
”Vasile Alecsandri” University of Bacău
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FIXED POINTS OF EXPANSION MAPS IN
INTUITIONISTIC FUZZY METRIC SPACES

SUNEEL KUMAR AND SERVET KUTUKCU

Abstract. The purpose of this paper is to prove some fixed point
and common fixed point theorems for expansion maps in intuitionistic
fuzzy metric spaces. The main result has been proved for two pairs
of non-surjective expansion maps on noncomplete intuitionistic fuzzy
metric space through weak compatibility. Our results extend, gener-
alize and intuitionistic fuzzify several fixed point theorems on metric
spaces, Menger PM-spaces and fuzzy metric spaces.

1. Introduction

The concept of fuzzy sets was initially investigated by Zadeh [28] as
a new way to represent vagueness in everyday life. As a generalization
of fuzzy sets, Atanassov [3] introduced and studied the concept of
intuitionistic fuzzy sets. In 2004, Park [16] introduced and discussed
a notion of intuitionistic fuzzy metric spaces (briefly, IFM-spaces),
which is based both on the idea of intuitionistic fuzzy sets and the
concept of a fuzzy metric space given by George and Veeramani [7].
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Using the idea of intuitionistic fuzzy sets, Alaca, Turkoglu and
Yildiz [2] defined the notion of IFM-space as Park [16] with the help
of continuous t-norms and continuous t-conorms as a generalization of
fuzzy metric space due to Kramosil and Michalek [12]. Further, they
[2] proved Intuitionistic fuzzy Banach and Intuitionistic fuzzy Edel-
stein contraction theorems, with the different definition of Cauchy
sequences and completeness than the ones given in [16]. Turkoglu,
Alaca and Yildiz [25] extended the concept of compatible maps (in-
troduced by Jungck [9] in metric spaces) to IFM-spaces. Jungck and
Rhoades [10] initiated the study of weakly compatible maps in metric
space and showed that every pair of compatible maps is weakly com-
patible but reverse is not true.
In fixed point theory, contraction map theorems have been always an
active area of research since 1922 with the celebrated Banach contrac-
tion fixed point theorem [4]. Banach contraction principle also yields
a fixed point theorem for a diametrically opposite class of maps, viz.
expansion maps. The study of fixed point of single expansion map in a
metric space is initiated by Wang, Li, Gao and Iseki [27]. Later, using
expansion type conditions, several results have been proved for a pair
of maps (see [17], [18], [24]) and two pairs of maps (see [11], [8], [23])
in metric spaces. The results in ([18], [24], [11], [8]) have been proved
for either onto maps or surjective maps, while results in ([17], [23])
have been proved for non-surjective maps. Subsequently, there are a
number of generalization of these results in different settings such as
D-metric spaces [1]; probabilistic metric spaces ([6], [14], [15], [26]);
2-probabilistic metric spaces [5]; fuzzy metric spaces [20].
The main result of this paper has been proved for two pairs of non-
surjective expansion maps on noncomplete IFM-space through weak
compatibility. Our results extend, generalize and intuitionistic fuzzify
the results of Jachymski [8, Theorem 5.2], Kang and Rhoades [11,
Theorem 2.6], Kumar and Pant [14], Rhoades ([18, Theorem 1], [19]),
Kumar [13, Theorem 4.1], Dimri, Pant and Kumar [6, Theorem 3.2]
and Vasuki [26, Theorem 2.3].

2. Preliminaries

Definition 2.1 [21] A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is
continuous t-norm if ∗ is satisfying the following conditions:
(a) ∗ is commutative and associative,
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(b) ∗ is continuous,
(c) a ∗ 1 = a for all a ∈ [0, 1],
(d) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].
Examples of t-norm are a ∗ b = min(a, b) and a ∗ b = ab.

Definition 2.2 [21] A binary operation ¦ : [0, 1] × [0, 1] → [0, 1] is
continuous t-conorm if ¦ is satisfying the following conditions:
(a) ¦ is commutative and associative,
(b) ¦ is continuous,
(c) a ¦ 0 = a for all a ∈ [0, 1],
(d) a ¦ b ≤ c ¦ d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].
Examples of t-conorm are a ¦ b = max(a, b) and a ¦ b = min(1, a + b).

Following Atanassov [3] and Kramosil and Michalek [12]; Alaca,
Turkoglu and Yildiz [2] have given the next definition of IFM-spaces:

Definition 2.3 [2] A 5-tuple (X,M,N, ∗, ¦) is said to be an
IFM-space if X is an arbitrary set, ∗ is a continuous t-norm, ¦
is a continuous t-conorm and M, N are fuzzy sets on X2 × [0,∞)
satisfying the following conditions: for all x, y, z ∈ X and t, s > 0,
(a) M(x, y, t) + N(x, y, t) ≤ 1 for all t > 0;
(b) M(x, y, 0) = 0;
(c) M(x, y, t) = 1 if and only if x = y;
(d) M(x, y, t) = M(y, x, t);
(e) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s);
(f) M(x, y, ·) : [0,∞) → [0, 1] is left continuous;
(g) limt→∞ M(x, y, t) = 1;
(h) N(x, y, 0) = 1;
(i) N(x, y, t) = 0 if and only if x = y;
(j) N(x, y, t) = N(y, x, t);
(k) N(x, y, t) ¦N(y, z, s) ≥ N(x, z, t + s);
(l) N(x, y, ·) : [0,∞) → [0, 1] is right continuous;
(m) limt→∞ N(x, y, t) = 0.
Then (M,N) is called an intuitionistic fuzzy metric on X. The func-
tions M(x, y, t) and N(x, y, t) denote the degree of nearness and the
degree of non-nearness between x and y with respect to t, respectively.
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Remark 2.1 Every fuzzy metric space (X, M, ∗) is an IFM-space
of the form (X, M, 1 − M, ∗, ¦) such that t-norm ∗ and t-conorm ¦
are associated, i.e. x ¦ y = 1− ((1− x) ∗ (1− y)) for any x, y ∈ X.

Example 2.1 [16] Let (X, d) be a metric space. Define t-norm
a ∗ b = min(a, b) and t-conorm a ¦ b = max(a, b) and for all x, y ∈ X
and t > 0,

Md(x, y, t) = t
t+d(x,y)

, Nd(x, y, t) = d(x,y)
t+d(x,y)

.

Then (X, M, N, ∗, ¦) is an IFM-space and the intuitionistic fuzzy
metric (M,N) induced by the metric d is often referred to as the
standard intuitionistic fuzzy metric.

Remark 2.2 In IFM-space (X,M, N, ∗, ¦), M(x, y, ·) is non-
decreasing and N(x, y, ·) is non-increasing for all x, y ∈ X.

Definition 2.4 [2]. Let (X, M, N, ∗, ¦) be an IFM-space. Then
(i) a sequence {xn} in X is said to be Cauchy sequence if for all t > 0
and p > 0,
limn→∞ M(xn+p, xn, t) = 1, limn→∞ N(xn+p, xn, t) = 0.
(ii) a sequence {xn} in X is said to be convergent to a point x ∈ X
if for all t > 0,
limn→∞ M(xn, x, t) = 1, limn→∞ N(xn, x, t) = 0.
Since ∗ and ¦ are continuous, the limit is uniquely determined from
(e) and (k) respectively.

Definition 2.5 [2] An IFM-space (X, M, N, ∗, ¦) is said to be
complete if and only if every Cauchy sequence in X is convergent.

Definition 2.6 [25] Let A and S be maps from an IFM-space
(X,M, N, ∗, ¦) into itself. The maps A and S are said to be
compatible if for all t > 0, limn→∞ M(ASxn, SAxn, t) = 1 and
limn→∞ N(ASxn, SAxn, t) = 0, whenever {xn} is a sequence in X
such that limn→∞ Axn = limn→∞ Sxn = z for some z ∈ X.

Definition 2.7 [10] Two self maps A and S on a set X are said to
be weakly compatible if they commute at their coincidence point.
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For the proof of our results, the following lemmas are needed:

Lemma 2.1 [22] Let (X, M,N, ∗, ¦) be an IFM-space and {yn} be
a sequence in X. If there exists a number λ ∈ (0, 1) such that
(I) M(yn+2, yn+1, λt) ≥ M(yn+1, yn, t),
(II) N(yn+2, yn+1, λt) ≤ N(yn+1, yn, t)
for all t > 0 and n = 1, 2, 3... Then {yn} is a Cauchy sequence in X.

Lemma 2.2 [22] Let (X, M, N, ∗, ¦) be an IFM-space and for all
x, y ∈ X, t > 0 and if for a number λ ∈ (0, 1),
M(x, y, λt) ≥ M(x, y, t) and N(x, y, λt) ≤ N(x, y, t),
then x = y.

In our results, (X,M, N, ∗, ¦) will denote an IFM-space with contin-
uous t-norm ∗ and continuous t-conorm ¦ defined by a ∗ b = min(a, b)
and a ¦ b = max(a, b) respectively for all a, b ∈ [0, 1].

3. Results

In 2006, Alaca, Turkoglu and Yildiz [2] presented the following

Theorem A (Intuitionistic fuzzy Banach contraction theo-
rem) Let (X, M, N, ∗, ¦) be a complete IFM-space. Let A : X → X
be a map satisfying
M(Ax,Ay, λt) ≥ M(x, y, t) and N(Ax,Ay, λt) ≤ N(x, y, t),
for all x, y ∈ X, 0 < λ < 1. Then A has a unique fixed point.

In 1984, Wang, Li, Gao and Iseki [27] initiated the study of fixed
point of single expansion map in a metric space with the following:

Theorem B Let A be a map of a complete metric space (X, d)
onto itself and if there exists a constant k > 1 such that
d(Ax,Ay) ≥ kd(x, y)
for all x, y ∈ X. Then A has a unique fixed point.

First, we present the main result:
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Theorem 3.1 Let (X, M,N, ∗, ¦) be an IFM-space. Further, let
A,B, S and T be self-maps of X satisfying the following conditions:
(3.1) T (X) ⊆ A(X) and S(X) ⊆ B(X);
(3.2) (A, S) and (B, T ) are weakly compatible pairs;
(3.3) there exists a constant k > 1 such that
M(Ax,By, kt) ≤ M(Sx, Ty, t) and N(Ax,By, kt) ≥ N(Sx, Ty, t)
for all x, y ∈ X and t > 0. If one of the subspaces A(X), B(X), S(X)
or T (X) is complete, then A,B, S and T have a unique common fixed
point in X.

Proof. Let x0 ∈ X. By (3.1), we define the sequences {xn} and
{yn} in X such that, for all n = 0, 1, 2...
(3.4) Ax2n+1 = Tx2n = y2n and Bx2n+2 = Sx2n+1 = y2n+1.
By (3.3), (3.4) and Definition 2.3 [(d), (j)], we have
M(y2n, y2n+1, kt) = M(Ax2n+1, Bx2n+2, kt)

≤ M(Sx2n+1, Tx2n+2, t) = M(y2n+1, y2n+2, t)
and
N(y2n, y2n+1, kt) = N(Ax2n+1, Bx2n+2, kt)

≥ N(Sx2n+1, Tx2n+2, t) = N(y2n+1, y2n+2, t).
This give,
M(y2n, y2n+1, kt) ≤ M(y2n+1, y2n+2, t)
and
N(y2n, y2n+1, kt) ≥ N(y2n+1, y2n+2, t).
Similarly, again by (3.3) and (3.4), we have
M(y2n+1, y2n+2, kt) ≤ M(y2n+2, y2n+3, t)
and
N(y2n+1, y2n+2, kt) ≥ N(y2n+2, y2n+3, t).
Thus, for any n and k > 1, t > 0,, we have
M(yn, yn+1, kt) ≤ M(yn+1, yn+2, t)
and
N(yn, yn+1, kt) ≥ N(yn+1, yn+2, t).
By Lemma 2.1, {yn} is a Cauchy sequence. Suppose A(X) is
complete, {yn} has a limit in A(X). Call it, z. Hence, there exists
a point p in X such that Ap = z. Consequently, the subsequences
{Ax2n+1}, {Bx2n}, {Sx2n+1}, {Tx2n} also converge to z.
By (3.3),
M(Ap,Bx2n, kt) ≤ M(Sp, Tx2n, t)
and N(Ap,Bx2n, kt) ≥ N(Sp, Tx2n, t).
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Letting n →∞; we get
M(z, z, kt) ≤ M(Sp, z, t) and N(z, z, kt) ≥ N(Sp, z, t),
that is, 1 ≤ M(Sp, z, t) and 0 ≥ N(Sp, z, t) for all t > 0, which give
M(Sp, z, t) = 1 and N(Sp, z, t) = 0. Thus, it follows that Sp = z.
Therefore, Ap = Sp = z.
The weak compatibility of (A, S) implies ASp = SAp, that is,
Az = Sz. But S(X) ⊆ B(X), so there exists q ∈ X such that
Bq = Sp = Ap. Again by (3.3), we have
M(Ap,Bq, kt) ≤ M(Sp, Tq, t) and N(Ap,Bq, kt) ≥ N(Sp, Tq, t),
that is, 1 ≤ M(Sp, Tq, t) and 0 ≥ N(Sp, Tq, t) for all t > 0, which
give M(Sp, Tq, t) = 1 and N(Sp, Tq, t) = 0. It follows that Sp = Tq.
Hence, we have z = Ap = Sp = Bq = Tq. The weak compatibility of
(B, T ) implies BTq = TBq, that is, Bz = Tz.
Now we claim that Az = z. By (3.3), we get
M(Az, z, kt) = M(Az, Bx2n, kt) ≤ M(Sz, Tx2n, t) = M(Az, z, t)
and
N(Az, z, kt) = N(Az, Bx2n, kt) ≥ N(Sz, Tx2n, t) = N(Az, z, t).
By Lemma 2.2, it follows that Az = z. Thus, Az = Sz = z.
Similarly, it can be proved that Bz = Tz = z. And hence,
Az = Sz = Bz = Tz = z.
A similar argument holds by taking one of subspaces B(X), S(X) or
T (X) complete. Finally, the uniqueness of z as a common fixed point
of A,B, S and T is obvious from (3.3) and Lemma 2.2.

Remark 3.1 Theorem 3.1 is intuitionistic fuzzy version of the
results of Jachymski [8, Theorem 5.2], Kang and Rhoades [11,
Theorem 2.6] and Kumar and Pant [14]. Theorem 3.1 also extend
the results in [8], [11] and [14] to non-surjective maps as well as the
results in [11] and [14] to weakly compatible maps.

By setting B = A and T = S in Theorem 3.1, the following result
is obtained:

Corollary 3.1 Let (X, M, N, ∗, ¦) be an IFM-space. Further, let
A and S be self-maps of X satisfying the following conditions:
(3.5) S(X) ⊆ A(X);
(3.6) (A, S) is a weakly compatible pair;
(3.7) there exists a constant k > 1 such that
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M(Ax,Ay, kt) ≤ M(Sx, Sy, t) and N(Ax,Ay, kt) ≥ N(Sx, Sy, t)
for all x, y ∈ X and t > 0. If one of the subspaces A(X) or S(X) is
complete, then A and S have a unique common fixed point in X.

Proof. Let x0 ∈ X. By (3.5), we define the sequence {yn} in X
such that, for all n = 0, 1, 2...
(3.8) Axn+1 = Sxn = yn.
By (3.7) and (3.8), we have
M(yn, yn+1, kt) = M(Axn+1, Axn+2, kt)

≤ M(Sxn+1, Txn+2, t) = M(yn+1, yn+2, t)
and
N(yn, yn+1, kt) = N(Axn+1, Axn+2, kt)

≥ N(Sxn+1, Txn+2, t) = N(yn+1, yn+2, t).

By Lemma 2.1, {yn} is a Cauchy sequence. Suppose A(X) is
complete, {yn} has a limit in A(X). Call it, z. Hence, there exists
a point p in X such that Ap = z. Consequently, the subsequences
{Axn+1}, and {Sxn} also converge to z. Now applying the same
technique as in Theorem 3.1, proof is obvious.

Remark 3.2 Corollary 3.1 is intuitionistic fuzzy version of the
results of Rhoades [19] and Kumar [13, Theorem 4.1], Vasuki [26,
Theorem 2.3]. Also, it extend the results in [19], [26, Theorem 2.3] to
weakly compatible maps.

By setting S = T = IX (the identity) in Theorem 3.1 and assuming
that X is complete, the maps A and B are surjective maps; the
following result is obtained:

Corollary 3.2 Let (X, M,N, ∗, ¦) be a complete IFM-space.
Further, let A and B be surjective self-map of X. There exists a
constant k > 1 such that
(3.9) M(Ax,By, kt) ≤ M(x, y, t) and N(Ax,By, kt) ≥ N(x, y, t)
for all x, y ∈ X and t > 0. Then A and B have a unique common
fixed point in X.

Proof. Let x0 ∈ X. Since A is surjective, there exists a
point x1 ∈ A−1x0. Since B is surjective, there exists a point
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x2 ∈ B−1x1. Continuing in this manner, we have a sequence {xn}
with x2n+1 ∈ A−1x2n, x2n+2 ∈ B−1x2n+1 for all n = 0, 1, 2... Now we
have two cases as follows:

Case I: When x2n+1 = x2n for some n. By (3.9), we have
M(x2n+1, x2n, kt) = M(Bx2n+2, Ax2n+1, kt) ≤ M(x2n+2, x2n+1, t)
and
N(x2n+1, x2n, kt) = N(Bx2n+2, Ax2n+1, kt) ≥ N(x2n+2, x2n+1, t),
that is, 1 ≤ M(x2n+2, x2n+1, t) and 0 ≥ N(x2n+2, x2n+1, t) for all t > 0,
which give M(x2n+2, x2n+1, t) = 1 and N(x2n+2, x2n+1, t) = 0. The
condition x2n+1 = x2n implies that x2n is a fixed point of A. Since,
also x2n+2 = x2n+1, x2n is a fixed point of B. Similarly, x2n+2 = x2n+1

leads to x2n+1 being a common fixed point of A and B.

Case II: When x2n+1 6= x2n for some n. By (3.9),
M(x2n, x2n+1, kt) = M(Ax2n+1, Bx2n+2, kt) ≤ M(x2n+1, x2n+2, t)
and
N(x2n, x2n+1, kt) = N(Ax2n+1, Bx2n+2, kt) ≥ N(x2n+1, x2n+2, t).
Similarly, when x2n+1 6= x2n+2 for some n, we have
M(x2n+1, x2n+2, kt) ≤ M(x2n+2, x2n+3, t)
and N(x2n+1, x2n+2, kt) ≥ N(x2n+2, x2n+3, t).
Thus, for any n and k > 1, t > 0, we have
M(xn, xn+1, kt) ≤ M(xn+1, xn+2, t)
and N(xn, xn+1, kt) ≥ N(xn+1, xn+2, t).
Therefore, in view of Lemma 2.1, {xn} is a Cauchy sequence. Since
X is complete, {xn} has a limit z ∈ X. As A and B are surjective,
there exist u, v ∈ X satisfying u ∈ A−1z and v ∈ B−1z. Now, by
(3.9), we get
M(x2n, z, kt) = M(Ax2n+1, Bv, kt) ≤ M(x2n+1, v, t)
and N(x2n, z, kt) = N(Ax2n+1, Bv, kt) ≥ N(x2n+1, v, t).
Letting n →∞; we get
1 ≤ M(z, v, t) and 0 ≥ N(z, v, t) for all t > 0, which give
M(z, v, t) = 1 and N(z, v, t) = 0. Therefore, z = v.
In the similar pattern, taking x = u and y = x2n+2 in (3.9), and
therefore proceeding as above, we obtain z = u. Therefore, z = u = v
which immediately implies Az = Bz = z and so z is a common fixed
point of A and B. Also, the uniqueness of z as a common fixed point
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of A and B is obvious from (3.9).

Remark 3.3 Corollary 3.2 is intuitionistic fuzzy version of the
result of Rhoades [18, Theorem 1].

By setting B = A in Corollary 3.2, we have intuitionistic fuzzy
version of the result of Wang, Li, Gao and Iseki [27] as follows:

Corollary 3.3 Let (X, M,N, ∗, ¦) be a complete IFM-space.
Further, let A be a map of X onto itself. There exists a constant
k > 1 such that
(3.10) M(Ax,Ay, kt) ≤ M(x, y, t) and N(Ax,Ay, kt) ≥ N(x, y, t)
for all x, y ∈ X and t > 0. Then A has a unique fixed point in X.

Proof. Let x0 ∈ X. Since A is onto, there exists an element x1

satisfying x1 ∈ A−1x0. In the same way, we can take xn ∈ A−1xn−1

for n = 2, 3, 4... If xm = xm−1 for some m, then xm is a fixed point of
A. Without loss of generality, we can suppose xn 6= xn−1 for every n.
Then by (3.10), for all t > 0 and k > 1, we have
M(xn−1, xn, kt) = M(Axn, Axn+1, kt) ≤ M(xn, xn+1, t)
and N(xn−1, xn, kt) = N(Axn, Axn+1, kt) ≥ N(xn, xn+1, t).
Therefore, by Lemma 2.1, {xn} is a Cauchy sequence. Since X is
complete, {xn} has a limit z ∈ X. Now, the proof follows as in
Corollary 3.2.

Thoerem 3.2 Let (X, M,N, ∗, ¦) be an IFM-space. Further, let A
and S be self-maps of X satisfying (3.5), (3.6) and
(3.11) there exists a constant k > 1 such that
(M(Ax,Ay, kt))2 ≤ M(Ax, Sx, t)M(Ay, Sy, t)
and
(N(Ax,Ay, kt))2 ≥ N(Ax, Sx, t)N(Ay, Sy, t)
for all x, y ∈ X and t > 0. If one of the subspaces A(X) or S(X) is
complete, then A and S have a unique common fixed point in X.

Proof. Let x0 ∈ X. By (3.5), we define the sequence {yn} in X as
Axn+1 = Sxn = yn for all n = 0, 1, 2...
By (3.11), for all t > 0 and k > 1, we get
(M(yn, yn+1, kt))2 = (M(Axn+1, Axn+2, kt))2
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≤ M(Axn+1, Sxn+1, t)M(Axn+2, Sxn+2, t)
≤ M(yn, yn+1, t)M(yn+1, yn+2, t)

and
(N(yn, yn+1, kt))2 = (N(Axn+1, Axn+2, kt))2

≥ N(Axn+1, Sxn+1, t)N(Axn+2, Sxn+2, t)
≥ N(yn, yn+1, t)N(yn+1, yn+2, t).

This give
(M(yn, yn+1, kt))2 ≤ M(yn, yn+1, t)M(yn+1, yn+2, t)
and
(N(yn, yn+1, kt))2 ≥ N(yn, yn+1, t)N(yn+1, yn+2, t).
Thus it follows that
M(yn, yn+1, kt) ≤ M(yn+1, yn+2, t)
and
N(yn, yn+1, kt) ≥ N(yn+1, yn+2, t).
In view of Lemma 2.1, {yn} is a Cauchy sequence. Now, the proof
follows as in Theorem 3.1.

Remark 3.4 Theorem 3.2 is intuitionistic fuzzy version of the
result of Dimri, Pant and Kumar [6, Theorem 3.2].

Acknowledgment: The authors thank the referee for the criti-
cal reading of the paper and valuable suggestions to improve the paper.
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