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COMBINATORIAL OPTIMIZATION ALGORITHMS
FOR POLAR GRAPHS AND THEIR APPLICATIONS

IN FINANCE

D. PACURARI, M. MUNTEANU,M.TALMACIU

Abstract. Many natural problems in finance involve partitioning
assets into natural groups or identifying assets with similar properties.
Building a diversified portfolio is somehow dual to clustering. An
approach to clustering constructs an similarity graph, where elements
i and j are connected by an edge if and only if i and j are similar that
they should/can be in the same cluster. If the similarity measure is
totally correct and consistent, the graph will consist of disjoint cliques,
one per cluster. A graph is (s, k)-polar if there exists a partition A,B
of its vertex set such that A induces a complete s-partite graph and
B a disjoint union of at most k cliques. Recognizing a polar graph
is known to be NP-complete. In this paper we determine the density
and the stability number for (s,k)-polar graphs with algorithms that
are comparable, while respect to computing time, with the existing
ones and we give some applications in finance.

1. Introduction

Throughout this paper, G = (V, E) is a connected, finite and undi-
rected graph ([1]), without loops and multiple edges, having V = V (G)
as the vertex set and E = E(G) as the set of edges.
————————————–
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G is the complement of G. If U ⊆ V , by G(U) we denote the
subgraph of G induced by U . By G − X we mean the subgraph
G(V −X), whenever X ⊆ V , but we simply write G− v, when X =
{v}. If e = xy is an edge of the graph G, then x and y are adjacent,
while x and e as well as y and e are incident. If xy ∈ E, we also use
x ∼ y, and x 6∼ y whenever x, y are not adjacent in G. If A,B ⊂ V
are disjoint and ab ∈ E for every a ∈ A and b ∈ B, we say that A,B
are totally adjacent and we denote by A ∼ B, while by A 6∼ B we
mean that no edge of G joins some vertex of A to a vertex of B and,
in this case, we say A and B are non-adjacent.

The neighborhood of the vertex v ∈ V is the set NG(v) = {u ∈
V : uv ∈ E}, while NG[v] = NG(v) ∪ {v}; we denote N(v) and N [v],
when G appears clearly from the context. The degree of v in G is
dG(v) = |NG(v)|. The neighborhood of the vertex v in the complement
of G will be denoted by N(v).

The neighborhood of S ⊂ V is the set N(S) = ∪v∈SN(v) − S and
N [S] = S∪N(S). A graph is complete if every pair of distinct vertices
is adjacent. A clique is a subset Q of V with the property that G(Q)
is complete. The clique number of G, denoted by ω(G), is the size of
the maximum clique. A clique cover is a partition of the vertex set
such that each part is a clique. θ(G) is the size of the smallest possible
clique cover of G; it is called the clique cover number of G. A stable
set is a subset X of vertices where every two vertices are not adjacent.
α(G) is the number of vertices of a stable set of maximum cardinality;
it is called the stability number of G. χ(G) = ω(G) and it is called
the chromatic number of G.

By Pn, Cn, Kn we mean a chordless path on n ≥ 3 vertices, a
chordless cycle on n ≥ 3 vertices, and a complete graph on n ≥ 1
vertices, respectively.

Let F denote a family of graphs. A graph G is called F -free if none
of its subgraphs are in F .

The Zykov sum of the graphs G1, G2 is the graph G = G1 + G2

having:

V (G) = V (G1) ∪ V (G2),
E(G) = E(G1) ∪ E(G2) ∪ {uv : u ∈ V (G1), v ∈ V (G2)}.

When searching for recognition algorithms, it frequently appears
a type of partition for the set of vertices in three classes A,B, C,
which we call a weak decomposition([2], [3]), such that: A induces a
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connected subgraph, C is totally adjacent to B, while C and A are
totally nonadjacent.

Further on, we present the concepts of data-mining, time-series and
clustering.

Data-mining represents the extraction, from existing data, through
non-everyday methods, of potential information, unknown previously
and possibly useful ([4]).

A continuous sequence of real values is known as time series.
The notion of clustering here is similar to that of conventional clus-

tering of discrete objects. Given a set of individual time series data,
the objective is group similar time-series into the same cluster.

2. Polar graphs

In this paper we determine the density and the stability number for
(s,k)-polar graphs with algorithms that are comparable, while respect
to computing time.

We give, in Theorem 1 below, a necessary and sufficient condition
for a connected non-complete graph to be polar.

Theorem 1. Let G = (V, E) be a connected incomplete graph and,
also, a cograph. Let (A,N,R) be a weak decomposition with ([6], [7])
with G(A) the weak component. G is (s, k)-polar complete if and only
if A is the clique and G(V − A) is (s, k − 1)-polar complete.

Proof.
We take G = (V,E) (s, k)-polar complete, with V = S ∪ Q, S =

∪s
i=1Si, Q = ∪k

j=1Qj. We apply the weak decomposition procedure and
we obtain (A,N,R) with G(A) the weak component. If we initially
take A = {a1}, where a1 ∈ S1, then, because {a1} 6∼ S1 − {a1},
(S − S1) ∪Q ∼ S1 − {a1} and {a1} ∼ (S − S1) ∪Q it follows that at
the end of the applied procedure of weak decomposition, we have: A =
{a1}, N = (S −S1)∪Q, R = S1−{a1}. If we initially take A = {b1},
where b1 ∈ Q1, then, because Q1 6∼ Q−Q1, S ∼ Q−Q1 si Q1 ∼ S, it
follows that at the end of the applied procedure of weak decomposition,
we have: A = Q1, N = S, R = Q−Q1. Moreover, we consider A with
the propriety that |A|=maxj=1,...,k|Qj|. Then R = Q − A. Because
maxj=1,...,k|Qj| ≥ 1 then the last variant is the appropriate one. We
have: A clique and G(V −A) graph (s, k−1)-polar complete. Reverse,
let A be the clique and G(V − A) = G(N ∪R) graph (s, k − 1)-polar
complete. Since G is co-graph, we have A ∼ N ∼ R. Since A a clique
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and A 6∼ N and G(N ∪ R) (s, k − 1)-polar complete it follows that
G = G(A ∪ (V − A)) = G(A ∪N ∪R) is (s, k)-polar complete.

Consequence 1. If G is (s, k)-polar complete and co-graph then:
(i) α(G)=max{maxi=1,...,s|Si|, k};
(ii) ω(G) = max{|A|+ 1, s + 1};
(iii) ν(G)=mini=1,...,s|Si|.

Proof. We know ([6]) that
α(G)=max{α(G(A ∪N)), α(G(A)) + α(G(R))}.
Since A ∼ N and A clique, it follows that
α(G(A ∪N))=maxi=1,...,s|Si| and
α(G(A)) + α(G(R)) = k.
So,
α(G) = max{maxi=1,...,s|Si|, k}.
ω(G) = max{|A|+ 1, s + 1}.
Because A ∼ N ∼ R and N = S = ∪s

i=1Si, Si ∼ Sj, ∀i, j = 1, ..., s, it
follows that a dominant set of minimum cardinal is mini=1,...,s|Si|. So,
ν(G) = mini=1,..,s|Si|.

3. The recognition algorithm.

Theorem 1 leads to the following recognition algorithm.

Input: A connected non-complete cograph G = (V,E).
Output: An answer to the question: ”Is G polar”?
begin

1. Generate LG, the family of the weak components of G as follows:
LG ← ∅
while V 6= ∅ do

determine the weak component A with the weak
decomposition algorithm

2. If A not clique
then Return: ”G is not polar”

else
if ∃i ∈ S, ∃j ∈ Q such as ij 6∈ E

then Return: ”G is not complet polar”
else Introdu G(N ∪R) in L

”G is polar complet”
The Complexity of the Algorithm. We determine the degrees

of the vertices of graph G. The determination of a weak decomposition
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with A the weak component takes O(n+m) time. The fact that S ∼ Q
does not take place, takes O(n2). Because A ∼ N ∼ R and A 6∼ R it
follows that, if ∃a ∈ A such that dG(a) 6= (|A|−1)+ |N | then A is not
a clique. So, the complexity of the algorithm is O(n3).

4. Some applications in finance

A lot of finance issues implicate the partition of activities in natural
groups or the identification of activities with similar proprieties (e.g.
we can partition the supplies in logical groups, based on time-series
and other date?). Building a portfolio that can allow the selection
of a group of supplies that are not interrelated is dual to clustering.
An alternative type of approach to clustering builds a similar graph,
where the elements i and j are joined through an edge if and only if
they are similar enough so that they can be in the same cluster. If
the measuring of similarity is correct then the graph will consist of
a disjoint area of cliques and then the similarity will reduce itself to
finding the clique. We have just determined the size of the clique for
the polar co-graphs class and it is max{maxj=1,...,k|Qj|, s + 1}.

In [5]) the authors have studied different types of measuring the
distance time-series, at the price of supplies, to see the result from
the clusters of the best pairs of industrial groups. They have param-
eterized the distance measurements on 3 dimensions (representation,
normalization and reduction of dimensions) The first dimension was
much more informative then the original series, the third dimension
leads to clusters better than the original series.

5. Conclusions and future work

In this paper we have characterized the polar graphs, characteriza-
tion which has led to a recognition algorithm. We have determined
the density, the stability number and the domination number for this
class of graphs. We have shown the possibility of applying the polar
graphs in finance. In the future, a case study can be conducted in
financial time-series clustering.
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