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A NOTE ON ALMOST s -CONTINUITY

UGUR SENGUL

Abstract. T. Noiri, M. B. Ahmad and M. Khan introduced the
notion of almost s-continuous functions [20] since then the function
studied by various authors [1,4,11] Continuing in the spirit of this
papers we obtain several properties and new characterizations of al-
most s -continuous functions. We improve and strengthen some of the
known results. The concept of co-S R-closed graph is introduced.

1. INTRODUCTION AND PRELIMINARIES

Almost s-continuous functions being both quasi-irresolute and al-
most continuous, introduced by T. Noiri, M. B. Ahmad and M. Khan
[20]. In [4] Dontchev, Ganster and Reilly introduced quasi-open sets
and they related ultra Hausdorffness and almost s-continuity. Note
that ultra Hausdorffness implies totally disconnectedness [25]. So al-
most s-continuity can be considered as a tool for studying various dis-
connectedness properties. Almost s-continuity generate clopen sets
from semi-regular sets under the inverse image so this function equiv-
alent to y-continuity introduced by Ganguly and Basu [9] in 1992.

Keywords and phrases: TAlmost s-continuous functions, semi-
open, semi-regular sets, clopen sets, quasi-open sets, ultra Hausdorff
spaces, co-S R-closed graphs.
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Quasi-open sets can be used for characterizing almost s-continuity.
Since every clopen set is quasi-open this improves some of the almost s-
continuity characterizations. In [1] Cho, studied net characterizations
of almost s-continuity, we strengthened and extended his results using
clopen sets. In the same manner using co-SR-closed graphs instead
of almost s-closed graphs some results of Jafari and Noiri [11] are
improved. In addition using almost s-continuity and co-SR-closed
graphs, ultra Hausdorff spaces are characterized.

Throughout this paper (X, 7) and (Y, o) (or simply X and Y) rep-
resent nonempty topological spaces on which no separation axioms are
assumed, unless otherwise mentioned. For a subset S of (X, 1), cl(S)
and int(S) represent the closure of S and the interior of S, respec-
tively. A subset S of a space (X, 7) is said to be semi-open [16] if
S C cl(int(S)). The family of all semi-open sets of X is denoted by
SO(X) . The complement of a semi-open set is said to be semi-closed.
The semiclosure of S, denoted by scl(S), is the intersection of all semi
closed sets containing S. The family of all semi-closed sets of X is
denoted by SC(X). A subset S of a space (X, 7) is said to be semi-
regular [14] if it is both semiopen as well as semi-closed. The family
of all semi-regular sets of a space X and that containing a point = of
X are respectively denoted by SR(X) and SR(X,z). A point z € X
is said to be in the semi-f-closure [14] of A, denoted by sclp(A), if
ANscl(V) # 0 for every V € SO(X, x). If scly(A) = A, then A is said
to be semi-f-closed. The complement of a semi-6-closed set is said to
be semi-f-open.

The quasi-component [25] of a point = € X is the intersection of all
clopen subsets of X which contain the point . The quasi-topology 7,
on X is the topology having as base clopen subsets of (X, 7). The clo-
sure of each point in quasi-topology is precisely the quasi-component
of that point. The open (resp. closed) subsets of the quasi-topology
is called quasi-open [4] (resp. quasi-closed [4]). For a space (X, 7) the
space (X, 7,) is called by Staum [25] the ultraregular kernel of X and
denoted by X, for simplicity. A space (X, 7) is called ultraregular [25]
if 7 = 7,.For a subset A of a space X, we define the quasi-interior
(resp. quasi-closure) of A, denoted by int,(A) (resp. cly(A)), defined
by int,(A) = U{U is quasi-open:U C A}, (resp. cl,(A) = N{F is
quasi-closed:A C F'}).

Lemma 1. [9] Let A be a subset of a space X.
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(a): If A€ SO(X) then scl(A) € SR(X) and scl(A) = sclg(A);
(b): If Ae SR(X) then X — A € SR(X);

Lemma 2. [6,14,20] Let A be a subset of a space X, the following
statements are equivalent:

(a): A€ SR(X);

(b): A = scl(sint(A));

(c): A = sint(scl(A));

(d): A is semi-f-closed and semi-f-open.

Definition 3. A function f : X — Y is said to be almost s-continuous
[20] if for each point x € X and each V' € SO(Y, f(x)), there exists
an open set U of X containing x such that f(U) C scl(V).

2. CHARACTERIZATIONS

Definition 4. A subfamily mx of the power set p(X) of a nonempty
set X is called a minimal structure [24] (briefly m-structure) on X if
@ €myx and X € mx. By (X, mx), we denote a nonempty subset X
with a minimal structure myx on X. Each member of myx is said to be
mx-open and the complement of mx-open set is said to be mx-closed.
For a subset A of X, the mx-closure of A and the mx-interior of A
are defined in [18] as mx-Cl(V) ={F: AC F,X — F € mx} and
mx-Int(V)=U{U :U C A,U € mx}.

Remark 5. Let (X, 7) be a topological space. Then the families T,
73, SO(X), PO(X), a(X), B(X) (=pO(X)), SR(X), BR(X) are all
m-structures on X.

Definition 6. A function f : (X,mx) — (Y,my), where X and Y
are nonempty sets with minimal structures mx and my , respectively,is
said to be weakly M-continuous [22] (M-continuous [24]) at © € X
if for each V. € my containing f(x) such that f(U) C mx-CIl(V)
(resp. f(U) C V). A function f: (X,mx) — (Y,my) is said to be
weakly M -continuous (resp. M -continuous) if it has the property at
each point x € X.

Theorem 7. For a function f : X — Y, the following are equivalent:

(a): f is almost s-continuous.
(b): For each € X and each V' € SR(Y, f(x)), there exists a
clopen set U containing z such that f(U) C V;
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(c): For each x € X and each V € SR(Y, f(x)), there exists an
quasi-open set U of X containing x such that f(U) C V;

(d): f:(X,7) — (Y,50(Y)) is weakly M-continuous.

(e): f7H(V) C intq(f_l(scl(V))) for every V € SO(Y);

(£): cly,(f(sint(F))) C f~YF) for every F € SC(Y);

(g): cl,(f~(V)) C fY(scl(V)) for every V € SO(Y).

(h): f(clq( )) C SCZ@(f(A)) for each subset A of X.

(1): el (f~H(B)) C f*(sclp(B)) for each subset B of Y.

Proof. (a)=>(b): This is known by Theorem 3.3 of [20].

(b)=(c)=(a): These implications are clear from the definition of
quasi topology.

(¢c)=(d)Let x € X and V € SR(Y, f(z)).Then by (c) there exists
a quasi-open set U containing x such that f(U) C V. Since every
semi-regular set is semi-open, f is M-continuous, hence weakly M-
continuous.

(d)=(a) Let z € X and V € SO(Y, f(z)) then there exists a quasi-
open set U containing x such that f(U) C scl(V'). Since U is quasi
open there exists an open set W in U containing x such that f(W) C
scl(V') and by Definition 3 f is almost s-continuous.

(c)=(e): Let V € SO(Y) and z € f~1(V). Then f(z) € V and
scl(V) € SR(Y, f(x)) hence by (c), there exists a quasi-open set U of
X containing z such that f(U) C scl(V). Then z € U C f~(scl(V))
and hence x € int,(f~(scl(V))).

(e)<(a): It follows from Theorem 3.2 of [22].

(f)=(g): Let F € SC(Y), then Y — F € SO(Y) and by
(e) we have f1 (Y — F) C ant,(fHsc(Y — F))) ie, X —
UE) Cinty(fHsc(Y — F))) = mtq(ffl(Y — sint(F))) = X —
cly(f~H(sint(F ))) Hence we obtain cl,(f(sint(F))) C f~H(F).
(f)<(a): It follows from Theorem 2.1 of [23].

f)=(g): Let V € SO( ). Then scl(V) is semi-closed, by
(e) cly(f~

scl(V

h V) dg(f7H(scl(V))) = clg(f 7 (sint(scl(V))))

))-
(g)<(a) It follows from Theorem 3.4 of [22].
(a)=(h)=(i)=(a): It follows from Theorem 3.3 of [22]. O

Definition 8. A filter base F is said to be;

(a): s-0-convergent [1] to a point x in X, if for any semi-open
set U containing x there exist B € F such that B C scl(U);
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(b): clopen convergent to a point x in X, if for any clopen set
U containing x, there exist B € F such that B C U.

Theorem 9. A function f : X — Y is almost s-continuous if and only
if for each point x € X and each filter base F in X clopen converging
to x the filter base f(F) is s-0-convergent to f(x).

Proof. Suppose that x € X and F is any filter base in X clopen
converges to x. Since f is almost s-continuous for any semi-open set
V' containing f(z) scl(V) € SR(Y, f(z)) and by Theorem 7, there
exists a clopen set U containing = in X such that f(U) C scl(V).
Since F is clopen convergent to x in X then there exists B € F such
that B C U. It follows that f(B) C scl(V'). This means that f(F) is
s-0-convergent to f(z).

Conversely, let x be a point in X and V' be a semi-open set contain-
ing f(x). If we set F ={U : U is clopen and = € U}, then F will be
a filter base which clopen converges to x. So there exists U € F such
that f(U) C scl(V'). This completes the proof. O

Definition 10. A net (x;) in a space X, 0-converges (resp. clopen
converges [10], s-0-converges [1]) to x if and only if for each open
(resp. clopen, semi-open, ) set U containing x, there exists ig such
that x; € cl(U) (resp. x; € U, x; € scl(U)) for all i 2 iy.

Lemma 11. For a net (z;) in a space X ;

(a): [1] if (x;) s-0-converges to x, then (x;) O-converges to x;

(b): /2] if (x;) converges to x, then (x;) O-converges to x ;

(c): [10] if (x;) converges or 6-converges to x, then (x;) clopen
converges to x.

Theorem 12. For a function f : X — Y, the following statements
are equivalent:

(a): f is almost s-continuous;

(b): For each x € X and each net (x;) in X which clopen con-
verges to x, the net (f(z;)) s-0-converges to f(x);

(c): For each x € X and each net (z;) in X which 0-converges
to x, the net (f(x;)) s-0-converges to f(x);

(d): For each x € X and each net (x;) in X which converges to
x, the net (f(z;)) s-0-converges to f(x).
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Proof. (a) = (b) Let x € X and let (z;) be a net in X such that
(x;) clopen converges to x. Let V' be a semi-open set containing f(z).
Since f is almost s-continuous and scl(V) € SR(Y) , there exists a
clopen set U containing x such that f(U) C scl(V'). Since (x;) clopen
converges to x, there exists ig such that z; € U for all i = i5. Hence
f(z;) € scl(V) for all i = iy.

(b) = (a) Suppose that f is not almost s-continuous. Then there
exists © € X and V € SO(Y, f(x)) such that f(U) € scl(V) for all
clopen neighborhood U of x. Thus for every clopen neighborhood U
of x we can find 2y € U such that f(zy) ¢ scl(V). Let N(x) be the
set of clopen neighborhoods of z in X. The set N'(z) with the relation
of inverse inclusion (that is U; < U, if and only if Uy C U;) form a
directed set (Theorem 1.1 of [10]). Clearly the net {zy : U € N(2)}
clopen converges to x in X but (f(zv))ven () does not s-f-converge
to f(x).

(b) = (c¢) Let x € X and let (z;) be a net in X such that (z;)
O-converges to x. By Lemma 11 (x;) clopen converges to x. By (b),
(f(x;)) s-B-converges to f(x).

For the proof of the other implications see [1]. O

By Lemma 11 and Theorem 12 we have the following as corollary.
This is an improvement of Corollary 3.1 of [1].

Corollary 13. If a function f : X — Y is almost s-continuous then,
for each x € X and each net (x;) in X which clopen converges to x,
the net (f(x;)) 0-converges to f(x).

Proposition 14. [1] A net (z;) in a space X, s-0-converges to x if
and only if for each semireqular set U containing x, there exists ig
such that x; € U for all i = ig.

By Theorem 12 and Proposition 14 we have the following extension
of Corollary 3.2 of [1].

Theorem 15. For a function f : X — Y, the following are equivalent:

(a): f is almost s-continuous;

(b): If for each x € X and, a net (x;) in X clopen converges
to x then for each V € SR(Y, f(x)), there exists iy such that
f(z;) € V for all i 2 ig;
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(c): If for each v € X and, a net (z;) in X O-converges to x then
for each V € SR(Y, f(x)), there exists iy such that f(x;) € V
for all i 2 iy;

(d): If for each x € X and, a net (z;) in X converges to x then
for each V € SR(Y, f(x)), there exists iy such that f(x;) € V
for all i = iy.

3. SEPARATION AXIOMS AND co-SR-CLOSED GRAPHS

Definition 16. A space X is said to be

(a): ultra Hausdorff [25] if every two distinct points of X can be
separated by disjoint clopen sets.

(b): semi-Ty [17] if for each pair of distinct points x and y in
X, there exist semi-open sets U and V of X containing x
and y, respectively, such that U NV = & (or equivalently
scl(U) Nscl(V) = @ [14]).

(c): clopen T} [8] (=ultra T [13])if for each pair of distinct points
x and y of X, there exist clopen sets U and V' containing x
and y respectively such that y ¢ U and = ¢ V.

(d): ultra T} [13] if for each pair of distinct points z and y of X,
there exist a clopen set U containing one of the points x and
y but not the other.

Remark 17. Kohli and Singh proved that [13] ultra Hausdorff, clopen
T1, and ultra Ty azioms are all equivalent.

Definition 18. [22] A nonempty set X is with a minimal structure
my, (X,mx), is said to be m-Hausdorff if for each distinct points x,
y € X, there emist U, V € myx containing x and y, respectively, such
that UNV = @.

Theorem 19. [20] If f : (X, 1;) — (Y, my) is a weakly M -continuous
function and (Y, my) is m-Hausdorff, then f has quasi-closed point
wnverses i X.

Corollary 20. If f : (X,7) — (Y,0) is almost s-continuous and
(Y, o) is semi-Ty then f has quasi-closed point inverses in X.

Recall that for a function f : X — Y, the subset {(z, f(z)) : z €
X} C X xY is called the graph of f and is denoted by G(f).
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Definition 21. A function f : (X,mx) — (Y,my) is said to has a
strongly M -closed graph [22] if and only if for each (x,y) € (X XY) —
G(f) there exists an mx-open set U containing x and an my -open set
V' containing y such that (U x my-CU(V))NG(f) = @.

Lemma 22. [22] A function f : (X,mx) — (Y, my) has a strongly
M -closed graph if and only if for each (x,y) € (X X Y) — G(f) there
exists an mx-open set U containing x and my-open set V' containing

y such that f(U) Nmy-Cl(V) = @.

Definition 23. A graph G(f) of a function f : X — Y is said to be co-
SR-closed if for each (x,y) € (X XY )—=G(f), there ezists an clopen set
U in X containing x and V € SR(Y,y) such that (UXxV)NG(f) = @.

Remark 24. If a function f : (X,mx) — (Y,my) has the strongly
M -closed graph, then for the special case mx = 1, and my = SO(Y),
G(f) has co-SR-closed graph and we may state the following.

Theorem 25. The following properties are equivalent for a graph

G(f) of a function:

(a): G(f) is co-SR-closed.

(b): for each (z,y) € (X xY)—G(f), there exists a clopen set U
containing z in X and V € SR(Y,y) such that f(U)NV = @.

(c): for each point (x,y) € (X xY)—G(f), there exists a clopen
set U containing = in X and V € SO(Y,y) such that. f(U) N
scl(V) = @.

(d): for each point (x,y) € (X xY)—G(f), there exists a quasi-
open set U containing z in X and V € SO(Y,y) such that
fU)Nscl(V) =2

Theorem 26. If f : X — Y s almost s-continuous function and Y
is semi-Ty , then G(f) is co-SR-closed in X x Y.

Proof. First suppose Y is semi-Ty. Let (x,y) € (X xY) — G(f). Tt
follows that f(z) # y. Since Y is semi-T5, there exist V € SO(Y,, f(x))
and W € SO(Y,y) such that scl(V)Nscl(W) = &. Since f is almost s-
continuous, there exists an clopen set U = f~(scl(V)) in X containing
x such that f(U) C scl(V). Therefore f(U) N scl(W) = @ and G(f)
is co-S R-closed with respect to X x Y. O

Theorem 27. Let f : X — Y have a co-SR-closed graph then the
following properties hold:
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(a): if f is injective then X is ultra Hausdorff;
(b): if f is surjective then X is semi-Ty.

Proof. (a) Suppose that = and y are any two distinct points of X by
the injectivity of f, (z, f(y)) ¢ G(f). Since G(f) is co-SR-closed,
by Theorem 25, there exist a clopen set U containing x and V' €
SO(Y, f(y)) such that f(U)Nscl(V) = @. We have UN f~(scl(V)) =
@. Therefore y ¢ U. Then U and X — U are disjoint clopen sets
containing x and y, respectively. Hence X is ultra Hausdorff.

(b) Let y; and y, be any two distinct points of Y. Since f is sur-
jective there exists a point € X such that f(z) = yo. Since G(f) is
co-SR-closed and (x, ;) ¢ G(f) there exists a clopen set U containing
x and V € SR(Y,y;) such that f(U) NV = @. Therefore we have
y2 € f(U) CY =V € SR(Y) and hence Y is semi-T5. O

Note that since ultra Hausdor(f spaces are totally disconnected [25]
first part of the theorem characterizes totally disconnectednes.

Definition 28. A subset K of a nonempty set X with a minimal
structure my is said to be m-compact [21] (m-closed [21]) relative to
(X,mx) if any cover {U; : i € I} of K by mx-open sets, there exists
a finite subset Iy of I such that K C U{U; : i € Iy} (K C U{mx -
ClUU;) =1 € In}). (X,mx) is m-closed if X is m-closed relative to
(X, mx).

Definition 29. A subset K of a space X is said to be s-closed [14]
relative to X if for every cover {V,, : a € I} of K by semi-open sets of
X, there exists a finite subset Iy of I such that K C U{scl(V,,) : a €

]0}.

Theorem 30. [19] Let f : (X,mx) — (Y, my) be a function. Assume
that mx is a base for a topology. If the graph G(f) is strongly M-
closed, then mx-Cl(f~Y(K)) = f~1(K) whenever the set K C'Y is
m-closed relative to (Y, my).

Corollary 31. [26] If a function f : (X, 1,) — (Y, my) has a strongly
M-closed graph, then f~'(K) is quasi-closed in (X, 7,) for each set K

which is m-closed relative to (Y, my).

Corollary 32. If a function f : X — Y has co-SR-closed graph,
then f~Y(K) is quasi-closed in X for every subset K which is s-closed
relative to Y.
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Theorem 33. If a function f : X — Y has a co-SR-closed graph and
Y is s-closed then f is almost s-continuous.

Proof. Let V€ SR(Y), then by Lemma 1, Y —V € SR(Y). By the
s-closedness of Y it follows from Theorem 1 of [15], Y — V is s-closed.
By Corollary 32, f~Y(Y — V) = X — f~}V) is quasi-closed, hence
f7Y(V) is quasi open. Set U = f~}(V), then f(U) C V, and by
Theorem 7, f is almost s-continuous. 0

Corollary 34. LetY be an s-closed semi-Ty space. The following are
equivalent for a function f : X —Y:

(a): f is almost s-continuous;

(b): G(f) is co-SR-closed;

(c): for each K, s-closed relative to Y, f~1(K) is quasi-closed in
X.

Proof. This is a direct consequence of Theorems 26, 33 and Corollary
32. O

Definition 35. A topological space (X, T) is called countably rs-
compact [5] (resp. countably S-closed [3], mildly countably compact
[25]) if every countable cover of X by semi-reqular (resp. regular
closed, clopen) sets has a finite subcover.

Definition 36. A topological space (X,T) is called rs-Lindelof [7]
(resp. re-Lindeldf [12]) if every cover of X by semi-reqular (resp. reg-
ular closed) sets has a countable subcover.

Definition 37. For any infinite cardinal k, a topological space (X, T)
is called k-extremally disconnected [5] ( k-e.d.) if the boundary of
every regqular open set has cardinality (strictly) less than k.

Theorem 38. Let f: (X,7) — (Y,0) be an almost s-continuous sur-
jection, then the following properties hold:

(a): If X is mildly countably compact, then Y is countably S-
closed and Ny-e.d. ( almost extremally disconnected).

(b): If X is mildly Lindeldf, then Y is re-Lindelof and wy-e.d. (
the boundary of every regular open set is at most countable).

Proof. (a) Let f: (X,7) — (Y,0) be an almost s-continuous surjec-
tion. If X is mildly countably compact, then Y is countably rs-
compact by Theorem 2.6 of [4]. Then Y is both countably S-closed
and Np-e.d. (almost extremally disconnected) by Theorem 3.13 of [5].
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(b) Let f: (X,7) — (Y,0) be an almost s-continuous surjection. If
X is mildly Lindelof, then Y is rs-Lindel6f. by Theorem 2.6 of [4].
Then Y is rc-Lindel6f and wy-e.d. by Theorem 3.14 of [5]. O
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