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APPROXIMATION OF FRACTALS GENERATED BY
INTEGRAL OPERATORS

ION CHIŢESCU, HORIA GEORGESCU AND RADU MICULESCU

Abstract. We present some results concerning fractals generated
by an iterated function system which is formed using integral oper-
ators on the infinite dimensional space of continuous functions on a
compact interval. We approximate the fractal via a finite approximant
set and project this approximant set in two dimensions, in order to
make possible the visualization of the fractal.

1. Introduction

Iterated function systems (IFS) which were introduced in the
present form by John Hutchinson (see [7]) and popularized by Michael
Barnsley (see [2]) are a convenient way to describe and classify deter-
ministic fractals in the form of a deterministic definition, providing a
new insight into the description of natural phenomena. See [6] too.

The problem of fractals’ approximation is extremely important from
the practical point of view. Numerical comparisons among approxi-
mations of a fractal set are presented in [5]. New algorithms for ap-
proximation of fractals can be found in [1] and [9].

————————————–
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Within the framework of a program initiated by us, whose main
aim is to study the fractals generated by IFS in infinite dimensional
spaces, in [3] and [4], we presented an example of a fractal generated by
Hutchinson’s procedure, embedded in an infinite dimensional Banach
space, together with its finite approximations. More precisely, we
worked in the Banach space of real valued continuous functions on a
compact interval and we approximated the attractor generated by an
IFS given by a Fredholm integral equation via a finite approximant
set and projected this approximant set into two dimensions.

The aim of this work, which can be viewed as a continuation of [3]
and [4], is to present some results concerning fractals generated by an
IFS which is formed with Hammerstein - type operators on the infinite
dimensional space of real continuos functions on a compact interval.
We approximate the fractal via a finite approximant set and project
this approximant set into two dimensions.

2. Results

A. Let a < b be real numbers. In the sequel X (respectively Y ) will
be the real Banach space of all continuous f : [a, b] → R (respectively
K : [a, b]× [a, b] → R) equipped with the sup norm.

The unit ball of X is

S = {f ∈ X | ∥f∥ ≤ 1}.

Equipped with the metric of X, S is a complete metric space.
Let us consider a number h ≥ 1and f 1, f 2, ..., fh in X with

m =
h

max
i=1

∥∥f i
∥∥

and K1, K2, ..., Kh in Y with

c =
h

max
i=1

∥∥Ki
∥∥ .

Here the letters i are indexes.
We shall also consider a continuously differentiable function φ : R →

R with

φ(0) = 0,

δ = max{|φ(x)| | x ∈ [−1, 1]}
and

β = max{
∣∣∣φ′

(x)
∣∣∣ | x ∈ [−1, 1]}.
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Finally, let us consider a real number λ and a strictly positive num-
ber ε such that

(1) |λ| (b− a)(c+ ε)δ +m ≤ 1,

and

(2) r = |λ| (b− a)(c+ ε)β < 1.

We lay stress (again) upon the fact that, in the sequel, the letters i
are used as indexes.

Now it is possible to define the contractions T i : S → S, i =
1, 2, ..., h, given via

T i(u) = vi,

where

vi(x) = f i(x) + λ

b∫
a

Ki(x, y)φ(u(y))dy

T i are operators of Hammerstein type: a Hammerstein operator
T : X → X has the form

T (u) = v,

where

v(x) =

b∫
a

K(x, y)f(y, u(y))dy,

where K : [a, b]× [a, b] → R and f : [a, b]× [a, b] → R are continuous
(see [8]).

More precisely, one can prove that all T i are contractions, with
contraction coefficient less than r.

In the sequel, we shall work under the following non-triviality as-
sumptions:

a) λ ̸= 0 (if λ = 0, it follows that all T i are constant functions);
b) Ki ̸= 0 for all i = 1, 2, ..., h (if Ki = 0, it follows that T i is

constant);
c) β ̸= 0 (if β ̸= 0, it follows that all T i are constant functions).
We know that Y includes the dense vector subspace consisting of

all polynomial functions of the form P (x, y) =
∑
s,t

astx
syt. Having this

in mind, we shall approximate our contractions T i with some other
contractions given by approximating kernels.
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Namely, let (εn)n be a sequence of strictly positive numbers such
that εn → 0 and εn ≤ ε for any n. Let us consider, for any i =
1, 2, ..., h, a sequence (Ki

n)n of polynomial functions in Y such that,
for all natural n, one has ∥∥Ki

n −Ki
∥∥ ≤ εn,

for all i = 1, 2, ..., h.
We can construct h sequences of contractions (T i

n)n, i = 1, 2, ..., h,
namely T i

n : S → S, T i
n(u) = vin, given via

vin(x) = f i(x) + λ

b∫
a

Ki
n(x, y)φ(u(y))dy.

One can prove that all T i
n are contractions with contraction coeffi-

cients less than r.

B. Before continuing, let us recall some aspects of the general theory
of fractals generated by an IFS.

Let K(S) be the set of all non empty compact subsets of S, which
becomes a complete metric space, when equipped with the Hausdorff-
Pompeiu metric H, given via

H(A,B) = max(d(A,B), d(B,A)),

where
d(A,B) = sup{dist(u,B) | u ∈ A}

with
dist(u,B) = inf{∥u− b∥ | b ∈ B}.

(in particular, dist(u, {x0}) = ∥u− x0∥).
Within the framework of the theory of fractals, the system of func-

tions (T 1, T 2, ..., T h) = F is called an iterated function system IFS),
thus defining a term previously used. The same for (T 1

n , T
2
n , ..., T

h
n ) =

Fn.
On the complete metric space (K(S), H), we can define the Hutchin-

son contractions F : K(S) → K(S) and Fn : K(S) → K(S), via

F (E) =
h
∪
i=1

T i(E) and Fn(E) =
h
∪
i=1

T i
n(E)

with contractions coefficients less than r (see [2] and [6]).
The fixed point A of F , called the attractor of the IFS F (or the

attractor of F) is, generally speaking, a fractal. The attractor of Fn

will be denoted by An.
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Our aim in the sequel will be to approximate A with a finite set
(using An as intermediate sets) and to project the finite approximant
set into two dimensions.

C. It is known that, under special assumptions, An →
n
A. The next

result follows this line, giving an estimation of the distance between
An and A.

Theorem 1. For any natural n, one has

H(A,An) ≤
δ

β
· εn
(1− r)(c+ ε)

(hence An →
n
A).

In order to continue, we shall consider a contraction W : K(S) →
K(S), with attractor (i.e. fixed point) E. We can obtain E as follows
(the procedure of the fixed point theorem Banach-Caccioppoli-Picard):

a) one takes an arbitrary E0 ∈ K(S);
b) one defines the sequence (En)n via

En = W (En−1),

n = 1, 2, ..;
c) finally, one has

E = lim
n
En.

We shall work for W = F or W = Fn and for E0 = {0}. In either
cases we have

E1 = W (E0) = {f 1, f 2, ..., fh}
and the set En has at most hn elements, for all n.

Theorem 2. Using previous notations and working for W = Fn

(arbitrary natural n) we have for any natural p:

H(An, Ep) ≤
m

1− r
rp

(the estimation does not depend upon n).

Conclusion of this part. For a given γ > 0, one can construct a
finite set Ep which approximates the attractor A such that

H(Ep, A) < γ

as follows:
a) Write γ = γ1 + γ2, with γ1 > 0, γ2 > 0.
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b) Choose a convenient natural n such that

(3)
δ

β
· εn
(1− r)(c+ ε)

< γ1.

c) Choose a convenient natural p such that

(4)
m

1− r
rp < γ2.

For the natural n found at b), write W = Fn and construct effec-
tively Ep (with p from c))using W = Fn.

d) We use Theorem 1 and Theorem 2. For the number p and the
set Ep which were found at c), one has (use also n found at b))

H(Ep, A) ≤ H(Ep, An) +H(An, A) ≤

≤ m

1− r
rp +

δ

β
· εn
(1− r)(c+ ε)

< γ1 + γ2 = γ.

Remark. The intermediate set An appears only theoretically, gen-
erating the number n.

D. In this subparagraph we shall ”project” into two dimension the
finite approximant fractal set obtained at the subparagraph C. We
shall take the functions f i to be polynomial functions and the approx-
imant kernels Ki

n to be polynomial functions too.
In order to make computation easier, we shall work in the case

[a, b] = [0, 1]. We shall consider the Lebesgue measure µ on [0, 1] and
we shall write L2 = L2(µ) The real Hilbert space L2 is equipped with
the usual norm ∥∥∥∥ ˜

f

∥∥∥∥
2

= (

∫
f 2dµ)

1
2 ,

(computed for any representative f of the equivalence class
˜

f ∈ L2).
We can consider the linear, continuos and injective map (embed-

ding) I : X → L2, given by

I(f) =
˜

f

(in the sequel, we shall identify f and I(f).
The space L2 contains the bidimensional (closed) subspace

Z = {
˜

f ∈ L2 | f(x) = ax+ b, a, b ∈ R}.
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One can consider the orthogonal projection P : L2 → L2, generated

by Z, acting via P (
˜

f) =
˜
g ∈ Z, where g(x) = ax + b for some real a

and b. One knows that∥∥∥∥ ˜

f − ˜
g

∥∥∥∥
2

= min{
∥∥∥∥ ˜

f − ˜
u

∥∥∥∥
2

| ˜
u ∈ Z}.

So, one has the linear and continuous map P ◦ I : X → L2 with
(P ◦ I)(X) ⊂ Z.

We are interested in the projection of the attractor A, so we are
interested in P (I(A)). One can approximate P (I(A)) with P (I(Ep))
(see the end of subparagraph C). This is because ∥P ◦ I∥ ≤ 1, which
implies

H((P ◦ I)(A), (P ◦ I)(Ep)) ≤ H(A,Ep).

The elements of Ep are polynomial functions, because Ki
n and f i

are polynomial functions. We must therefore project all the functions
of the form u(x) = xn and use linearity.

Take a natural n and let us compute (P ◦ I)(u), where u(x) = xn.

We have (P ◦ I)(u) =
˜
v, where v(x) = ax + b and the real numbers

a, b must be such that
∥∥∥˜
u− ˜

v
∥∥∥
2
is minimum. This is equivalent to the

fact that
1∫
0

(xn − ax− b)2dx

is minimum.
We must therefore minimize the function t : R× R → R, given via

t(a, b) =
1

3
a2 + ab+ b2 − 2

n+ 2
a− 2

n+ 1
b+

1

2n+ 1
.

Using partial derivatives, we obtain the minimum point (a, b) where

a =
6n

(n+ 1)(n+ 2)
, b =

−2n+ 2

(n+ 1)(n+ 2)
.

So, informally, one has

(P ◦ I)(xn) =
6n

(n+ 1)(n+ 2)
x+

−2n+ 2

(n+ 1)(n+ 2)

and, for a general polynomial function:
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(P ◦ I)(a0 + a1x + a2x
2 + ... + anx

n) = (
n∑

k=0

6k
(k+1)(k+2)

ak)x +

(
n∑

k=0

−2k+2
(k+1)(k+2)

ak).

In order to ”draw the picture” of the projection of Ep, we shall
proceed as follows:

a) We shall effectively construct Ep (namely h = 2, p = 5, which
gives 25 = 32 points for Ep; see the numerical example which follows).

b) The elements of Ep are polynomials (there are 32 polynomials
of degree 4 in E5, see the numerical example which follows). Each
polynomial will be projected onto a polynomial of the form ax + b
according to the previous formula. We shall identify ax + b ≡ (a, b).
Thus, one obtains hp (here 32) points (a, b) in the Cartesian plane,
which depict the projection of Ep and an approximate the image of
the projection of A.

E. We conclude with a numerical example.
Take [a, b] = [0, 1], h = 2, Ki : [0, 1] × [0, 1] → R, f i : [0, 1] → R

(i = 1, 2), φ : R → R given by

K1(x, y) = exy;

K2(x, y) = cos xy;

f 1(x) =
1

2
− 1

2
x4;

f 2(x) = −1

2
x+

1

2
x3;

φ(t) = t2.

One has ∥K1∥ = e, ∥K2∥ = 1, hence c = e. Since ∥f 1∥ = 1
2
,

∥f 2∥ = 1
3
√
3
, one has m = 1

2
.

We have also δ = 1, β = 2.
We can take λ = 1

10
, ε = 3− e, hence c+ ε = 3.

Conditions (1) and (2) are fulfilled.
Consequently, for any u ∈ X and x ∈ [0, 1], one has

T 1(u)(x) =
1

2
− 1

2
x4 +

1

10

1∫
0

exy(u(y))2dy
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and

T 2(u)(x) = −1

2
x+

1

2
x3 +

1

10

1∫
0

cos(xy)(u(y))2dy.

Because

exy =
∞∑
p=0

(xy)p

p!

and

cosxy =
∞∑
p=0

(−1)p
(xy)2p

(2p)!

we shall take

K1
n(x, y) = 1 +

xy

1!
+

(xy)2

2!
+ ...+

(xy)2n

(2n)!

and

K2
n(x, y) = 1− (xy)2

2!
+

(xy)4

4!
...+ (−1)n

(xy)2n

(2n)!
.

One can take

εn =
1

(2n+ 1)!
· 2n+ 2

2n+ 1
< 3− e = ε.

Finally, we shall take

γ =
21

200
=

1

200
+

1

10

choosing γ1 =
1

200
, γ2 =

1
10
.

Condition (3) is fulfilled for n = 2:

δ

β
· ε2
(1− r)(c+ ε)

=
5

12
· ε2 =

5

12
· 1

100
<

1

200
= γ1.

and, because (εn)n is strictly decreasing, one has (3) for any n ≥ 2.
Consequently, we take n = 2.
Condition (4) is fulfilled for p = 5:

m

1− r
r5 =

243

2500
<

1

10
= γ2

and, because (rp)p is strictly decreasing, one has (4) for any p ≥ 5.
Consequently, we take p = 5.
Using a Java program, the authors obtained 32 points (a, b). The

picture thus obtained is divided into two ”clouds”.

a b
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-0.39006412108790817 0.6192805265549698
-0.39007454791758733 0.6192643840220823
-0.3901780302954932 0.6191037289986427
-0.39017567330511094 0.6191073864988954
-0.3911501764419598 0.6175541637284669
-0.39114818696559533 0.6175572703260482
-0.39112477729199857 0.6175938175296398
-0.3911253026899864 0.6175929966564953
-0.3988918740251305 0.601411807920607
-0.398889496944338 0.6014149183083592
-0.39886544923814427 0.6014463891856421
-0.39886599878874085 0.6014456692703021
-0.39859378045036303 0.6018022730560832
-0.3985943135334482 0.6018015648041742
-0.3986005733125027 0.6017932486985071
-0.398600432425216 0.6017934357800403
-0.05193444691813059 -0.07997563497447382
-0.05193223213444649 -0.07999264572610684
-0.05191027136257895 -0.08016190781738887
-0.05191077157182562 -0.08015805427757644
-0.051705776366793244 -0.08179146020533767
-0.051706196881663904 -0.08178818906400566
-0.05171114548444349 -0.08174970545038526
-0.05171103443993191 -0.08175056977497255
-0.05023793415218893 -0.09849583038531429
-0.050238446459930586 -0.09849251995675924
-0.05024363127769308 -0.098459024189465
-0.05024351278970853 -0.09845979038340859
-0.050302433409100705 -0.0980801341471826
-0.05030231823260451 -0.09808088747609546
-0.05030096582855058 -0.09808973286228916
-0.050300996269852224 -0.09808953386706178
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