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A UNIFIED THEORY OF ALMOST CONTINUITY
FOR MULTIFUNCTIONS

TAKASHI NOIRI AND VALERIU POPA

Abstract. We introduce the notions of upper/lower almost m-
continuity for multifunctions from a set satisfying certain minimal
condition into a topological space. We obtain their characteriza-
tions and properties which unify those of almost continuity, almost
quasi-continuity, almost precontinuity, almost a-continuity, almost -
continuity and almost «-continuity for multifunctions.

1. INTRODUCTION

Semi-open sets, preopen sets, a-sets, G-open sets and d-open sets
play an important role in the researches of generalizations of continuity
in topological spaces. By using these sets several authors introduced
and studied various types of weak forms of continuity for functions
and multifunctions. In 1968, Singal and Singal [46] introduced the no-
tion of almost continuous functions. In 1982, Popa [27] introduced the
concept of upper /lower almost continuous multifunctions. Some prop-
erties of upper/lower almost continuous multifunctions are studied in
[28]-[33] and other articles.
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In 1993, Popa and Noiri [34] introduced the concepts of up-
per/lower almost quasi-continuous multifunctions. Some properties
of upper/lower almost quasi-continuous multifunctions are studied in
23]. In 1993, Popa et al. [43] introduced and studied the concepts of
upper/lower almost precontinuous multifunctions. Some properties of
these multifunctions are studied in [42]. The notions of upper/lower
almost a-continuous multifunctions are introduced in [35] and the fur-
ther properties are studied in [36], [40] and [42]. The notions of up-
per/lower almost (3-continuous multifunctions are introduced by Noiri
and Popa [24]. The further properties of these multifunctions are
studied in [37]. Recently, Ekici and Park [11] introduced and stud-
ied almost 7y-continuous multifunctions. Almost quasi-continuity, al-
most precontinuity, almost [-continuity, almost a-continuity, almost
~-continuity for multifunctions have properties similar to these of al-
most continuous multifunctions and they hold, in many part, paralel
to theory of continuous multifunctions. Further, analogies in their
definitions and results suggest the need formulating a unified theory
in the setting of multifunctions.

In [41], the present authors introduced and studied the notion of al-
most m-continuous functions. In this paper, we introduce the notions
of upper/lower almost m-continuous multifunctions as multifunctions
from a set satisfying some minimal conditions into a topological space.
We obtain several characterizations and properties of such multifunc-
tions.

2. PRELIMINARIES

Let (X, 7) be a topological space and A a subset of X. The closure of
A and the interior of A are denoted by CI(A) and Int(A), respectively.
A subset A is said to be reqular closed (resp. regular open) if Cl(Int(A))
= A (resp. Int(Cl(A)) = A).

A point z € X is called a d-cluster point of a subset A if Int(Cl(U))
NA # () for every open set U containing x. The set of all §-cluster
points of A is called the d-closure of A and is denoted by Cls(A). If
A = Cls(A), then A is said to be d-closed [49]. The complement of a
0-closed set is said to be d-open. The union of all J-open sets contained
in A is called the 0-interior of A and is denoted by Ints(A). It is shown
in [49] that Cls(U) = Cl(U) for every open set U of X and Cls(S) is
closed in X for every subset S of X.
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Definition 2.1. A subset A of a topological space (X,7) is said
to be semi-open [16] (resp. preopen [18], a-open [20], [-open [1]
or semi-preopen [4], b-open [5] or v-open [3]) if A C Cl(Int(A))
(resp. A C Int(Cl(A)), A C Int(Cl(Int(A))), A C Cl(Int(Cl(A))),
A C Cl(Int(A)) U Int(CI(A))).

The family of all semi-open (resp. preopen, a-open, 3-open, y-open)
sets in X is denoted by SO(X) (resp. PO(X), a(X), B(X), v(X)).

Definition 2.2. The complement of a semi-open (resp. preopen, -
open, [3-open,y-open) set is said to be semi-closed [10] (resp. preclosed
[12], a-closed [19], (-closed [1], ~y-closed [3]).

Definition 2.3. The intersection of all semi-closed (resp. preclosed,
a-closed, [-closed, y-closed) sets of X containing A is called the semi-
closure [10] (resp. preclosure [12], a-closure [19], B-closure [2], ~-
closure [3]) of A and is denoted by sCI(A) (resp. pCl(A), aCl(A),

BCI(A), 7CI(A4))).

Definition 2.4. The union of all semi-open (resp. preopen, a-open, [3-
open, v-open) sets of X contained in A is called the semi-interior (resp.
preinterior, a-interior, 3-interior, vy-interior) of A and is denoted by

sInt(A) (resp. pInt(A), alnt(A), SInt(A), yInt(A)).

Throughout the present paper, (X, 7) and (Y, o) (or simply X and
Y') always denote topological spaces and F': (X, 7) — (Y, 0) presents
a multivalued function. For a multifunction F : X — Y, we shall
denote the upper and lower inverse of a set B of a space Y by F(B)

and '~ respelg Ygsf thfnt 1S,X F(z) € B} and
F-(B)={reX: F( )N B # 0}.
Definition 2.5. A multifunction F': (X, 7) — (Y, 0) is said to be

(1) upper almost continuous [27] (resp.  upper almost quasi-
continuous [34], upper almost precontinuous [42], upper almost o-
continuous [40], upper almost [-continuous [24], upper almost -y-
continuous [11]) at a point = € X if for each open set V of Y containing
F(x), there exists an open (resp. semi-open, preopen, a-open, (3-open,
v-open) set U of X containing z such that F(U) C Int(Cl(V)),

(2) lower almost continuous [27] (resp.  lower almost quasi-
continuous [34], lower almost precontinuous [42], lower almost o-
continuous [40], lower almost (-continuous [24], lower almost -
continuous [11]) at a point x € X if for each open set V' of Y such
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that V N F(x) # (), there exists an open (resp. semi-open, pre-
open, a-open, (-open, vy-open) set U of X containing = such that
F(u) NInt(CI(V)) # O for each u € U.

(3) upper/lower almost continuous (resp. upper/lower almost quasi-
continuous, upper/lower almost precontinuous, upper/lower almost o-
continuous, upper/lower almost (3-continuous, upper/lower almost -
continuous) if it has the property at each z € X.

3. ALMOST m-CONTINUOUS MULTIFUNCTIONS

Definition 3.1. A subfamily mx of the power set P(X) of a nonempty
set X is called a minimal structure (briefly m-structure) [38] on X if
0 e mx and X € mx.

By (X, mx), we denote a nonempty set X with a minimal structure
mx on X and call it an m-space. Each member of mx is said to be
mx-open (or briefly m-open) and the complement of an mx-open set
is said to be mx-closed (or briefly m-closed).

Remark 3.1. Let (X, 7) be a topological space. Then the families 7,
SO(X), PO(X), a(X), B(X), v(X) are all m-structures on X.

Definition 3.2. Let (X, mx) be an m-space. For a subset A of X,
the mx-closure of A and the mx-interior of A are defined in [17] as
follows:

(1) mCl(A) ={F:AC F,X — F € mx},

(2) mInt(A) = U{U : U C A,U € mx}.

Remark 3.2. Let (X, 7) be atopological space and A be a subset of
X. If mx = 7 (resp. SO(X), PO(X), a(X), B(X), v(X)), then we
have

(1) mCl(A) = CI(A) (resp. sCl(A), pCl(A4), aCl(A), SCI(A),
7CI(A)),

(2) mInt(A) = Int(A) (resp. sInt(A), pInt(A), alnt(A), Flnt(A)),
vInt(A)).

Lemma 3.1. (Maki et al.[17]). Let (X, mx) an m-space. For subsets
A and B of X, the following properties hold:

(1) mCl(X — A) = X —mlInt(A) and mInt(X — A) = X —mCI(A),

(2) If (X —A) € mx, then mCl(A) = A and if A € mx, then
mint(A) = A4,

(3) mC1(0) = 0, mCl(X) = X, mInt() = @ and mInt(X) = X

)
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(4) If A C B, then mCl(A) C mCl(B) and mInt(A) C mlnt(B),
(5) A C mCl(A) and mInt(A) C A,
(6) mCl(mCl(A)) = mCl(A) and mInt(mInt(A)) = mInt(A).

Lemma 3.2. (Popa and Noiri [38]). Let (X, mx) be an m-space and
A a subset of X. Then x € mx-Cl(A) if and only if UN A # 0 for
every U € mx containing x.

Definition 3.3. A minimal structure myx on a nonempty set X is
said to have property (B) [17] if the union of any family of subsets
belonging to mx belongs to mx.

Lemma 3.3. (Popa and Noiri [39]). Let X be a nonempty set and mx
a minimal structure on X satisfying property (B). For a subset A of
X, the following properties hold:

(1) A € mx if and only if mInt(A) = A,

(2) A is m-closed if and only if mCl(A) = A,

(3) mInt(A) € mx and mCl(A) is m-closed.

Definition 3.4. Let (X, myx) be an m-space and (Y, o) a topological
space. A multifunction F': (X, myx) — (Y, 0) is said to be

(1) upper m-continuous [25] (resp. upper almost m-continuous [25],
upper weakly m-continuous [25]) at a point z € X if for each open set
V of Y containing F'(x), there exists U € mx containing x such that
F(U) CV (resp. F(U) C Int(Cl(V)), F(U) c CL(V)),

(2) lower m-continuous [25] (resp. lower almost m-continuous [25],
lower weakly m-continuous [25]) at a point x € X if for each open set
V of Y such that F(x)NV # (), there exists U € mx containing x such
that F(u) NV # 0 (resp. F(u) N Int(CL(V)) # 0, F(u) N CL(V) # 0)
for each u € U,

(3) upper/lower m-continuous (resp.  upper/lower almost m-
continuous, upper/lower weakly m-continuous) if it has this property
at each point x € X.

Theorem 3.1. For a multifunction F : (X, myx) — (Y, o), the follow-
ing properties are equivalent:

(1) F is upper m-continuous;

(2) FT(V) = mInt(F*(V)) for every open set V of Y;

(3) F~(K) =mCl(F~(K)) for every closed set K of Y;

(4) mCl(F~(B)) C F~(CI(B)) for every subset B of Y;

(5) Ft(Int(B)) C mInt(F*(B)) for every subset B of Y.
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Proof. The proof follows from Theorem 3.1 of [25].

Theorem 3.2. For a multifunction F' : (X, mx) — (Y, 0), the follow-
ing properties are equivalent:

(1) F is lower m-continuous;

(2) F~(V) = mInt(F~(V)) for every open set V of Y;

(3) FY(K) = mCl(F*(K)) for every closed set K of Y;

(4) mCl(F*(B)) C FT(CI(B)) for every subset B of Y;

(5) F(mCl(A)) C CI(F(A)) for every subset A of X;

(6) F~(Int(B)) C mInt(F~(B)) for every subset B of Y.

Proof. The proof follows from Theorem 3.2 of [25].

Theorem 3.3. For a multifunction F': (X, mx) — (Y, o), the follow-
ing properties are equivalent:

(1) F is upper almost m-continuous at x € X ;
(2) x € mInt(F T (Int(CL(V)))) for every open set V of Y containing
F(x);

(8) x € mInt(F*(sCl(V))) for every open set V of Y containing
F(x);

(4) x € mInt(F+(V)) for every reqular open set V of Y containing
F(x);

(5) for each regular open set V' of Y containing F(x), there ezists
U € mx containing x such that F(U) C V.

Proof. (1) = (2): Let V be any open set of Y containing
F(z). There exists U € my containing x such that F(U) C
Int(CL(V)). Thus, we have x € U C F*(Int(Cl(V))) and hence
x € mInt(F*(Int(CL(V)))).

(2) = (3): This follows from Lemma 3.2 of [22].

(3) = (4): Let V be a regular open set of Y containing F'(z). Then
it follows from Lemma 3.2 of [22] that V' = Int(CL(V)) = sCL(V).

(4) = (5): Let V be a regular open set of Y containing F'(x). By
(4), x € mInt(F*(V)) and there exists U € myx containing z such
that x € U C F*(V); hence F(U) C V.

(5) = (1): Let V be any open set of Y containing F'(z). Since
Int(C1(V)) is regular open, there exists U € mx containing = such that
F(U) C Int(CL(V)). This shows that F' is upper almost m-continuous
at v € X.

Theorem 3.4. For a multifunction F': (X, mx) — (Y, o), the follow-
ing properties are equivalent:

=
=
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(1) Fis lower almost m-continuous at v € X;

(2) x € mInt(F~(Int(CL(V)))) for every open set V of Y such that
Fz)NV #£0;

(3) x € mlnt(F~(sCl(V))) for every open set V of Y such that
Fx)NnV #£0;

(4) x € mlnt(F~(V)) for every reqular open set V of Y such that
F(x)NV #£0;

(5) for every reqular open set V' such that F(x)NV # 0, there exists
U € mx containing x such that U C F~(V).

Proof. The proof is similar to that of Theorem 3.3 and is omitted.

Remark 3.3. Let (X, 7) and (Y, o) be topological spaces. Let my =7
(resp. SO(X), a(X), 5(X)).

(1) If F: (X,mx) — (Y,0) is upper almost m-continuous, then the
results established in Theorem 2.3 of [27] (resp. Theorem 3.1 of [34],
Theorem 1 of [35], Theorem 1 of [24]) are obtained from Theorem 3.3.

(2) If F: (X,mx) — (Y, 0) is lower almost m-continuous, then the
results established in Theorem 2.1 of [27] (resp. Theorem 3.2 of [34],
Theorem 2 of [35], Theorem 2 of [24]) are obtained from Theorem 3.4.

(3) For a function f : (X,mx) — (Y,0), by Theorems 3.3 and 3.4
we obtain Theorem 3.1 of [41].

Theorem 3.5. For a multifunction F': (X, mx) — (Y, o), the follow-
ing properties are equivalent:
(1) F is upper almost m-continuous;
(2) F*(V) C mInt(F*(Int(CL(V)))) for every open set V of Y;
(3) mCl(F~(Cl(Int(K)))) C F~(K) for every closed set K of Y;
(4) mCl(F~(Cl(Int(Cl(B))))) € F~(CUB)) for every subset B of
Y;
(5) F(Int(B)) C mInt(F* (Int(Cl(Int(B))))) for every subset B of
Y;
(6) F*(V) = mInt(F*(V)) for every reqular open set V of Y;
(7) F~(K) = mCl(F~(K)) for every reqular closed set K of Y.

Proof. (1) = (2): Let V be any open set of Y and z € F*(V).
Then F(z) C V. By Theorem 3.3, we have € mInt(F*(Int(CL(V)))).
This shows that F7(V) C mInt(F*(Int(C1(V)))).

(2) = (3): Let K be any closed set of Y. Then Y — K is open
in Y and by (2) and Lemma 3.1 we have X — F~(K) = F*(Y —
K) C mnt(FT(Int(Cl(YY — K)))) = mInt(X — F~(Cl(Int(K)))) =
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X —mCl(F~(Cl(Int(K)))). Hence, we obtain mCIl(F~ (Cl(Int(K)))) C
F~(K).

(3) = (4): Let B be any subset of Y. Then CI(B) is a closed set of
Y and by (3) we obtain mCl(F~ (Cl(Int(C1l(B))))) C £~ (Cl(B)).

(4) = (5): Let B be any subset of Y. Then we have

Fr(Int(B)) =X — F~(Cl(Y — B)) C
X — mCl(F~ (Cl(Int(CL(Y — B))))) =
X — mCI(F (Y — Int(Cl(Int(B))))) = mInt(F* (Int(Cl(Int(B))))).
Therefore, we have F*(Int(B)) C mInt(F*(Int(Cl(Int(B))))).

(5) = (6): Let V be any regular open set of Y. By (5),we
have F*(V) C mInt(F*(V)). By Lemma 3.1, we obtain F*(V) =
mlInt(F(V)).

(6) = (7): Let K be any regular closed set of Y. Then Y — F' is reg-
ular open. By (6) and Lemma 3.1, we obtain X — F~(K) = FT (Y —
K) =mlnt(FT(Y — K)) = mInt(X — F~(K)) = X — mCIl(F~ (K)).
Therefore, we obtain F~(K) = mCl(F~(K)).

(7) = (1): Let x € X and V be any regular open set of Y containing

F(z). Since Y — V is regular closed, by (7) and Lemma 3.1 we have
X —FHV)=F (Y - V) =mCl(F~ (Y - V)) = X — mInt(F*(V)).
Therefore, we have & € F* (V) = mInt(F™(V)). Then, there exists
U € mx containing « such that F'(U) C V. It follows from Theorem
3.3 that F' is upper almost m-continuous.

Theorem 3.6. For a multifunction F': (X, mx) — (Y, o), the follow-
ing properties are equivalent:

(1) F is lower almost m-continuous;

(2) F~(V) C mInt(F~ (Int(CL(V)))) for every open set V of Y;

(3) mCl(F*(Cl(Int(Cl(B))))) € Ft(CIYB)) for every subset B of
Y;

(4) mCl(FT(Cl(Int(K)))) C FT(K) for every closed set K of Y;

(5) F~(Int(B)) C mInt(F~ (Int(Cl(Int(B))))) for every subset B of
Y;

(6) F~ (V) =mInt(F~(V)) for every regular open set V of Y;

(7) FT(K) = mClF*(K)) for every reqular closed set K of Y.

Proof. The proof is similar to that of Theorem 3.5.

Corollary 3.1. For a multifunction F': (X, mx) — (Y, o), where mx
has property (B), the following properties are equivalent:
(1) F is upper almost m-continuous,
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(2) F(V) is m-open for every reqular open set V of Y,
(8) F~(K) is m-closed for every reqular closed set K of Y.

Proof. The proof follows from Theorem 3.5 and Lemma 3.3.

Corollary 3.2. For a multifunction F': (X,mx) — (Y,0), where mx
has property (B), the following properties are equivalent:

(1) F is lower almost m-continuous,

(2) F~(V) is m-open for every reqular open set V of Y,

(3) FT(K) is m-closed for every reqular closed set K of Y.

Proof. The proof follows from Theorem 3.6 and Lemma 3.3.

Remark 3.4. Let (X, 7) and (Y, o) be topological spaces. Let my =7
(resp. SO(X), PO(X), a(X), (X),7(X)).

() If F: (X, mx) — (Y,0) is upper almost m-continuous, then the
characterizations established in Theorem 2.4 of [27] (resp. Theorem
3.3 of [34], Theorems 1 and 3 of [42], Theorem 3 of [35], Theorem 3
of [24] and Theorem 3.1 of [7], Theorem 3 of [11]) are obtained from
Theorem 3.5 and Corollary 3.1.

(2) If F: (X,mx) — (Y, 0) is lower almost m-continuous, then the
characterizations established in Theorem 2.2 of [27] (resp. Theorem
3.4 of [34], Theorems 2 and 4 of [42], Theorem 5 of [35], Theorem 4 of
[24], Theorem 8 of [11]) are obtained from Theorem 3.6 and Corollary
3.2.

(3) For a function f : (X,mx) — (Y,0), by Theorems 3.5 and 3.6
we obtain Theorem 3.2 of [41].

Theorem 3.7. For a multifunction F': (X, mx) — (Y, o), the follow-
ing properties are equivalent:

(1) F is upper almost m-continuous;

(2) mClF~(V)) C F~(CIV)) for every V € B(Y);

(3) mCl(F~(V)) C F~(CYV)) for every V € SO(Y).

Proof. (1) = (2): Let V be any [-open set of Y. It follows
fromTheorem 2.4 of [4] that CI1(V') is regular closed. Since F' is upper
almost m-continuous, by Theorem 3.5 F~(Cl(V)) = mCI(F~ (CI(V)).
By Lemma 3.1, mCl(F~(V)) C mCl(F~(CI(V))) = F~(CL(V)).
Therefore, we have mCIl(F~(V)) C F~(CI(V)).

(2) = (3): The proof is obvious since SO(Y) C B(Y).

(3) = (1): Let K be any regular closed set of Y. Then K is semi-
open in Y and hence mCl(F~(K)) C F~(Cl(V)) = F~(K). It follows
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from Lemma 3.1 that mCl(F~(K)) = F~(K). By Theorem 3.5, F is
upper almost m-continuous.

Theorem 3.8. For a multifunction F': (X, mx) — (Y, o), the follow-
ing properties are equivalent:

(1) F is lower almost m-continuous;

(2) mCI(F*(V)) C FT(CIV)) for every V € 3(Y);

(3) mCl(F*(V)) C FT(CIV)) for every V € SO(Y).

Proof. The proof is similar to that of Theorem 3.7.

Lemma 3.4. (Noiri [22]). For a subset V of a topological space (Y, o),
the following properties hold:

(1) aCl(V') = CI(V) for every V € B(Y),

(2) pCL(V') = CI(V) for every V € SO(Y).

Corollary 3.3. For a multifunction F : (X, mx) — (Y,0), the fol-
lowing properties are equivalent:

(1) F is upper almost m-continuous;

(2) mClHF~(V)) C F~(aCl(V)) for every V € B(Y);

(8) mCI(F~(V)) C F~(pCl(V)) for every V € SO(Y).

Corollary 3.4. For a multifunction F : (X,mx) — (Y,0), the fol-
lowing properties are equivalent:

(1) F is lower almost m-continuous;

(2) mCl(FT(V)) C FH(aCl(V)) for every V € B(Y);

(3) mCl(F*(V)) C FT(pClV)) for every V € SO(Y).

Remark 3.5. Let (X, 7) and (Y, o) be topological spaces. Let my = 7
(resp. SO(X), PO(X), a(X), B(X),7(X)).

(1) If F: (X,mx) — (Y,0) is upper almost m-continuous, then
the characterizations established in Theorem 1 of [32] (resp. Theorem
1 of [23], Theorem 5 of [42], Theorem 4 of [35], Theorem 5 of [24],
Theorem 9 of [11]) are obtained from Theorem 3.7.

(2) If F: (X,mx) — (Y, 0) is lower almost m-continuous, then the
characterizations established in Theorem 2 of [32] (resp. Theorem 2 of
23], Theorem 6 of [42], Theorem 6 of [35], Theorem 6 of [24], Theorem
10 of [11]) are obtained from Theorem 3.8.

(3) For a function f : (X,mx) — (Y,0), by Theorems 3.7 and 3.8
we obtain Theorem 3.3 of [41].

Definition 3.5. A subset A of a topological space (X, 7) is said to be
(1) a-regular [15] if for each a € A and each open set U containing
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a, there exists an open set G of X such that a € G C Cl(G) C U,
(2) a-paracompact [50] if every X-open cover of A has an X-open
refinement which covers A and is locally finite for each point of X.

Lemma 3.5. (Kovacevié¢ [15]) If A is an a-reqular a-paracompact set
of a topological space (X, 1) and U is an open neighborhood of A, then
there exists an open set G of X such that A C G C Cl(G) C U.

For a multifunction F': X — (Y, o), by CI(F) : X — (Y,0) [6] we
denote a multifunction defined as follows: Cl(F')(z) = Cl(F(z)) fo
each x € X. Similarly, we denote sCI(F) : X — (Y, o), pCl(F) : X —
(Y,0), aCl(F) : X — (Y,0), BCUF) : X — (Y,0), 7Cl(F) : X —
(Y,0).

Lemma 3.6. If F' : (X,mx) — (Y,0) is a multifunction such that
F(x) is a-regular and a-paracompact for each v € X, then GT(V) =
FH (V) for each regular open set V of Y, where G denotes CI(F),
pCl(F), sCI(F), aCl(F), BCI(F) or yvCI(F).

Proof. Let V be any regular open set of Y and x € G* (V). Then
G(z) c V and F(z) C G(zr) C V. We have x € F(V) and hence
GT (V) C FH(V). Conversely, let x € F* (V). Then we have F(z) C
V and by Lemma 3.5 there exists an open set H of Y such that
F(z) ¢ H Cc ClI(H) Cc V. Since G(x) C Cl(F(z)),G(z) C V and
hence x € GT (V). Thus we obtain F*(V) C G*(V). Therefore,
GH(V) = F*H(V).

Lemma 3.7. For a multifunction F' : (X,mx) — (Y,0), G~ (V) =
F=(V) for each regular open set V of Y, where G denotes CI(F),
pCI(F), sCI(F), aCl(F), BCI(F) or vCI(F).

Proof. Let V be any regular open set of Y and z € G~ (V). Then
G(x) NV # () and hence F(z) NV # () since V is open. We have
x € F~(V) and hence G~ (V) C F~ (V). Conversely, let x € F~ (V).
Then we have ) # F(x) NV C G(z) NV and hence z € G~(V). Thus
we obtain '~ (V) C G~ (V). Therefore, F~ (V) =G~ (V).

Theorem 3.9. Let F : (X,mx) — (Y,0) be a multifunction such
that F(x) is a-reqular and a-paracompact for each x € X. Then the
following properties are equivalent:

(1) F is upper almost m-continuous;

(2) CI(F) is upper almost m-continuous;

=
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(3) sCI(F

1s upper almost m-continuous;

/\
\_/\—/

(4) pCI(F) is upper almost m-continuous;
(5) aCl(F) is upper almost m-continuous;
(6) BCIUF) is upper almost m-continuous;
(7) vCI(F) is upper almost m-continuous.

Proof. We put G = CI(F), pCI(F), sCI(F), aCl(F), BCI(F) or
vCI(F') in the sequel. Suppose that F' is upper almost m-continuous.
Then it follows from Theorem 3.5 and Lemmas 3.6 that for every
regular open sets V of Y, GT(V) = FH(V) = mInt(FH(V)) =
mInt(G*(V)). By Theorem 3.5, G is upper almost m-continuous.

Conversely, suppose that G is upper almost m-continuous. Then it
follows from Theorem 3.5 and Lemmas 3.6 that for every regular open
sets Vof YV, FT(V) = G*(V) = mInt(G"(V)) = mInt(F*(V)). By

Theorem 3.5, F' is upper almost m-continuous.

Theorem 3.10. For a multifunction F : (X,mx) — (Y,0), the fol-
lowing properties are equivalent:
(1) F is lower almost m-continuous;
(2) CI(F) is lower almost m-continuous;
(3) sCI(F) is lower almost m-continuous;
)

(4) pCL(F) is lower almost m-continuous;
(5) aCl(F) is lower almost m-continuous;
(6) BCI(F) is lower almost m-continuous;
(7) vCIU(F') is lower almost m-continuous.

Proof. The proof is similar to that of Theorem 3.9 and is thus
omitted.

Remark 3.6. Let (X, 7) and (Y, o) be topological spaces.

(1) If F: (X,myx) — (Y,0) is upper almost m-continuous, where
mx = SO(X) (resp. PO(X), 5(X),v(X)), then the characterizations
established in Theorem 3 of [23] (resp. Theorem 9 of [42], Theorem 8
of [24], Theorem 47 of [11]) are obtained from Theorem 3.9.

(2) If F:(X,mx) — (Y,0) is lower almost m-continuous, where
myx = 7 (resp. SO(X), PO(X), 5(X),v(X)), then the characteri-
zations established in Theorem 6 of [28] (resp. Theorem 4 of [23],
Theorem 10 of [42], Theorem 9 of [24], Theorem 49 of [11]) are ob-
tained from Theorem 3.10.
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Definition 3.6. Let (X, mx) be an m-space and A a subset of X.
The mx-frontier [39] of a subset A, denoted by mx-Fr(A), is defined
by mx-Fr(A) = mx-Cl(A)Nmx-Cl(X — A) = mx-Cl(A) —mx-Int(A).

Theorem 3.11. Let (X, mx) be an m-space and (Y,o) a topolog-
ical space. The set of all points © of X at which a multifunction
F:(X,mx) — (Y,0) is not upper almost m-continuous (resp. lower
almost m-continuous) is identical with the union of the mx-frontier of
the upper (resp. lower) inverse images of reqular open sets containing
(resp. meeting) F(z).

Proof. Suppose that F' is not upper almost m-continuous at x.
Then, by Theorem 3.3 there exists a regular open set V' containing
F(z) such that UN (X — FT(V)) # 0 for every U € mx containing .
By Lemma 3.2, we have x € mCl(X — F*(V)). Since x € F(V), we
have € mCI(F*(V)) and hence x € mFr(F*(V)).

Conversely, if F' is upper almost m-continuous at x, then for any
regular open set V' of Y containing F(x) there exists U € mx contain-
ing = such that F(U) C V; hence U C F* (V). Therefore, we obtain
x € U C mInt(F*(V)). This contradicts that x € mFr(F*(V)). In
case F'is lower almost m-continuous, the proof is similar.

Remark 3.7. Let (X, 7) and (Y, o) be topological spaces.

(H)IfF: (X, 7) — (Y,0) is a multifunction and my = PO(X) (resp.
B(X),~v(X)), then by Theorem 3.11 we obtain the result established
in Theorem 22 of [42] (resp. Theorem 21 of [24], Theorem 51 of [11]),

(2) If f: (X,mx) — (Y,0) is a function, then by Thorem 3.11 we
obtain the result established in Theorem 6.7 of [41].

4. ALMOST m-CONTINUITY AND J-OPEN SETS

Lemma 4.1. If F: (X,mx) — (Y, 0) is lower almost m-continuous,
then for each x € X and each subset B of Y with F(x) NInts(B) # 0,
there exists U € mx containing x such that U C F~(B).

Proof. Let z € X and B be a subset of Y with F'(z) NInts(B) # 0.
Since F'(z) NInts(B) # 0, there exists a nonempty regular open set V'
of Y such that V C B and F(z) NV # (). Since F is lower almost m-

continuous, there exists U € mx containing = such that F(u) NV # ()
for each u € U; hence U C F'~(B).
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Theorem 4.1. For a multifunction F : (X, mx) — (Y, o), the follow-
ing properties are equivalent:

(1) F'is lower almost m-continuous;

(2) mCl(FT(B)) C F™(Cls(B)) for every subset B of Y;

(3) F(mCl(A)) C Cls(F(A)) for every subset A of X;

(4) FY(K) = mClF*(K)) for every d-closed set K of Y;

(5) F~ (V) = mInt(F~(V)) for every d-open set V of Y;

(6) F~(Ints(B)) C mInt(F~(B)) for each subset B of Y.

Proof. (1) = (2): Let B be any subset of Y. Suppose that = ¢
FT(Cls(B)). Then we have x € F~ (Y — Cls(B)) = F~ (Ints(Y — B)).
By Lemma 4.1, there exists U € mx containing x such that U C
F~(Y = B) = X — F*(B). Thus we have U N F"(B) = (. By
Lemma 3.2, we obtain x € X —mCIl(F*(B)) and hence mCI(F*(B)) C
F*(Cls(B)).

(2) = (3): Let A be any subset of X. By (2) and Lemma 3.1, we
have mCl(A) € mCl(F*(F(A))) € FT(Cls(F(A))). Thus we obtain
F(mCI(A)) C Cls(F(A)).

(3) = (1): Let B be a subset of Y. Then by the hy-
pothesis and Theorem 2.1 of [14], F(mCIl(F*(Cl(Int(Cl(B)))))) C
Cls(F(F*(Cl(Int(CI(B)))))) € Cl(Int(Cl(B))) C CI(B). Therefore,
mCl(FT(Cl(Int(C1(B))))) € FT(CI(B)). By Theorem 3.6, F' is lower
almost m-continuous.

(2) = (4): Let K be a d-closed set of Y. Then Cls(K) = K.
By (2), we have mCl(F*(K)) C F"(Cls(K)) = F*(K). Therefore,
FH(K)=mCl(F"(K)).

(4) = (5): Let V be any é-open set of Y. Then Y — F'is a -closed
set of Y. By (4) and Lemma 3.1, we have X — F~ (V) = Ft*(Y -V) =
mCl(FT(Y =V) = X —mInt(F~(V)). Hence F'~ (V) = mInt(F~(V)).

(5) = (6): Let B be any subset of Y. Then, by (5) F'~(Ints(B)) =
mInt(F~ (Ints(B))) C mint(F~(B)).

(6) = (1): Let V be any regular open set of Y. Then V is §-open
and Ints(V) = V. Thus, by (6) F~ (V) C mInt(F~(V)). By Lemma
3.1 F~(V) = mInt(F~(V)) and it follows from Theorem 3.6 F' is lower
almost m-continuous.

Remark 4.1. Let (X, 7) and (Y, o) be topological spaces.
(1) If F: (X,mx) — (Y,0) is lower almost m-continuous and
mx = 7, then Theorem 5 of [30] follows from Theorem 4.1.
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(2) If f:(X,mx) — (Y,0) is almost m-continuous, then by Theo-
rem 4.1 we obtain Theorem 3.5 of [41].

Theorem 4.2. For a multifunction F': (X, mx) — (Y, o), the follow-
ing properties are equivalent:

(1) F is upper almost m-continuous;

(2) mCl(F~ (Cl(Int(Cls(B))))) € F~(Cls(B)) for every subset B of
Y;
(3) mCl(F~(Cl(Int(Cl(B))))) € F~(Cls(B)) for every subset B of
Y.

Proof. (1) = (2): Let B be any subset of Y. By Lemma
2 of [49], Cls(B) is closed in Y. By Theorem 3.5 we obtain
mCl(F~ (Cl(Int(Cls(B)))) C F~(Cls(B)).

(2) = (3): This is obvious since Cl(B) C Cls(B).

(3) = (1): Let K be a regular closed set of Y. Then by (3)
and Theorem 2.1 of [14], mCl(F~(K)) = mCIl(F (Cl(Int(K)))) =
mCl(F~(Cl(Int(CI(K))))) < F~(Clsy(K)) = F(K). Hence
mClF~(K)) C F~(K). It follows from Lemma 3.1 that mC1F~ (K)) =
F~(K). By Theorem 3.5, F' is upper almost m-continuous.

Theorem 4.3. For a multifunction F': (X, mx) — (Y, o), the follow-
ing properties are equivalent:

(1) F is lower almost m-continuous;

(2) mC1l(F+(Cl(Int(Clg(B))))) C F+(Cls(B)) for every subset B of
Y;

(3) mCl(F*(Cl(Int(Cl(B))))) € F*(Cls(B)) for every subset B of
Y.

Proof. The proof is similar to that of Theorem 4.2.

Remark 4.2. If f: (X,mx) — (Y,0) is a (single valued) function,
then Theorem 3.4 of [41] follows from Theorems 4.2 and 4.3.

Theorem 4.4. For a multifunction F : (X,mx) — (Y,0), where
(Y,0) is a semi-reqular space, the following properties are equivalent:
(1) F is upper m-continuous;
(2) F~(Cls(B)) = mCl(F~(Cl(5(B))) for every subset B of Y;
(3) F~(K) =mCl(F~(K)) for every é-closed set K of Y;
(4) FT (V) = mInt(F*(V)) for every 6-open set V of Y.

Proof. (1) = (2): Let B be any subset of Y. Then Cls(B)) is closed
in Y. By Theorem 3.1, we obtain F'~(Cls(B)) = mCl(F~ (Cl(5(B))).
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(2) = (3): Let K be a d-closed set of Y. Then Cls(K) = K. By
(2), we have F'~(K) = mCIl(F~ (K)).

(3) = (4): Let V be any d-open set. Then Y — V is J-closed
and F~(Y — V) = mCl(F~ (Y — V)). Therefore, X — F7(V) =
mCl(X — FT(V)) = X — mInt(F*(V)). Hence we obtain F*(V) =
mInt(F*(V)).

(4) = (1): Let V be any open set of Y. Since Y is semi-regular,
V is d-open in Y and by (4) we obtain F* (V) = mInt(F*(V)). By
Theorem 3.1, F' is upper m-continuous.

Theorem 4.5. For a multifunction F : (X,mx) — (Y,0), where
(Y,0) is a semi-reqular space, the following properties are equivalent:
(1) F is lower m-continuous;
(2) F™(Cls(B)) = mCl(F*(Cl(s(B))) for every subset B of Y;
(3) FT(K) = mClFT(K)) for every §-closed set K of Y;
(4) F~(V) = mlnt(F~(V)) for every §-open set V of Y;
(5) F is lower almost m-continuous.

Proof. The proofs of the implications (1) = (2) = (3) = (4) are
similar to those in Theorem 4.4.

(4) = (5): Let V be any regular open set of Y. Then V is d-open
in Y and by (4) F~(V) = mInt(F~(V)). By Theorem 3.6, F' is lower
almost m-continuous.

(5) = (1): Let z € X and V be any open set of Y such that
F(z)NV # (. Since Y is semi-regular, there exists a regular open set
W such that F(x) "W # () and W C V. Since F is lower almost m-
continuous, there exists U € myx containing x such that F(u)NW # ()
for every u € U. Therefore, F(u)NV # () for every u € U. This shows
that I is lower m-continuous.

Corollary 4.1. Let (Y,0) be a semi-regular space and mx have prop-
erty (B). Then for a multifunction F : (X, mx) — (Y, 0), the follow-
ing properties are equivalent:

(1) F is upper m-continuous;

(2) F~(Cls(B)) is m-closed in X for every subset B of Y;

(3) F~(K) is m-closed in X for every d-closed set K of Y;

(4) FT(V) is m-open in X for every d-open set V of Y.

Proof. The proof follows from Theorem 4.4 and Lemma 3.3.
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Corollary 4.2. Let (Y,0) be a semi-regular space and mx have prop-
erty (B). Then for a multifunction F : (X,mx) — (Y, 0), the follow-
ing properties are equivalent:

(1) F is lower m-continuous;

(2) F(Cls(B)) is m-closed in X for every subset B of Y;

(3) FT(K) is m-closed in X for every d-closed set K of Y;

(4) F~(V) is m-open in X for every §-open set V of Y;

(5) F is lower almost m-continuous.

Corollary 4.3. Let (Y,0) be a semi-regular space and mx have prop-
erty (B). Then for a function f : (X,mx) — (Y,0), the following
properties are equivalent:

(1) fis m-continuous;

(2) f~Y(Cl5(B)) is m-closed in X for every subset B of Y;

(3) fYK) is m-closed in X for every -closed set K of Y;

(4) f=(V) is m-open in X for every §-open set V of Y;

(5) fis almost m-continuous.

5. ALMOST m-CONTINUITY AND PREOPEN SETS

Theorem 5.1. For a multifunction F': (X, mx) — (Y, o), the follow-
ing properties are equivalent:

(1) F is upper almost m-continuous;

(2) mCl(F~(Cl(Int(CL(V))))) € F~(CL(V)) for every preopen set V
of ¥;

(3) mCl(F~(Cl(Int(V)))) € F~(CL(V)) for every preopen set V of
Y;
(4) FT(V) C mInt(F*Int(CL(V)))) for every preopen set V of Y.

Proof. (1) = (2): Let V be any preopen set of Y. Then CI(V) is
closed in Y and by Theorem 3.5 we have mCI(#~(Cl(Int(CL(V))))) C
F~=(CYV)).

(2) = (3): Let V be any preopen set of Y. Then we have
mCl(F~(Cl(Int(V)))) € mCL(F~(Cl(Int(CL(V))))) C F~(CLV)).

(3) = (4): Let V be any preopen set of Y. By Lemma 3.1 we have

X-mInt(F*(Int(CL(V)))) = mCl(X — F*(Int(CL(V)))) =
mCl(F~ (Y — Int(C1(V)))) = mCl(F~(CI(Y — C1(V))) =
mCl(F~(Cl(Int(Y — CL(V)))) € F~(Cl(Y — CL(V)))
F(Y —Int(CLV))) € F(Y — V) = X — FH(V).
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Therefore, we obtain F* (V) C mInt(F*(Int(ClL(V)))).

(4) = (1): Let V be any regular open set of Y. Then V' is preopen
and F(V) C mInt(F*(Int(CL(V)))) = mInt(F+(V)). By Lemma 3.1,
FH(V) = mInt(F*(V)). It follows from Theorem 3.5 that F' is upper
almost m-continuous.

Theorem 5.2. For a multifunction F': (X, mx) — (Y, o), the follow-
ing properties are equivalent:

(1) F is lower almost m-continuous;

(2) mClL(F*(Cl(Int(CL(V))))) C FF(CLV)) for every preopen set V
of ¥;

(3) mCl(FH(Cl(Int(V)))) € FH(CL(V)) for every preopen set V of
Y;
(4) F~(V) C mInt(F~Int(Cl(V)))) for every preopen set V of Y.

Proof. The proof is similar to that of Theorem 5.1.

Remark 5.1. Let (X, 7) and (Y, 0) be topological spaces. Let my =
SO(X) (resp. PO(X), a(X), B(X)).

(1) If F: (X,mx)— (Y,0) is upper almost m-continuous, then the
characterizations established in Theorem 1 of [23] (resp. Theorem 5 of
[42], Theorem 4 of [35], Theorem 5 of [24]) are obtained from Theorem
5.1

(2) If F: (X,mx) — (Y,0) is lower almost m-continuous, then the
characterizations established in Theorem 2 of [23] (resp. Theorem 6 of
[42], Theorem 6 of [35], Theorem 6 of [24]) are obtained from Theorem
5.2,

(3) If f: (X,mx) — (Y,0) is a (single valued) function, then by
Theorems 5.1 and 5.2 we obtain Theorem 3.3 of [41].

6. ALMOST m-CONTINUITY AND m-CONTINUITY

Definition 6.1. A subset A of a topological space (X, 7) is said to
be a-semi-regular [31] if for each point a € A and each open set U
containing a, there exists a regular open set G such that a € G C U.

Lemma 6.1. (Popa [31]). If A is an a-semi-reqular set of a topological
space (X, 7), then for every open set U such that ANU # (), there
exists a reqular open set G such that ANG # 0 and G C U.

Theorem 6.1. If [ : (X, mx) — (Y, 0) is lower almost m-continuous
and F(z) is a-semi-reqular in Y for each x € X, then F is lower m-
continuous.
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Proof. Let z € X and V be any open set such that F(z) NV # (.
Since F'(z) is a-semi-regular, by Lemma 6.1 there exists a regular open
set G such that F(z) NG # () and G C V. Since F is lower almost
m-~continuous, by Theorem 3.4 there exists U € mx containing x such
that x € U C F~(G) C F~ (V). Hence x € mInt(F~(V)) and hence
F~(V) Cc mInt(F~(V)). By Lemma 3.1, F~ (V) = mInt(F~(V)) and
by Theorem 3.2 F' is lower m-continuous.

Corollary 6.1. Let (Y,0) be a semi-reqular space. A multifunction
F:(X,mx) — (Y,0) is lower almost m-continuous if and only if F'
1s lower m-continuous.

Remark 6.1. Let (X, 7) and (Y, o) be topological spaces.

(D) If F: (X, mx)— (Y,0) is a multifunction, where mx = 7 (resp.
SO(X), PO(X), a(X)), then the results established in Theorem 3.1
of [27] (resp. Theorem 5.1 of [34], Theorem 18 of [42], Theorem 10 of
[35]) are obtained from Theorem 6.1 and Corollary 6.1

(2) If f: (X,mx) — (Y,0) is a (single valued) function, then by
Corollary 6.1 we obtain Theorems 4.3 of [41].

Since the intersection of two regular open sets of a topological space
(Y, o) is regular open, the collection of all regular open sets of Y forms
a base for a topology o, for Y. This is called the semi-regularization
of 0.

Theorem 6.2. Let F': (X,myx) — (Y,0) be a multifunction, where
mx has property (B). Then F is lower almost m-continuous if and
only is F': (X, mx) — (Y, 05) is lower m-continuous.

Proof. Necessity. Suppose that F' : (X,mx) — (Y,0) is lower
almost m-continuous and let V' be an open set in (Y,05). Then
there exists a collection {V,, : @ € A} of regular open sets such that
V = U{V, : « € A}. Since F is lower almost m-continuous and my
has property (B), by Corollary 3.2 F~(V,) € mx for each o € A.
Then F7 (V) = F-(W{V, : a € A}) = W{F(V,) : a« € A} € my
since myx is has property (B). Therefore, by Lemma 3.3, for every
open set V' of g5, F7(V) = mInt(F~(V)) and by Theorem 3.2 F is
lower m-continuouos.

Sufficiency. Suppose that F : (X,mx) — (Y,04) is lower m-
continuous and let V' be any regular open set V of (Y,0). Then V
is open in (Y,0,) and by Theorem 3.2, F~ (V) = mlnt(#(V)). By
Theorem 3.6, F': (X, mx) — (Y,0) is lower almost m-continuous.
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Remark 6.2. Let (X,7) and (Y,0) be topological spaces. If F' :
(X,mx) — (Y,0) is a lower almost m-continuous, where myxy = 7
(resp. SO(X), PO(X), a(X), B(X), v(X)), then by Theorem 6.2 we
obtain the result established in Corollary 4 of [30] (resp. Theorem 5.1
of [34], Theorem 18 of [42], Theorem 10 of [35], Theorem 14 of [24],
Corollary 19 of [11]).

Definition 6.2. A multifunction F': (X, my) — (Y, 0) is said to be
a*-m-continuous if X — F~(Fr(V)) € mx for each open set V of Y,
where Fr(V') denotes the frontier of V.

Theorem 6.3. Let X be a nonempty set with two minimal structures
my and mo such that U NV € my whenever U € my and V € mo. If
a multifunction F : X — (Y,0) is upper almost my-continuous and
a*-mqy-continuous, then F is upper mi-continuous.

Proof. Let x € X and V be any open set of Y containing
F(x). Tt follows that F(x) N Fr(V) = 0. Since F is upper al-
most mj-continuous, there exists G € m; containing x such that
F(G) ¢ Int(Cl(V)). Put U = GN (X — F~(Fr(V))). Since F is
a*-my-continuous, (X — F~(Fr(V)) € my. Thus x € U,U € m; and
FU)c F(G)Nn(Y —=Fr(V)) c Int(CLV)) N (Y — Fr(V)) = V. This
shows that F' is upper m;-continuous.

Theorem 6.4. Let X be a nonempty set with two minimal structures
my and mo such that U NV € my whenever U € my and V € mo. If
a multifunction F : X — (Y,0) is upper almost mo-continuous and
a*-mq-continuous, then F is upper mi-continuous.

Proof. The proof is similar to that of Theorem 6.3 and is thus
omitted.

Remark 6.3. If f : X — (Y, 0) is a function, then by Theorems 6.3
and 6.4 we obtain Theorems 4.1 and 4.2 of [41].

7. SEPARATION AXIOMS AND UPPER ALMOST m-CONTINUITY

Definition 7.1. A subset A of an m-space (X, my) is said to be
m-dense in X if mCl(A) = X.

Theorem 7.1. Let X be a nonempty set with two minimal structures
mq and moy such that U NV € my whenever U € my and V € ma and
(Y, o) be a Hausdorff space.
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If the following four conditions are satisfied,

(1) a multifunction F' : (X,my) — (Y,0) is upper weakly m-
continuous,

(2) a multifunction G : (X,mg) — (Y,0) is upper almost m-
continuous,

(3) F(z) and G(z) are compact sets of (Y, o) for each z € X,

(4) A ={x € X : F(z) N G(x) # 0},
then A = myCl(A). If F(z)NG(x) # O for each point © in an m-dense
set D of (X, mg), then F(x) NG(x) # 0 for each point in X.

Proof. Suppose that 2 € X — A. Then we have F(z) N G(z) = 0.
Since F'(z) and G(z) are compact sets of a Hausdorff space Y, there
exist open sests V and W of Y such that F(z) C V,G(z) C W and
V N W = 0; hence C(V)N Int(Cl(W)) = (). SinceF is upper weakly
m-continuous, there exists U; € my containing = such that F(U;) C
CL(V). Since G is upper almost m-continuous, there exists Us € my
containing x such that G(U,) CInt(Cl(W)). Now, set U = U; N Us,
then we have U € my and U N A = (). Therefore, by Lemma 3.2
we have z € X — myCl(A) and hence A = myCl(A). On the other
hand, if F(z)NG(z) # 0 on an m-dense set D of (X, my), then we have
X = myCl(D) C meCl(A) = A. Therefore, we obtain F(z)NG(z) # 0
for each z € X.

Remark 7.1. Let (X, 7) and (Y, 0) be topological spaces.

(1) If F:(X,mx) — (Y,0) is a multifunction, where m; = my =7
(resp m; = 7 and my = SO(X)), then by Theorems 7.1 we obtain
the results established in Theorem 17 of [48] (resp. Theorem 24 of
24))

(2) If f: (X,mx) — (Y,0) a function, then by Theorem 7.1 we
obtain the result established in Theorem 6.4 of [41].

Definition 7.2. An m-space (X, mx) is said to be m-Ty if for each
distinct points x,y € X there exist U,V € mx containing z, y, respec-
tively, such that U NV = 0.

Definition 7.3. A multifunction F': (X, myx) — (Y, 0) is said to be
injective if © # y implies that F(x) N F(y) = 0.

Theorem 7.2. If ' : (X,mx) — (Y,0) is an upper almost m-
continuous injective multifunction into a Hausdorff space (Y,o) and
F(x) is compact for each x € X, then X is m-T5.
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Proof. For any distinct points x1, x5 of X, we have F'(z1)NF(z3) =
() since F is injective. Since F'(z) is compact for each z € X and Y is
Hausdorff, there exist an open set V; such that F(x;) C V; fori = 1,2
and V) NV, = ); hence Int(C1(V7))N Int(C1(V3)) = 0. Since F is upper
almost m-continuous, there exists U; € myx containing z; such that
F(U;) € Int(CLl(V;)) for i = 1,2. Therefore, we obtain Uy N Uy = ()
and hence X is m-Ts.

Remark 7.2. For a function f : (X, mx) — (Y, o), by Theorem 7.2
we obtain the result established in Theorem 6.1 of [41].

Lemma 7.1. (Smithson [48]). If A and B are disjoint compact subsets
of a Urysohn space (Y, o), then there exist open sets U and V of X
such that A C U, B C V and C(U)NCLV) = 0.

Theorem 7.3. Let X be a nonempty set with two minimal structures
my and moy such that U NV € my whenever U € my and V € mqg and
(Y,0) be a Urysohn space.
If the following four conditions are satisfied,

(1) a multifunction Fy : (X,my) — (Y,0) is upper almost m-
continuous,

(2) a multifunction Fy : (X,mq) — (Y,0) is upper almost m-
continuous,

(3) Fi(x) and Fy(z) are compact sets of (Y,0) for each x € X,

(4) Fi(z) N Fy(z) # 0 for each x € X,
then a multifunction F : (X,mq) — (Y,0), defined by F(x) =
Fi(x) N Fy(x) for each x € X, is upper almost m-continuous.

Proof. Let x € X and V be an open set of Y such that F(z) C V.
Then, A = Fi(x)—V and B = Fy(z)—V are disjoint compact sets. By
Lemma 7.1, there exist open sets V; and V5 such that A C Vi, B C V5
and C1(V1)N Cl(V,) = (). Since F} is upper almost m-continuous, there
exists U; € my containing x such that F;(U;) C Int(Cl(V;UV)). Since
F5 is upper almost m-continuous, there exists Uy € ms containing x
such that Fy(Us) C Int(Cl(Vo U V). Set U = Uy N Us, then U € my
containing x. If y € F(xg) for any zq € U, then y € Int(Cl(V; U
V) NInt(Cl(VoUV)) = Int((CL(V1)N CL(V2))U CI(V)). Since C1(V4)N
Cl(V3) = 0, we have y € Int(Cl(V)) and hence F(U) C Int(Cl(V)).
Therefore, F' is upper almost m-continuous.

Definition 7.4. For a multifunction F : (X, mx) — (Y, 0), the graph
G(F) ={(x,F(x)) : x € X} is said to be strongly almost m-closed if
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for each (z,y) € (X xY) — G(F), there exists U € mx containing z
and a regular open set V' containing y such that (U x V)N G(F) = 0.

Lemma 7.2. A multifunction F : (X,myx) — (Y,0) has a strongly
almost m-closed graph if and only if for each (z,y) € (X xY)—G(F),
there exists U € mx containing x and a reqular open set V' containing

y such that F(U)NV = 0.

Theorem 7.4. If FF : (X,mx) — (Y,0) is an upper almost m-
continuous multifunction into a Hausdorff space (Y, o) such that F(x)
is a-paracompact for each x € X, then G(F) is strongly almost m-
closed.

Proof. Let (xg,y0) € (X xY)—G(F), then yo € Y — F(x(). Since
(Y, o) is Hausdorff, for each y € F(zy) there exist open sets V(y) and
W(y) of Y such that y € V(y),yo € W(y) and V(y) N W(y) = 0.
The family {V(y) : v € F(xo)} is an open cover of F(zy) which
is a-paracompact. Thus it has a locally finite open refinement U
= {U, : a € A} which covers F(zj). Let W be an open neigh-
borhood of yy such that Wy intersects only finitely many member,
say, Uay, Usy, -y Uy, . For each ay, we choose y,. € F(xq) such that
Ua, C V(yx) for each k =1,2,....n. Now set W = Wy N (NE_, W (yx))
and U = U{U, : a € A}. Then W is an open neighborhood of y, with
W N U = ( which implies Int(CI(W))N Int(Cl(U)) = @. Since F is
upper almost m-continuous, there exists Uy € mx containing xg such
that F(Uy) C Int(Cl(U)). Therefore, we have F'(U) NInt(CL(W)) =0
and G(F) has a strongly almost m-closed graph.

Theorem 7.5. Let (X, mx) be an m-space. If for each pair of distinct
points x1 and xo in X, there exists a multifunction F : (X,myx) —
(Y, o), where (Y, o) is a normal space, such that

(1) F is punctually closed,

(2) F is upper weakly m-continuous at x,

(8) F'is upper almost m-continuous at xs, and

(4) F(z1) N F(z2) =0,

then (X, mx) is an m-Ty-space.

Proof. Let x; and x5 be distinct points of X. Then, since (Y, o) is
a normal space, F' is punctually closed and F'(z1) N F(x2) = (), there
exist open sets Vj and V, containing F'(z;) and F(xq), respectively,
such that V1NV, = 0; hence C1(V;)N Int(C1(V3)) = 0. Since F is upper
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weakly m-continuous at x, there exists U; € my containing x; such
that F'(U;) C Cl(V1). Since F' is upper almost m-continuous at s,
there exists Uy € mx containing x5 such that F'(Us) C Int(Cl((V2)).
Therefore, we have F(U;) N F(Uy) = @ which implies U; N Uy = 0
This shows that (X, mx) is an m-Ty-space.

Remark 7.3. Let (X,7) and (Y,0) be topological spaces. If F :
(X,mx) — (Y,0) is a multifunction, where myxy = 7 (resp. (X)),
then by Theorem 7.5 we obtain the result established in Theorem 2.7
of [29] (resp. Theorem 45 of [11]).

8. NEW FORMS OF ALMOST CONTINUITY FOR MULTIFUNCTIONS

There are many modifications of open sets in topological spaces. It
is well-known that the following relationships hold among generalized
open sets defined in Section 2:

DIAGRAM I

open = a-open = preopen

4 4

semi-open = y-open = (3-open

Recently, many researchers are interested in d-preopen sets [44] and
d-semi-open sets [26]. First, let recall #-open sets due to Velicko [49]
which play an important role in this section. A point z € X is a
f-cluster point of a subset A of X if CI(V) NA # 0 for every open
set V' containing x. The set of all f-cluster points of A is called the
6-closure of A and is denoted by Cly(A). If A = Cly(A), then A is said
to 0-closed [49]. The complement of a #-closed set is said to 6-open.
The union of all #-open sets contained in A is called the 8-interior
of A and is denoted by Intyg(A). The family of all #-open sets of a
topological space (X, 7) is a topology for X and is denoted by 7.

Definition 8.1. A subset of a topological space (X, 7) is said to be

(1) 0-semiopen [26] (resp. @-semiopen [9] if A C Cl(Intgz(A)) (resp.
A C Cl(Int,(A))),

(2) 6-preopen [44] (resp. @-preopen) if A C Int(Cl;(A)) (resp. A C
It (Cl, (4)))

(3) 0-B-open [13] (resp. 6-B-open) if A C Cl(Int(Cls(A))) (resp.
A C Cl(Int(Cl,(A)))).
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By 6SO(X) (resp. 6PO(X), 68(X), 0SO(X), 0PO(X), 08(X)), we
denote the collection of all d-semiopen (resp. d-preopen, 0-F-open,
f-semiopen, f-preopen, #-F-open) sets of a topological space (X, 7).

Lemma 8.1. For a subset of a topological space (X, ), the following
properties hold:

(1) Every 0-semiopen set is §-semiopen and every d-semiopen set is
semziopen,

(2) Every preopen set is d-preopen and every d-preopen set is 0-
preopen,

(8) Every [3-open set is 6-3-open and every §-(3-open set is 6-3-open.

Proof. This follows from the fact that C1(A) C Cls(A) C Cly(A)
for any subset A of X [49].

By Lemma 9.1 and Definitions 2.1 and 9.1, the following relation-
ships hold:

DIAGRAM II
f-open =- J-open = open = preopen = J)-preopen =
f-preopen
U U U Y U \
f-semiopen = d-semiopen = semiopen = (-open = J-3-open =
0-3-open

In Diagram II, none of implications is reversible as shown by the
following examples:

Example 8.1. (Caldas et al. [9] and Park et al. [26]).

(1) Let X be the real numbers with the usual topology and A =
(0, 1], then A is a @-semiopen set which is not open.

(2) Let X = {a,b.c}, 7 = {X,0, {a}, {8}, {a,b}} and A = {a,b}.
Then A is a d-open set which is not #-semi-open.

(3) Let X = {a,b,c,d}, T =
{X,0,{a},{c},{a,b},{a,c},{a,b,c}, {a,c,d}} and A = {a,c,d}.

Then A is an open set of (X, 7) which is not d-semiopen.

Example 8.2. (1) Let X be the real numbers with the usual topology
and A = (0, 1], then A is a f-open set which is not §-preopen.

(2) Let X = {a,b,c}, 7 = {X,0,{a},{b},{a,b}} and A = {c}.
Then A is a 6-preopen set which is not d-F-open.

(3) Let X = {a,b,c}, 7 ={X,0,{a},{a,b}} and A = {c}. Then A
is a d-preopen set which is not -open.
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For topological spaces (X, 7) and (Y, o), we can define many new
types of generalized almost continuity for a multifunction F' : (X, 7) —
(Y,0). For example, in case mx = 75, 0SO(X), dPO(X)), §5(X),
0S0(X), OPO(X), 03(X) we can define new types of generalized al-
most continuity for multifunctions as follows:

Definition 8.2. A multifunction F': (X, 7) — (Y, 0) is said to be

(1) upper d-continuous [8] (resp. upper almost d-semi-continuous,
upper almost §-precontinuous, upper almost 6-3-continuous) if for each
x € X and each open set V of Y containing F'(z), there exists a d-open
(resp. d-semiopen, d-preopen, d-3-open) set U of X containing x such
that F(U) C Int(C1(V)),

(2) lower 6-continuous [8] (resp. lower almost §-semi-continuous,
lower almost §-precontinuous, lower almost 0-3-continuous) if for each
x € X and each open set V of Y such that F(x)NV # (), there exists a
d-open (resp. d-semiopen, d-preopen, §-F-open) set U of X containing
x such that F(u) NInt(C1(V)) # 0 for each u € U.

Definition 8.3. A multifunction F': (X, 7) — (Y, 0) is said to be

(1) wupper almost O-continuous (resp.  upper almost 0-semi-
continuous, upper almost 6O-precontinuous, upper almost 0-3-
continuous) if for each x € X and each open set V' of Y containing
F(x), there exists a f-open (resp. 6-semiopen, 0-preopen, 6-3-open)
set U of X containing x such that F'(U) C Int(CL(V)),

(2) lower almost @-continuous (resp.  lower almost 0-semi-
continuous, lower almost O-precontinuous, lower almost 0-3-
continuous) if for each z € X and each open set V' of ¥ such that
F(x) NV # (), there exists a #-open (resp. 6#-semiopen, f-preopen,
6-3-open) set U of X containing = such that F'(u) N Int(C1(V)) # 0
for each v € U.

For the multifunctions defined in Definitions 9.2 and 9.3, we have
the following relationship:

DIAGRAM III
u/lad-c = u/lé-c = u/lac= u/lapc= u/l ad-pc = u/l

af-pc
\ ! \ U 4 \

u/l af-sc = u/l ad-sc = u/l aqc = u/l af-c = u/l ad-f-c = u/l
af-[-c
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In Diagram III, we use the abbreviations as follows: u = upper, 1
= lower, a = almost, ¢ = continuous, p = pre, s = semi and q = quasi.

Definition 8.4. A topological space (X, 7) is said to be almost-regular
[45] if for each regular closed set F' of X and each point x ¢ F, there
exist disjoint open sets U and V such that x € U and FF C V.

Lemma 8.2. (Noiri [21]). For a topological space (X, 1), the following
characterizations hold:

(1) (X,7) is semi-reqular if and only if Cls(A) = CI(A) for any
subset A of X,

(2) (X, 1) is almost-reqular if and only if Clo(A) = Cls(A) for any
subset A of X.

Theorem 8.1. For a multifunction F : (X,7) — (Y, 0), the following
properties hold:

(1) If (X,7) is semi-reqular, then wupper/lower almost o-
semicontinuity (resp. upper/lower almost -precontinuity, up-
per/lower almost 0-F-continuity) is equivalent to upper/lower almost
quasi-continuity (resp. upper/lower almost precontinuity, upper/lower
almost (3-continuity),

(2) If (X,7) is almost-reqular, then wupper/lower almost 0-
semicontinuity (resp. upper/lower almost 0-precontinuity, up-
per/lower almost 6-(3-continuity) is equivalent to upper/lower al-
most d-semicontinuity (resp. upper/lower almost §-precontinuity, up-
per/lower almost §-(3-continuity).

Proof. This is an immediate consequence of Lemma 8.1.

Corollary 8.1. Let (X, 7) be a reqular space. For a multifunction
F:(X,7)— (Y,0), the following properties hold:
(1) upper/lower almost 0-semicontinuity, upper/lower almost o-
semicontinuity and upper/lower almost quasicontinuity are equivalent,
(2) wupper/lower almost O-precontinuity, upper/lower almost §-
precontinuity and upper/lower almost precontinuity are equivalent,
(3) upper/lower almost 0-3-continuity, upper/lower almost 6-3-
continuity and upper/lower almost (3-continuity are equivalent.

Proof. This is an immediate consequence of Theorem 8.1.
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Conclusions. Let (X, 7) be a topological space. Then, it is well-
know that 7y and 75 are topologies. And also 6SO(X), 0PO(X),
(X)), 6SO(X), OPO(X), and OF(X) are all m-spaces with prop-
erty (B). Therefore, by the results established in Sections 3-8 we can
obtain properties of the multifunctions defined in Definitions 8.2 and
8.3.
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