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A NOTE ON ALMOST s -CONTINUITY

UĞUR ŞENGÜL

Abstract. T. Noiri, M. B. Ahmad and M. Khan introduced the
notion of almost s-continuous functions [20] since then the function
studied by various authors [1,4,11] Continuing in the spirit of this
papers we obtain several properties and new characterizations of al-
most s -continuous functions. We improve and strengthen some of the
known results. The concept of co-SR-closed graph is introduced.

1. Introduction and Preliminaries

Almost s-continuous functions being both quasi-irresolute and al-
most continuous, introduced by T. Noiri, M. B. Ahmad and M. Khan
[20]. In [4] Dontchev, Ganster and Reilly introduced quasi-open sets
and they related ultra Hausdorffness and almost s-continuity. Note
that ultra Hausdorffness implies totally disconnectedness [25]. So al-
most s-continuity can be considered as a tool for studying various dis-
connectedness properties. Almost s-continuity generate clopen sets
from semi-regular sets under the inverse image so this function equiv-
alent to γ-continuity introduced by Ganguly and Basu [9] in 1992.
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Quasi-open sets can be used for characterizing almost s-continuity.
Since every clopen set is quasi-open this improves some of the almost s-
continuity characterizations. In [1] Cho, studied net characterizations
of almost s-continuity, we strengthened and extended his results using
clopen sets. In the same manner using co-SR-closed graphs instead
of almost s-closed graphs some results of Jafari and Noiri [11] are
improved. In addition using almost s-continuity and co-SR-closed
graphs, ultra Hausdorff spaces are characterized.

Throughout this paper (X, τ) and (Y, σ) (or simply X and Y ) rep-
resent nonempty topological spaces on which no separation axioms are
assumed, unless otherwise mentioned. For a subset S of (X, τ), cl(S)
and int(S) represent the closure of S and the interior of S, respec-
tively. A subset S of a space (X, τ) is said to be semi-open [16] if
S ⊂ cl(int(S)). The family of all semi-open sets of X is denoted by
SO(X) . The complement of a semi-open set is said to be semi-closed.
The semiclosure of S, denoted by scl(S), is the intersection of all semi
closed sets containing S. The family of all semi-closed sets of X is
denoted by SC(X). A subset S of a space (X, τ) is said to be semi-
regular [14] if it is both semiopen as well as semi-closed. The family
of all semi-regular sets of a space X and that containing a point x of
X are respectively denoted by SR(X) and SR(X, x). A point x ∈ X
is said to be in the semi-θ-closure [14] of A, denoted by sclθ(A), if
A∩scl(V ) 6= ∅ for every V ∈ SO(X, x). If sclθ(A) = A, then A is said
to be semi-θ-closed. The complement of a semi-θ-closed set is said to
be semi-θ-open.

The quasi-component [25] of a point x ∈ X is the intersection of all
clopen subsets of X which contain the point x. The quasi-topology τq

on X is the topology having as base clopen subsets of (X, τ). The clo-
sure of each point in quasi-topology is precisely the quasi-component
of that point. The open (resp. closed) subsets of the quasi-topology
is called quasi-open [4] (resp. quasi-closed [4]). For a space (X, τ) the
space (X, τq) is called by Staum [25] the ultraregular kernel of X and
denoted by Xq for simplicity. A space (X, τ) is called ultraregular [25]
if τ = τq.For a subset A of a space X, we define the quasi-interior
(resp. quasi-closure) of A, denoted by intq(A) (resp. clq(A)), defined
by intq(A) = ∪{U is quasi-open:U ⊂ A},(resp. clq(A) = ∩{F is
quasi-closed:A ⊂ F}).
Lemma 1. [9] Let A be a subset of a space X.
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(a): If A ∈ SO(X) then scl(A) ∈ SR(X) and scl(A) = sclθ(A);
(b): If A ∈ SR(X) then X − A ∈ SR(X);

Lemma 2. [6,14,20] Let A be a subset of a space X, the following
statements are equivalent:

(a): A ∈ SR(X);
(b): A = scl(sint(A));
(c): A = sint(scl(A));
(d): A is semi-θ-closed and semi-θ-open.

Definition 3. A function f : X → Y is said to be almost s-continuous
[20] if for each point x ∈ X and each V ∈ SO(Y, f(x)), there exists
an open set U of X containing x such that f(U) ⊂ scl(V ).

2. Characterizations

Definition 4. A subfamily mX of the power set ℘(X) of a nonempty
set X is called a minimal structure [24] (briefly m-structure) on X if
∅ ∈ mX and X ∈ mX . By (X, mX), we denote a nonempty subset X
with a minimal structure mX on X. Each member of mX is said to be
mX-open and the complement of mX-open set is said to be mX-closed.
For a subset A of X, the mX-closure of A and the mX-interior of A
are defined in [18] as mX-Cl(V ) = ∩{F : A ⊂ F, X − F ∈ mX} and
mX-Int(V ) = ∪{U : U ⊂ A,U ∈ mX}.
Remark 5. Let (X, τ) be a topological space. Then the families τ ,
τq, SO(X), PO(X), α(X), β(X) (=βO(X)), SR(X), βR(X) are all
m-structures on X.

Definition 6. A function f : (X, mX) → (Y, mY ), where X and Y
are nonempty sets with minimal structures mX and mY , respectively,is
said to be weakly M-continuous [22] (M-continuous [24]) at x ∈ X
if for each V ∈ mY containing f(x) such that f(U) ⊂ mX-Cl(V )
(resp. f(U) ⊂ V ). A function f : (X, mX) → (Y,mY ) is said to be
weakly M-continuous (resp. M-continuous) if it has the property at
each point x ∈ X.

Theorem 7. For a function f : X → Y , the following are equivalent:

(a): f is almost s-continuous.
(b): For each x ∈ X and each V ∈ SR(Y, f(x)), there exists a

clopen set U containing x such that f(U) ⊂ V ;
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(c): For each x ∈ X and each V ∈ SR(Y, f(x)), there exists an
quasi-open set U of X containing x such that f(U) ⊂ V ;

(d): f : (X, τq) → (Y, SO(Y )) is weakly M -continuous.
(e): f−1(V ) ⊂ intq(f

−1(scl(V ))) for every V ∈ SO(Y );
(f): clq(f

−1(sint(F ))) ⊂ f−1(F ) for every F ∈ SC(Y );
(g): clq(f

−1(V )) ⊂ f−1(scl(V )) for every V ∈ SO(Y ).
(h): f(clq(A)) ⊂ sclθ(f(A)) for each subset A of X.
(i): clq(f

−1(B)) ⊂ f−1(sclθ(B)) for each subset B of Y .

Proof. (a)⇒(b): This is known by Theorem 3.3 of [20].
(b)⇒(c)⇒(a): These implications are clear from the definition of

quasi topology.
(c)⇒(d)Let x ∈ X and V ∈ SR(Y, f(x)).Then by (c) there exists

a quasi-open set U containing x such that f(U) ⊂ V . Since every
semi-regular set is semi-open, f is M -continuous, hence weakly M -
continuous.

(d)⇒(a) Let x ∈ X and V ∈ SO(Y, f(x)) then there exists a quasi-
open set U containing x such that f(U) ⊂ scl(V ). Since U is quasi
open there exists an open set W in U containing x such that f(W ) ⊂
scl(V ) and by Definition 3 f is almost s-continuous.

(c)⇒(e): Let V ∈ SO(Y ) and x ∈ f−1(V ). Then f(x) ∈ V and
scl(V ) ∈ SR(Y, f(x)) hence by (c), there exists a quasi-open set U of
X containing x such that f(U) ⊂ scl(V ). Then x ∈ U ⊂ f−1(scl(V ))
and hence x ∈ intq(f

−1(scl(V ))).
(e)⇔(a): It follows from Theorem 3.2 of [22].
(f)⇒(g): Let F ∈ SC(Y ), then Y − F ∈ SO(Y ) and by

(e), we have f−1(Y − F ) ⊂ intq(f
−1(scl(Y − F ))) i.e., X −

f−1(F ) ⊂ intq(f
−1(scl(Y − F ))) = intq(f

−1(Y − sint(F ))) = X −
clq(f

−1(sint(F ))) Hence we obtain clq(f
−1(sint(F ))) ⊂ f−1(F ).

(f)⇔(a): It follows from Theorem 2.1 of [23].
(f)⇒(g): Let V ∈ SO(Y ). Then scl(V ) is semi-closed, by

(e) clq(f
−1(V )) ⊂ clq(f

−1(scl(V ))) = clq(f
−1(sint(scl(V )))) ⊂

f−1(scl(V )).
(g)⇔(a) It follows from Theorem 3.4 of [22].
(a)⇒(h)⇒(i)⇒(a): It follows from Theorem 3.3 of [22]. ¤

Definition 8. A filter base F is said to be;

(a): s-θ-convergent [1] to a point x in X, if for any semi-open
set U containing x there exist B ∈ F such that B ⊂ scl(U);
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(b): clopen convergent to a point x in X, if for any clopen set
U containing x, there exist B ∈ F such that B ⊂ U .

Theorem 9. A function f : X → Y is almost s-continuous if and only
if for each point x ∈ X and each filter base F in X clopen converging
to x the filter base f(F) is s-θ-convergent to f(x).

Proof. Suppose that x ∈ X and F is any filter base in X clopen
converges to x. Since f is almost s-continuous for any semi-open set
V containing f(x) scl(V ) ∈ SR(Y, f(x)) and by Theorem 7, there
exists a clopen set U containing x in X such that f(U) ⊂ scl(V ).
Since F is clopen convergent to x in X then there exists B ∈ F such
that B ⊂ U . It follows that f(B) ⊂ scl(V ). This means that f(F) is
s-θ-convergent to f(x).

Conversely, let x be a point in X and V be a semi-open set contain-
ing f(x). If we set F = {U : U is clopen and x ∈ U}, then F will be
a filter base which clopen converges to x. So there exists U ∈ F such
that f(U) ⊂ scl(V ). This completes the proof. ¤

Definition 10. A net (xi) in a space X, θ-converges (resp. clopen
converges [10], s-θ-converges [1]) to x if and only if for each open
(resp. clopen, semi-open, ) set U containing x, there exists i0 such
that xi ∈ cl(U) (resp. xi ∈ U , xi ∈ scl(U)) for all i = i0.

Lemma 11. For a net (xi) in a space X;

(a): [1] if (xi) s-θ-converges to x, then (xi) θ-converges to x;
(b): [2] if (xi) converges to x, then (xi) θ-converges to x ;
(c): [10] if (xi) converges or θ-converges to x, then (xi) clopen

converges to x.

Theorem 12. For a function f : X → Y , the following statements
are equivalent:

(a): f is almost s-continuous;
(b): For each x ∈ X and each net (xi) in X which clopen con-

verges to x, the net (f(xi)) s-θ-converges to f(x);
(c): For each x ∈ X and each net (xi) in X which θ-converges

to x, the net (f(xi)) s-θ-converges to f(x);
(d): For each x ∈ X and each net (xi) in X which converges to

x, the net (f(xi)) s-θ-converges to f(x).
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Proof. (a) ⇒ (b) Let x ∈ X and let (xi) be a net in X such that
(xi) clopen converges to x. Let V be a semi-open set containing f(x).
Since f is almost s-continuous and scl(V ) ∈ SR(Y ) , there exists a
clopen set U containing x such that f(U) ⊂ scl(V ). Since (xi) clopen
converges to x, there exists i0 such that xi ∈ U for all i = i0. Hence
f(xi) ∈ scl(V ) for all i = i0.

(b) ⇒ (a) Suppose that f is not almost s-continuous. Then there
exists x ∈ X and V ∈ SO(Y, f(x)) such that f(U) * scl(V ) for all
clopen neighborhood U of x. Thus for every clopen neighborhood U
of x we can find xU ∈ U such that f(xU) /∈ scl(V ). Let N (x) be the
set of clopen neighborhoods of x in X. The set N (x) with the relation
of inverse inclusion (that is U1 ≤ U2 if and only if U2 ⊆ U1) form a
directed set (Theorem 1.1 of [10]). Clearly the net {xU : U ∈ N (x)}
clopen converges to x in X but (f(xU))U∈N (x) does not s-θ-converge
to f(x).

(b) ⇒ (c) Let x ∈ X and let (xi) be a net in X such that (xi)
θ-converges to x. By Lemma 11 (xi) clopen converges to x. By (b),
(f(xi)) s-θ-converges to f(x).

For the proof of the other implications see [1]. ¤

By Lemma 11 and Theorem 12 we have the following as corollary.
This is an improvement of Corollary 3.1 of [1].

Corollary 13. If a function f : X → Y is almost s-continuous then,
for each x ∈ X and each net (xi) in X which clopen converges to x,
the net (f(xi)) θ-converges to f(x).

Proposition 14. [1] A net (xi) in a space X, s-θ-converges to x if
and only if for each semiregular set U containing x, there exists i0
such that xi ∈ U for all i = i0.

By Theorem 12 and Proposition 14 we have the following extension
of Corollary 3.2 of [1].

Theorem 15. For a function f : X → Y , the following are equivalent:

(a): f is almost s-continuous;
(b): If for each x ∈ X and, a net (xi) in X clopen converges

to x then for each V ∈ SR(Y, f(x)), there exists i0 such that
f(xi) ∈ V for all i = i0;
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(c): If for each x ∈ X and, a net (xi) in X θ-converges to x then
for each V ∈ SR(Y, f(x)), there exists i0 such that f(xi) ∈ V
for all i = i0;

(d): If for each x ∈ X and, a net (xi) in X converges to x then
for each V ∈ SR(Y, f(x)), there exists i0 such that f(xi) ∈ V
for all i = i0.

3. Separation axioms and co-SR-closed graphs

Definition 16. A space X is said to be

(a): ultra Hausdorff [25] if every two distinct points of X can be
separated by disjoint clopen sets.

(b): semi-T2 [17] if for each pair of distinct points x and y in
X, there exist semi-open sets U and V of X containing x
and y, respectively, such that U ∩ V = ∅ (or equivalently
scl(U) ∩ scl(V ) = ∅ [14]).

(c): clopen T1 [8] (≡ultra T1 [13])if for each pair of distinct points
x and y of X, there exist clopen sets U and V containing x
and y respectively such that y /∈ U and x /∈ V .

(d): ultra T0 [13] if for each pair of distinct points x and y of X,
there exist a clopen set U containing one of the points x and
y but not the other.

Remark 17. Kohli and Singh proved that [13] ultra Hausdorff, clopen
T1, and ultra T0 axioms are all equivalent.

Definition 18. [22] A nonempty set X is with a minimal structure
mX , (X,mX), is said to be m-Hausdorff if for each distinct points x,
y ∈ X, there exist U , V ∈ mX containing x and y, respectively, such
that U ∩ V = ∅.

Theorem 19. [26] If f : (X, τq) → (Y,mY ) is a weakly M-continuous
function and (Y,mY ) is m-Hausdorff, then f has quasi-closed point
inverses in X.

Corollary 20. If f : (X, τ) → (Y, σ) is almost s-continuous and
(Y, σ) is semi-T2 then f has quasi-closed point inverses in X.

Recall that for a function f : X → Y , the subset {(x, f(x)) : x ∈
X} ⊂ X × Y is called the graph of f and is denoted by G(f).
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Definition 21. A function f : (X,mX) → (Y, mY ) is said to has a
strongly M-closed graph [22] if and only if for each (x, y) ∈ (X×Y )−
G(f) there exists an mX-open set U containing x and an mY -open set
V containing y such that (U ×mY -Cl(V )) ∩G(f) = ∅.

Lemma 22. [22] A function f : (X, mX) → (Y,mY ) has a strongly
M-closed graph if and only if for each (x, y) ∈ (X × Y )−G(f) there
exists an mX-open set U containing x and mY -open set V containing
y such that f(U) ∩mY -Cl(V ) = ∅.

Definition 23. A graph G(f) of a function f : X → Y is said to be co-
SR-closed if for each (x, y) ∈ (X×Y )−G(f), there exists an clopen set
U in X containing x and V ∈ SR(Y, y) such that (U×V )∩G(f) = ∅.

Remark 24. If a function f : (X,mX) → (Y, mY ) has the strongly
M-closed graph, then for the special case mX = τq and mY = SO(Y ),
G(f) has co-SR-closed graph and we may state the following.

Theorem 25. The following properties are equivalent for a graph
G(f) of a function:

(a): G(f) is co-SR-closed.
(b): for each (x, y) ∈ (X×Y )−G(f), there exists a clopen set U

containing x in X and V ∈ SR(Y, y) such that f(U)∩V = ∅.
(c): for each point (x, y) ∈ (X×Y )−G(f), there exists a clopen

set U containing x in X and V ∈ SO(Y, y) such that. f(U) ∩
scl(V ) = ∅.

(d): for each point (x, y) ∈ (X×Y )−G(f), there exists a quasi-
open set U containing x in X and V ∈ SO(Y, y) such that
f(U) ∩ scl(V ) = ∅

Theorem 26. If f : X → Y is almost s-continuous function and Y
is semi-T2 , then G(f) is co-SR-closed in X × Y .

Proof. First suppose Y is semi-T2. Let (x, y) ∈ (X × Y ) − G(f). It
follows that f(x) 6= y. Since Y is semi-T2, there exist V ∈ SO(Y, f(x))
and W ∈ SO(Y, y) such that scl(V )∩scl(W ) = ∅. Since f is almost s-
continuous, there exists an clopen set U = f−1(scl(V )) in X containing
x such that f(U) ⊂ scl(V ). Therefore f(U) ∩ scl(W ) = ∅ and G(f)
is co-SR-closed with respect to X × Y . ¤
Theorem 27. Let f : X → Y have a co-SR-closed graph then the
following properties hold:
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(a): if f is injective then X is ultra Hausdorff;
(b): if f is surjective then X is semi-T2.

Proof. (a) Suppose that x and y are any two distinct points of X by
the injectivity of f , (x, f(y)) /∈ G(f). Since G(f) is co-SR-closed,
by Theorem 25, there exist a clopen set U containing x and V ∈
SO(Y, f(y)) such that f(U)∩scl(V ) = ∅. We have U ∩f−1(scl(V )) =
∅. Therefore y /∈ U . Then U and X − U are disjoint clopen sets
containing x and y, respectively. Hence X is ultra Hausdorff.

(b) Let y1 and y2 be any two distinct points of Y . Since f is sur-
jective there exists a point x ∈ X such that f(x) = y2. Since G(f) is
co-SR-closed and (x, y1) /∈ G(f) there exists a clopen set U containing
x and V ∈ SR(Y, y1) such that f(U) ∩ V = ∅. Therefore we have
y2 ∈ f(U) ⊂ Y − V ∈ SR(Y ) and hence Y is semi-T2. ¤

Note that since ultra Hausdorff spaces are totally disconnected [25]
first part of the theorem characterizes totally disconnectednes.

Definition 28. A subset K of a nonempty set X with a minimal
structure mX is said to be m-compact [21] (m-closed [21]) relative to
(X,mX) if any cover {Ui : i ∈ I} of K by mX-open sets, there exists
a finite subset I0 of I such that K ⊆ ∪{Ui : i ∈ I0} (K ⊆ ∪{mX -
Cl(Ui) : i ∈ I0}). (X, mX) is m-closed if X is m-closed relative to
(X,mX).

Definition 29. A subset K of a space X is said to be s-closed [14]
relative to X if for every cover {Vα : α ∈ I} of K by semi-open sets of
X, there exists a finite subset I0 of I such that K ⊂ ∪{scl(Vα) : α ∈
I0}.
Theorem 30. [19] Let f : (X,mX) → (Y,mY ) be a function. Assume
that mX is a base for a topology. If the graph G(f) is strongly M-
closed, then mX-Cl(f−1(K)) = f−1(K) whenever the set K ⊆ Y is
m-closed relative to (Y, mY ).

Corollary 31. [26] If a function f : (X, τq) → (Y, mY ) has a strongly
M-closed graph, then f−1(K) is quasi-closed in (X, τq) for each set K
which is m-closed relative to (Y,mY ).

Corollary 32. If a function f : X → Y has co-SR-closed graph,
then f−1(K) is quasi-closed in X for every subset K which is s-closed
relative to Y .
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Theorem 33. If a function f : X → Y has a co-SR-closed graph and
Y is s-closed then f is almost s-continuous.

Proof. Let V ∈ SR(Y ), then by Lemma 1, Y − V ∈ SR(Y ). By the
s-closedness of Y it follows from Theorem 1 of [15], Y −V is s-closed.
By Corollary 32, f−1(Y − V ) = X − f−1(V ) is quasi-closed, hence
f−1(V ) is quasi open. Set U = f−1(V ), then f(U) ⊂ V , and by
Theorem 7, f is almost s-continuous. ¤
Corollary 34. Let Y be an s-closed semi-T2 space. The following are
equivalent for a function f : X → Y :

(a): f is almost s-continuous;
(b): G(f) is co-SR-closed;
(c): for each K, s-closed relative to Y , f−1(K) is quasi-closed in

X.

Proof. This is a direct consequence of Theorems 26, 33 and Corollary
32. ¤
Definition 35. A topological space (X, τ) is called countably rs-
compact [5] (resp. countably S-closed [3], mildly countably compact
[25]) if every countable cover of X by semi-regular (resp. regular
closed, clopen) sets has a finite subcover.

Definition 36. A topological space (X, τ) is called rs-Lindelöf [7]
(resp. rc-Lindelöf [12]) if every cover of X by semi-regular (resp. reg-
ular closed) sets has a countable subcover.

Definition 37. For any infinite cardinal κ, a topological space (X, τ)
is called κ-extremally disconnected [5] ( κ-e.d.) if the boundary of
every regular open set has cardinality (strictly) less than κ.

Theorem 38. Let f : (X, τ) → (Y, σ) be an almost s-continuous sur-
jection, then the following properties hold:

(a): If X is mildly countably compact, then Y is countably S-
closed and ℵ0-e.d. ( almost extremally disconnected).

(b): If X is mildly Lindelöf, then Y is rc-Lindelöf and ω1-e.d. (
the boundary of every regular open set is at most countable).

Proof. (a) Let f : (X, τ) → (Y, σ) be an almost s-continuous surjec-
tion. If X is mildly countably compact, then Y is countably rs-
compact by Theorem 2.6 of [4]. Then Y is both countably S-closed
and ℵ0-e.d. ( almost extremally disconnected) by Theorem 3.13 of [5].
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(b) Let f : (X, τ) → (Y, σ) be an almost s-continuous surjection. If
X is mildly Lindelöf, then Y is rs-Lindelöf. by Theorem 2.6 of [4].
Then Y is rc-Lindelöf and ω1-e.d. by Theorem 3.14 of [5]. ¤
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