumes of information, the distribution of
software, hardware and data come as a logical consequence.

 Maintaining an adequate level of integrity and security involve distribution
as well, hence being subjected to reengineering.
 In [1], [9] there are presented some aspects regarding distributed systems
that we mention in the following:
• multiple nodes, connected in a computer network; distributed systems
suppose that multiple computers are connected and share tasks in order to
realize the objectives; parallel processing is not to be confused with
distributed computing; while parallel processing involves many processors on
the same machine, distribution means at the outset task sharing;
• concurrency; each nod has independent functionalities apart from the other
nodes and operates concurrently with the other nodes; it is likely to exist many
processes on each node, and on each process there are multiple threads;
• message passing through protocols, such as TCP/IP over modems or Ethernet;
• heterogeneity of nodes; each node being dissimilar regarding hardware and
software;
• multiple protocols, mainly asynchronous;
• openness; in comparison to sequential programs, which are mainly closed
and do not change their configuration during execution, in distributed systems
we can add nodes while the whole ensemble is functioning; the openness
presumes that each node satisfies a set of conditions and protocols to ensure
interoperability with the components added or modified;
• fault tolerance and transparency allow users to cooperate with the software
system without knowing if there are components that don’t work in a certain
moment of time; this fact should not affect the general functioning of the
system;
• persistence; data is stored in a persistent, non volatile environment, such as
databases, data warehouses and storage servers;
• security; each user should interact with the system according to the rights
he has; elements such as authentication servers, firewalls, antivirus
technologies are to be used;
• there is no central server, but there are multiple servers which cooperate in
order to achieve nonstop, uninterrupted operation of the system;

F# MODULES INTEGRATION IN DISTRIBUTED APPLICATIONS

461

 Distributed applications consist of the software components that run on the
distributed systems, and have the following characteristics:
• they are built in distinct development environments, they operate in diverse
environments, on different operating systems, on platforms that are connected
in a computer network;
• they are built on two tiers (client - server), three tiers (client - middleware -
server) or multitier (client - multiple middleware - multiple servers);

2. SOA - SERVICE ORIENTED ARCHITECTURE PERSPECTIVE

 The applications mentioned above are mainly based on the Service
Oriented Architecture, which is also known as SOA. The object - oriented
programming paradigm is the one which proves to be the most appropriate for
this architecture. We have JAVA RMI and CORBA from the Java based
environments and Windows Communications Foundation part of the .NET
Framework for Windows .NET Framework environments. ASP.NET web
service architecture is described by the model from Figure 1 [3].

 Figure 1. Asp.NET Web Service Life Cycle

 First of all, in order to use the web service, the user application must find
it. This operation is realized by the help of web address or by a UDDI address.
UDDI means Universal Resources Data Integration. After that, the client
applications find the WDSL file, which is the description file for the web
service. The protocol which implements this process is SOAP and its initials
come from Simple Object Application Protocol.

1. Web Service
Identifying

UDDI

Client (Web Browser)

Asp.NET Application

2. WDSL Request

3. WebService
Method Invocation

Web Service

COSMIN TOMOZEI and MARIUS VETRICI

462

 Client applications may utilize more than one web service, depending of
their necessity. A web service may be accessed as well by many client
applications, not just one.
 In figure 2 [3] we describe how client applications use proxy classes in
order to communicate with web services. Proxy classes’ role is to translate the
demands of heterogeneous client applications in SOAP requests. Message
passing is realized on the HTTP protocol, which is firewall friendly and
efficient.

 Figure 2. WebService methods invocation by proxy classes

 The number of clients is described by the following formula:

∑
=

=
n

i
ik usNrUsers

1

 (1)

∑
=

=
n

i
ik ServNrServ

1

 (2)

where:
- NrUsersk represents the amount of user applications, not humans, for the

service k;
- usi represents the user application;
- n the last index of user application;
- NeServk represents the number of web services implemented by the client

application;
- Servi represents a certain web service implemented by the client tie;

Proxy Class

 ASP.Net Application

Web Service
ASP Page

 SOAP Request

SOAP Response

Client Application

HTTP Request

HTTP Respones

F# MODULES INTEGRATION IN DISTRIBUTED APPLICATIONS

463

 If we consider that each web service has web methods which provide
functionalities for the distributed applications, each one may be placed in
formal representations.

 ∑∑
= =

∗=
n

i
jii

m

j
k FunctServtNrServFunc

1 1
 (3)

 Time evolution metrics about distributed applications are easily defined,
with the help of indices. Depending on the fast changing demands and
requests, the same web service may have distinctive configurations and
different functionalities within hours.
 The following indices are to be implemented in order to compare the
number and operations implemented by client applications and web services
after the process of reengineering:

0

1

k

k
tNrServFunc tNrServFunc

tNrServFunc
I

k
= (4)

 Functionalities of software application are described in a collaborative
perspective by [5]. We have in [5] an array of quality characteristics,
C1,C2,...,Cn and for each one of them established the normal areas in which are
enclosed, delimited like subintervals [bi, 1] with 0 < bi < 1, i=1..n, on
represent on the nomogram the standard diagram of the collaborative system
functionality:

},max{
},min{

21

21

SS
SSIF = [5] (5)

 where:
 - S1 and S2 are the surfaces delimited in the nomogam [5];
 We may improve the (5) formula, by referring to the quality characteristics
reflected in functionalities. The formula may have a predicted role, if the
expectations of each functionality achievement regarding the quality
characteristics Ci.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∗

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∗

=

∑∑

∑∑

= =

= =

n

i

m

j
iji

n

i

m

j
iji

FunctC

FunctC
IF

1 1

1 1
2

max

min
 (6)

 where:
 - Ci represents the quality characteristic i;
 - Functij represents an element from the functionality matrix;
 - m is the number of rows in the functionality matrix;

COSMIN TOMOZEI and MARIUS VETRICI

464

 - n is the number of columns in the functionality matrix;
 Tables of association are used in order to show a relationship between each
quality characteristic and the functionality matrix. In the first action, the
actual value of the achievement of quality characteristics any functionality is
determined. In the second action the matrix of predicted values is built. The
matrix of predicted values consists of maximizing the level of quality
achieved by each of the functionalities.

3. PRACTICAL IMPLEMENTATION OF WEB SERVICES IN .NET
Web methods which are implemented by the web service and return an

ADO.NET component, such as Data Sets is written in the following source
code lines.
namespace ServWebStud
{
 [WebService(Namespace = “http://cursfs.ub.ro/”)]
 [WebServiceBinding(ConformsTo =
WsiProfiles.BasicProfile1_1)]
 [ToolboxItem(false)]
 [System.Web.Script.Services.ScriptService]
 public class ServiciuWebStud :
System.Web.Services.WebService
 {
 [WebMethod]
 public string Welcome()
 {
 return “Web Service for The 1st year students”;
 }
 [WebMethod]
 public DataSet liste_studenti()
 {
 SqlConnection scon = new
SqlConnection(ConfigurationManager.ConnectionStrings[“conn1”
].ConnectionString);
string st = @”select nume,prenume, medie_ects from
 studenti1 order by medie_ects”;
 SqlDataAdapter adpt1 = new SqlDataAdapter();
 SqlCommand scmd1 = new SqlCommand(st, scon);
 System.Data.DataSet ods1 = new
System.Data.DataSet();
 adpt1.SelectCommand = scmd1;
 adpt1.Fill(ods1, “tabela_studenti_ADO”);

F# MODULES INTEGRATION IN DISTRIBUTED APPLICATIONS

465
 return ods1;
 }
 }
}
 Datasets are representing objects stored in the internal memory. Datasets
bring information from Data Sources, which are placed in the external
memory. Both of them are defined as .NET Classes.
We find in the code from above the following important aspects:

• the web service consists of a class, named ServiciuWebStud which is inherited
from the System.Web.Services.WebService;

• it has a connection string for a DataBase connectivity technology, such as
JDBC, ODBC or SQLCLIENT;

• the connection string is placed in the Web.Config file, which makes the
application easy to reconfigure without future rebuilding;

• we also have a DataAdapter which fills the table tabela_studenti_ADO, from
the dataset with data.
 Reengineering applied to the source code from above will transform the
code into a Visual Basic.NET code sequence. Even though the .NET platform
offers interoperability, sometimes is necessary to translate from one language
to another. For example, if one inherited application was developed in Visual
Studio.NET from 2002, written in Visual Basic.NET, the new developers
might want it rewritten in C#.
<System.Web.Script.Services.ScriptService()> _
<System.Web.Services.WebService(Namespace:=”http://cursfs.ub
.ro”)> _
<System.Web.Services.WebServiceBinding(ConformsTo:=WsiProfil
es.BasicProfile1_1)> _
<ToolboxItem(False)> _
Public Class ServWebStudBasic
 Inherits System.Web.Services.WebService
 <WebMethod()> _
 Public Function Welcome() As String
 Return “Web Service for the 1st year students”
 End Function
 <WebMethod()> _
 Public Function liste_studenti() As DataSet
 Dim sconn As New
SqlConnection(ConfigurationManager.ConnectionStrings(“conn1”
).ConnectionString)
 Dim st As String = “select nume,prenume,medie_ects
 from studenti2 order by medie_ects”
 Dim adpt1 As New SqlDataAdapter()
 Dim ods As New DataSet()

COSMIN TOMOZEI and MARIUS VETRICI

466
 Dim scmd1 As New SqlCommand()
 scmd1.Connection = sconn
 scmd1.CommandText = st
 adpt1.SelectCommand = scmd1
 adpt1.Fill(ods, “tabela_studenti2_ADO”)
 Return ods
 End Function
End Class
 Reengineering based on objective’s modification will permit web services
to provide new functionalities to client applications, such as fragmentation of
relational tables vertically or horizontally. New rules of accessing the data are
also to be implemented due to reengineering, each web service or web method
accessing only a dedicated fragment of a relational database.
 We can add new web methods as well, or just transform the existing web
methods in order to fulfill the new objectives. In our application, we will
provide to the C# written web service access on the table containing
information about the first year students and to the Visual Basic written web
service access to the table containing information about the second year
students.
 In order to increase the speed of data accessing and actualization time
stored procedures are also to be implemented. If the inherited software system
did not have stored procedures, they will be implemented during the
reengineering process.

The greatest advantage of web services is that functionalities are
developed in distributed environments, such as SOAP with XML.

4. REPRESENTATIONS REGARDING F# INTEGRATION AND REENGINEERING
 In this section we focus on the integration of functional modules written in

F# in Windows 2008 server nodes. The process of software reengineering is
entitled to add new software modules in distributed environments. In the
following source code, we will put into practice a web service which returns
also an ADO.NET dataset which was filled with data from the database.

 In figure 3 [6] we present the functional architecture model of distributed
reengineering. The process starts iteratively from the initial objectives which
are realized by the current software application. In the earlier stages, the
application had been subjected to forward engineering, which implemented
the abstract requirements and objectives into actual software modules.

F# MODULES INTEGRATION IN DISTRIBUTED APPLICATIONS

467

 Figure 3. Functional architecture of distributed reengineering [9]
 Forward engineering [4] consists of moving from the high level of
abstraction levels of architecture and design, which are implementation
independent to the physical implementation of the system. By forward
engineering, we will get the result of source code and database
implementations.
 On the other hand, reverse engineering presumes the turn round way, from
the existing implementations to the abstract architectures. Reengineering
involves both of the processes, forward and reverse engineering.
 Functional languages written modules, such as F# modules are to be
integrated due to reengineering. In [7], we have mentioned that F# is
appropriate for distributed computing, because of the power and robustness of
functional programming languages and the offering the possibility of solving
in a scientific conduct a set of very difficult problems.

Source code

Source code

Source code

Sourc Source
code
transformed

Reengineering New Objectives

Architecture level

Design level

Source code
level

Initial Objectives

 R
EV

ER
SE
 E
N
G
IN
EE
RI
N
G

FO
RW

A
RD

 EN
G
IN
EERIN

G

UML UML

DataBase

DataBase
Migrated
DataBase

Migrated
DataBAse

Data
Warehouse

 Source code
transformed

Source code
transformed

COSMIN TOMOZEI and MARIUS VETRICI

468

 The contribution of this new programming language to Computer Science
research is very significant, joining together the simplicity of a functional
language with the power, robustness and generality of the .NET framework.
 The following source code presents a module written in F#, described in a
distinct manner in [9], which represents a query from the same database as the
above mentioned web services. It is straightforward to see that the entire
software application is enriched with interoperability.

#light
open System.Collections.Generic
open System.Data
open System.Data.SqlClient
open System.Data.Common
open System
let connectionString1 = "Data Source=PROGRAMARE03-
PC\SQLEXPRESS;Initial Catalog=utilizfdiez;Integrated
Security=True;"
let fraza_sql = "select * from utiliz1"
let connect = new SqlConnection(connectionString1)
using (connect)
 (fun connection ->
 let command = connection.CreateCommand()
 command.CommandText <-fraza_sql
 command.CommandText <- fraza_sql
 command.CommandType <- CommandType.Text;
 connection.Open()
 using (command.ExecuteReader())
 (fun reader ->
 let id_utiliz =
reader.GetOrdinal("id_utiliz")
 let nume = reader.GetOrdinal("nume")
 let prenume = reader.GetOrdinal("prenume")
 while reader.Read() do
 Console.WriteLine (id_utiliz)
 Console.WriteLine (nume)
 Console.WriteLine (prenume)
))
 To conclude, we may state that working with many database management
systems and with several programming languages is a key issue in distributed
systems. Integrating distinct functional modules could help in that direction.

F# MODULES INTEGRATION IN DISTRIBUTED APPLICATIONS

469

5. CONCLUSIONS
 Distributed systems and consequently distributed applications are the
mainstream development approach in the IT&C industry today. Web services
have proved an important factor of evolution in software development,
reunited by SOAP and other protocols in order to make possible machine to
machine communication in distinct environments.
 In this paper, we described the benefits of implementing such technologies;
we stated and proved that the integration of functional languages,
correspondingly F#, is appropriate and efficient.
 We also compared similar applications written in different languages in
order to integrate the functional modules.
 Software metrics regarding web services were presented and formal aspects
about functionalities and quality characteristics have been talked about.

References
[1] Edwin D. REILLY - Concise Encyclopedia of Computer Science,

Wiley, ISBN 0470090952, 2004
[2] Cosmin TOMOZEI - Security Engineering and Reengineering on

Windows 2008 Server Based Distributed Systems - Journal of
Information Technology & Communication Security, SECITC 2009,
Bucharest, pag. 63 - 73 ISBN 978-606-505-283-3

[3] Matthew MACDONALD, Mario SZPUSZTA – Pro Asp.Net 2.0 in
C# 2005, Apress2005 ISBN-13 (pbk): 978-1-59059-496-4

[4] Serge DEMEYER, Stephane DUCASSE, Oscar NIERSTRASZ -
Object-Oriented Reengineering Patterns, Elsevier Science, Square
Bracket Associates, 2008, ISBN 978-3-9523341-2-6

[5] Ion IVAN, Cristian CIUREA - Quality Characteristics of
Collaborative Systems, The Second International Conference on
Advances in Computer-Human Interfaces, ACHI 2009, 1-7 February
2009, Cancun, Mexico, pg. 164-168, ISBN 978-0-7695-3529-6

[6] Cosmin TOMOZEI - N-Tier Distributed Applications Dependable
Construction, Journal of Information Technology & Communication
Security, SECITC 2008, Bucharest, pag.65-71, ISBN 978-606-505-
139-7

[7] Cosmin TOMOZEI - Quality Characteristics of Business –
Oriented Open Source Community Projects, Open Source
Scientific Journal, Vol.1, no.1, 2009, ISSN 2066 – 740X, pag. 179 –
188.

[8] Robert PICKERING - Foundations of F# - Apress 2007, ISBN -
978-1-59059-757-6

COSMIN TOMOZEI and MARIUS VETRICI

470

[9] Cosmin TOMOZEI, Bogdan PĂTRUŢ - Assessment on Distributed
Collaborative Applications Research and Reengineering, The
Journal of Applied Collaborative Systems, Vol.1, no. 2, 2009, pag.
120- 128, ISSN ISSN 2066-7450

Cosmin TOMOZEI

Department of Mathematics and Informatics,
University “Vasile Alecsandri” of Bacău
Spiru Haret 8, 600114 Bacău, ROMANIA
cosmin.tomozei@ub.ro

Marius VETRICI

Economic Informatics Department
University of Economics, Bucharest
mariusvetrici@softmentor.ro

