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THE ISOTOMIC TRANSVERSAL THEOREM AND
THE NEUBERG’S THEOREM IN THE POINCARÉ

MODEL OF HYPERBOLIC GEOMETRY

CĂTĂLIN BARBU

Abstract. In this study, we present a proof of the isotomic
transversal theorem and the Neuberg’s theorem in hyperbolic geome-
try

1. Introduction

Hyperbolic geometry appeared in the first half of the 19th century
as an attempt to understand Euclid’s axiomatic basis of geometry.
It is also known as a type of non-euclidean geometry, being in many
respects similar to euclidean geometry. Hyperbolic geometry includes
similar concepts as distance and angle. Both these geometries have
many results in common but many are different. Several useful models
of hyperbolic geometry are studied in the literature as, for instance,
the Poincaré disc and ball models, the Poincaré half-plane model, and
the Beltrami-Klein disc and ball models [1] etc. Following [2] and
[3] and earlier discoveries, the Beltrami-Klein model is also known
as the Einstein relativistic velocity model. Here, in this study, we
give hyperbolic versions of the isotomic transversal theorem and the
Neuberg theorem.
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The well-known the isotomic transversal theorem states that if l is
a line not through any vertex of a triangle ABC such that l meets
sidelines BC,CA, and AB in points A′, B′, and C ′, respectively, and
let A′′ be the reflection of A′ about the midpoint of segment BC, and
construct B′′ and C ′′ similarly, then A′′, B′′, and C ′′ are collinear in a
line known as the isotomic transversal of l [4]. The Neuberg theorem
states that if three lines from of a triangle ABC, and concurrent at
P , meet the opposite sides at P1, P2, P3 respectively; and if we cut
off BQ1, CQ2,AQ3 equal respectively P1C,P2A, P3B, then AQ1, BQ2,

and CQ3 are concurrent [5]. We use in this study of Poincaré disc
model.

We begin with the recall of some basic geometric notions and prop-
erties in the Poincaré disc. Let D denote the unit disc in the complex
z - plane, i.e.

D = {z ∈ C : |z| < 1}
The most general Möbius transformation of D is

z → eiθ z0 + z

1 + z0z
= eiθ(z0 ⊕ z),

which induces the Möbius addition ⊕ in D, allowing the Möbius trans-
formation of the disc to be viewed as a Möbius left gyro-translation

z → z0 ⊕ z =
z0 + z

1 + z0z

followed by a rotation. Here θ ∈ R is a real number, z, z0 ∈ D, and z0

is the complex conjugate of z0. Let Aut(D,⊕) be the automorphism
group of the grupoid (D,⊕). If we define

gyr : D ×D → Aut(D,⊕), gyr[a, b] =
a⊕ b

b⊕ a
=

1 + ab

1 + ab
,

then is true gyro-commutative law

a⊕ b = gyr[a, b](b⊕ a).

A gyro-vector space (G,⊕,⊗) is a gyro-commutative gyro-group
(G,⊕) that obeys the following axioms:

(1) gyr[u,v]a· gyr[u,v]b = a · b for all points a,b,u,v ∈G.
(2) G admits a scalar multiplication, ⊗, possessing the following

properties. For all real numbers r, r1, r2 ∈ R and all points a ∈G:
(G1) 1⊗ a = a
(G2) (r1 + r2)⊗ a = r1 ⊗ a⊕ r2 ⊗ a
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(G3) (r1r2)⊗ a = r1 ⊗ (r2 ⊗ a)

(G4) |r|⊗a
‖r⊗a‖ = a

‖a‖
(G5) gyr[u,v](r ⊗ a) = r ⊗ gyr[u,v]a
(G6) gyr[r1 ⊗ v, r1 ⊗ v] =1
(3) Real vector space structure (‖G‖ ,⊕,⊗) for the set ‖G‖ of one-

dimensional ”vectors”

‖G‖ = {±‖a‖ : a ∈ G} ⊂ R
with vector addition ⊕ and scalar multiplication ⊗, such that for all
r ∈ R and a,b ∈ G,

(G7) ‖r ⊗ a‖ = |r| ⊗ ‖a‖
(G8) ‖a⊕ b‖ ≤ ‖a‖ ⊕ ‖b‖

Definition 1. The hyperbolic distance function in D is defined by the
equation

d(a, b) = |aª b| =
∣∣∣∣

a− b

1− ab

∣∣∣∣ .

Here, aª b = a⊕ (−b), for a, b ∈ D.

For further details we refer to the recent book of A.Ungar [6].

Theorem 2. (The Menelaus’s theorem for hyperbolic trian-
gle) If l is an gyroline not through any gyrovertex of an gyrotriangle
ABC such that l meets BC in D, CA in E, and AB in F, then

(AF )γ

(BF )γ

· (BD)γ

(CD)γ

· (CE)γ

(AE)γ

= 1,

where vγ = v
1−v2 .

(See [7])

Theorem 3. (Converse of Menelaus’s theorem for hyperbolic
triangle) If D lies on the gyroline BC, E on CA, and F on AB such
that

(AF )γ

(BF )γ

· (BD)γ

(CD)γ

· (CE)γ

(AE)γ

= 1,

then D, E, and F are collinear.

(See [7])
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Theorem 4. (The Ceva’s theorem for hyperbolic triangle) If
M is a point not on any side of a gyrotriangle A1A2A3 such that A3M
and A1A2 meet in P, A2M and A3A1 in Q, and A1M and A2A3 meet
in R, then

(A1P )γ

(A2P )γ

· (A2R)γ

(A3R)γ

· (A3Q)γ

(A1Q)γ

= 1

(See [8])

Theorem 5. (Converse of Ceva’s theorem for hyperbolic tri-
angle) If P lies on the gyroline A1A2, R on A2A3, and Q on A3A1

such that
(A1P )γ

(A2P )γ

· (A2R)γ

(A3R)γ

· (A3Q)γ

(A1Q)γ

= 1,

and two of the gyrolines A1R, A2Q and A3P meet, then all three are
concurrent.

(See [8])

Theorem 6. (The Carnot’s theorem for hyperbolic triangle)
Let ABC be a hyperbolic triangle in the Poincaré disc, whose are the
points A,B and C of the disc and whose sides (directed counterclock-
wise) are a = −B ⊕ C, b = −C ⊕ A and c = −A ⊕ B. Let the points
A′, B′ and C ′ be located on the sides a, b and c of the hyperbolic triangle
ABC respectively. If the perpendiculars to the sides of the hyperbolic
triangle at the points A′, B′ and C ′ are concurrent, then the following
holds:

|−A⊕ C ′|2ª|−B ⊕ C ′|2⊕|−B ⊕ A′|2ª|−C ⊕ A′|2⊕|−C ⊕B′|2ª|−A⊕B′|2 = 0.

(See [10])

Theorem 7. (Converse of Carnot’s theorem for hyperbolic
triangle) Let ABC be a hyperbolic triangle in the Poincaré disc,
whose are the points A,B and C of the disc and whose sides (directed
counterclockwise) are a = −B ⊕ C, b = −C ⊕ A and c = −A ⊕ B.
Let the points A′, B′ and C ′ be located on the sides a, b and c of the
hyperbolic triangle ABC respectively. If the following holds

|−A⊕ C ′|2ª|−B ⊕ C ′|2⊕|−B ⊕ A′|2ª|−C ⊕ A′|2⊕|−C ⊕B′|2ª|−A⊕B′|2 = 0,

and two of the three perpendiculars to the sides of the hyperbolic tri-
angle at the points A′, B′ and C ′ are concurrent, then the three per-
pendiculars are concurrent.



THE ISOTOMIC TRANSVERSAL THEOREM 41

(See [10])

2. Main results

In this section, we prove the isotomic transversal theorem and Neu-
berg’s theorem for hyperbolic triangle.

Theorem 8. (The isotomic transversal theorem). Let l be a
gyroline not through any gyrovertex of a gyrotriangle ABC such that
l meets gyroside BC, CA, and AB in gyropoints A′, B′, and C ′, re-
spectively, and let A′′ be the reflection of A′ about the midpoint of
gyrosegment BC, and construct B′′ and C ′′ similarly, then the gyro-
points A′′, B′′, and C ′′ are collinear.

Proof. If we use a theorem 2 for the gytriangle ABC and collinear
gyropoints A′, B′, and C ′ (See Figure 1), then

(1)
(BA′)γ

(A′C)γ

· (CB′)γ

(B′A)γ

· (AC ′)γ

(C ′B)γ

= 1.

Because

d(A′, B) = d(A′′, C), d(A′, C) = d(A′′, B), d(B′, C) = d(B′′, A),

and

d(B′, A) = d(B′′, C), d(C ′, A) = d(C ′′, B), d(C ′, B) = d(C ′′, A),

we get

(2)
(BA′)γ

(A′C)γ

=
(CA′′)γ

(A′′B)γ

,
(CB′)γ

(B′A)γ

=
(AB′′)γ

(B′′C)γ

,
(AC ′)γ

(C ′B)γ

=
(BC ′′)γ

(C ′′A)γ

.
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From (1) and (2) we have

(CA′′)γ

(A′′B)γ

· (AB′′)γ

(B′′C)γ

· (BC ′′)γ

(C ′′A)γ

= 1,

and from the theorem 3, we obtain that the gyropoints A′′, B′′, and
C ′′ are collinear in a line known as the isotomic transversal of l.

Theorem 9. (Neuberg’s theorem for hyperbolic triangle). If
three gyrolines from of a gyrotriangle ABC, and concurrent at P ,
meet the opposite gyrosides at P1, P2, P3 respectively; and if we cut
off BQ1, CQ2,AQ3 equal respectively P1C, P2A,P3B, and two of the
gyrolines AQ1, BQ2, and CQ3 meet, then all three are concurrent.

Proof. If we use Ceva’s theorem in the gyrotriangle ABC (See Theo-
rem 3, Figure 2), then

(3)
(BP1)γ

(P1C)γ

· (CP2)γ

(P2A)γ

· (AP3)γ

(P3B)γ

= 1.

Because of d(B, P1) = d(C,Q1), d(P1, C) = d(B,Q1), d(C, P2) =
d(A,Q2), d(P2, A) = d(C,Q2), d(B,P3) = d(A, Q3), d(P3, A) =
d(B, Q3), then equations (3) become

(4)
(CQ1)γ

(Q1B)γ

· (AQ2)γ

(Q2C)γ

· (BQ3)γ

(Q3A)γ

= 1,

and by Theorem 4 we obtain that the gyrolines AQ1, BQ2, and CQ3

are concurrent in a gyropoint Q, called the isotomic conjugate of P .

Corollary 10. The centroid G of a gyrotriangle is its own isotomic
conjugate of G.
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Corollary 11. If exists the Nagel point of the gyrotriangle ABC, then
the Gergonne gyropoint is your isotomic conjugate.

Theorem 12. Let ABC be a gyrotriangle in the Poincaré disc, whose
are the gyropoints A, B and C of the disc and whose sides (directed
counterclockwise) are a = −B ⊕C, b = −C ⊕A and c = −A⊕B. Let
the gyropoints A′, B′ and C ′ be located on the gyrosides a, b and c of the
gyrotriangle ABC respectively, and let A′′ be the reflection of A′ about
the midpoint of gyrosegment BC, and construct B′′ and C ′′ similarly.
If the perpendiculars to the gyrosides of the gyrotriangle at the points
A′, B′ and C ′ are concurrent, and two of the three perpendiculars to
the sides of the hyperbolic triangle at the points A′′, B′′ and C ′′ are
concurrent, then the three perpendiculars are concurrent.

Proof. If we use Theorem 6 in the gyrotriangle ABC (See Figure 3),
then
(5)

|−A⊕ C ′|2ª|−B ⊕ C ′|2⊕|−B ⊕ A′|2ª|−C ⊕ A′|2⊕|−C ⊕B′|2ª|−A⊕B′|2 = 0.

Because |−A⊕ C ′| = |−B ⊕ C ′′| , |−B ⊕ C ′| =
|−A⊕ C ′′| , |−B ⊕ A′| = |−C ⊕ A′′| , |−C ⊕ A′| =
|−B ⊕ A′′| , |−C ⊕B′| = |−A⊕B′′| , |−A⊕B′| = |−C ⊕B′′| ,
then (5) become

|−B ⊕ C ′′|2ª|−A⊕ C ′′|2⊕|−C ⊕ A′′|2ª|−B ⊕ A′′|2⊕|−A⊕B′′|2ª|−C ⊕B′′|2 = 0,

and by Theorem 7 we obtain the conlusion.
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Poincaré disc model of hyperbolic geometry, Novi Sad J. Math., Vol.
38, 2008, 33-39.

”V asile Alecsandri” College
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