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OPTIMIZATION PROBLEMS ON QUASI-THRESHOLD
GRAPHS

MIHAI TALMACIU

Abstract. In this paper we characterize quasi-threshold graphs us-
ing the weakly decomposition, determine: density and stability num-
ber for quasi-threshold graphs.

1. Introduction

When searching for recognition algorithms, frequently appears a
type of partition for the set of vertices in three classes A,B,C, which
we call a weakly decomposition, such that: A induces a connected
subgraph, C is totally adjacent to B, while C and A are totally non-
adjacent.

The structure of the paper is the following. In Section 2 we present
the notations to be used, in Section 3 we give the notion of weakly
decomposition and in Section 4 we determine the clique number, the
stability number and give some applications in optimization problems.
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2. General notations

Throughout this paper, G = (V,E) is a connected, finite and undi-
rected graph, without loops and multiple edges ([1]), having V = V (G)
as the vertex set and E = E(G) as the set of edges. G is the comple-
ment of G. If U ⊆ V , by G(U) we denote the subgraph of G induced
by U . By G−X we mean the subgraph G(V −X), whenever X ⊆ V ,
but we simply write G − v, when X = {v}. If e = xy is an edge of
a graph G, then x and y are adjacent, while x and e are incident, as
are y and e. If xy ∈ E, we also use x ∼ y, and x 6∼ y whenever x, y
are not adjacent in G. A vertex z ∈ V distinguishes the non-adjacent
vertices x, y ∈ V if zx ∈ E and zy 6∈ E. If A,B ⊂ V are disjoint
and ab ∈ E for every a ∈ A and b ∈ B, we say that A,B are totally
adjacent and we denote by A ∼ B, while by A 6∼ B we mean that no
edge of G joins some vertex of A to a vertex from B and, in this case,
we say that A and B are non-adjacent.

The neighbourhood of the vertex v ∈ V is the set NG(v) = {u ∈ V :
uv ∈ E}, while NG[v] = NG(v)∪{v}; we simply write N(v) and N [v],
when G appears clearly from the context. The neighbourhood of the
vertex v in the complement of G will be denoted by N(v).

The neighbourhood of S ⊂ V is the set N(S) = ∪v∈SN(v)− S and
N [S] = S ∪N(S). A clique is a subset Q of V with the property that
G(Q) is complete. The clique number density of G, denoted by ω(G),
is the size of the maximum clique. A clique cover is a partition of the
vertices set such that each part is a clique. θ(G) is the size of a smallest
possible clique cover of G; it is called the clique cover number of G.
A stable set is a subset X of vertices where every two vertices are not
adjacent. α(G) is the number of vertices is a stable set o maximum

cardinality; it is called the stability number of G. χ(G) = ω(G) and
it is called chromatic number.

By Pn, Cn, Kn we mean a chordless path on n ≥ 3 vertices, a
chordless cycle on n ≥ 3 vertices, and a complete graph on n ≥ 1
vertices, respectively.

A graph is called cograph if it does not contain P4 as an induced
subgraph.

3. Preliminary results

3.1. Weakly decomposition
At first, we recall the notions of weakly component and weakly

decomposition.
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Definition 1. ([2], [5], [6]) A set A ⊂ V (G) is called a weakly set of
the graph G if NG(A) 6= V (G)−A and G(A) is connected. If A is a
weakly set, maximal with respect to set inclusion, then G(A) is called
a weakly component. For simplicity, the weakly component G(A) will
be denoted with A.

Definition 2. ([2], [5], [63]) Let G = (V,E) be a connected and non-
complete graph. If A is a weakly set, then the partition {A,N(A), V −
A ∪N(A)} is called a weakly decomposition of G with respect to A.

Below we remind a characterization of the weakly decomposition of
a graph.

The name of ”weakly component” is justified by the following result.
Theorem 1. ([3], [5], [6]) Every connected and non-complete graph

G = (V,E) admits a weakly component A such that G(V − A) =
G(N(A)) +G(N(A)).

Theorem 2. ([5], [6]) Let G = (V,E) be a connected and non-
complete graph and A ⊂ V . Then A is a weakly component of G if
and only if G(A) is connected and N(A) ∼ N(A).

The next result, that follows from Theorem 1, ensures the existence
of a weakly decomposition in a connected and non-complete graph.

Corollary 1. If G = (V,E) is a connected and non-complete graph,
then V admits a weakly decomposition (A,B,C), such that G(A) is a
weakly component and G(V − A) = G(B) +G(C).

Theorem 2 provides an O(n + m) algorithm for building a weakly
decomposition for a non-complete and connected graph.

Algorithm for the weakly decomposition of a graph ([22])
Input: A connected graph with at least two nonadjacent vertices, G =
(V,E).
Output: A partition V = (A,N,R) such that G(A) is connected,
N = N(A), A 6∼ R = N(A).
begin

A := any set of vertices such that
A ∪N(A) 6= V
N := N(A)
R := V − A ∪N(A)
while (∃n ∈ N , ∃r ∈ R such that nr 6∈ E ) do
begin
A := A ∪ {n}
N := (N − {n}) ∪ (N(n) ∩R)
R := R− (N(n) ∩R)

end
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end

3.2. Quasi-threshold graphs
In this subsection we remind some results on quasi-threshold graphs.
A graph G is called quasi-threshold graph if G is P4-free and C4-fre.

Graphs obtained from a vertex by recursively applying the following
operations: (i) adding a new vertex, (ii) adding a new vertex that
is adjacent to all vertices, and (iii) disjoint union of two graphs are
precisely the quasi-threshold graphs (see Yan et al. [7]).

4. New results on threshold graphs

4.1. Characterization of a quasi-threshold graph using the
weakly decomposition

In this paragraph we give a new characterization of quasi-threshold
graphs using the weakly decomposition.

Theorem 3. Let G=(V,E) be a connected graph with at least two
nonadjacent vertices and (A,N,R) a weakly decomposition, with A the
weakly component. G is a quasi-threshold graph if and only if:
i) A ∼ N ∼ R;
ii) N is clique;
iii) G(A), G(R) are quasi-threshold graphs.

Proof. Let G = (V,E) be a connected, uncomplete graph and
(A,N,R) a weakly decomposition of G, with G(A) as the weakly com-
ponent.
At first, we assume that G is quasi-threshold. Then N ∼ R and
A ∼ N also. Because A ∼ N ∼ R and G is C4-free, it follows that N
is a clique.

Conversely, we suppose that i), ii) and iii) hold. Because A ∼ N ∼
R and G(A), G(N), G(R) are P4-free, G(A), G(R) are quasi-threshold
graphs and N is a clique it follows that G is P4-free. G(A), G(N),
G(R) are C4-free. G(A∪N) ia C4-free because G(A) is quasi-threshold,
N is a clique and A ∼ N . G(N ∪R) ia C4-free because G(R) is quasi-
threshold, N is a clique and N ∼ R. G(A ∪ R) ia C4-free because
G(A), G(R) are quasi-threshold and A 6∼ N . If G is not C4-free then
N is not clique. So, G is quasi-threshold graph.

The above results lead to a recognition algorithm with the total
execution time O(n(n+m)).

4.2. Determination of clique number and stability number
for a quasi-threshold graph
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We determine the stability number and the clique number for quasi-
threshold graphs.

Theorem 4. Let G=(V,E) be connected with at least two non-
adjacent vertices and (A,N,R) a weakly decomposition with A the
weakly component. If G is a threshold graph then

α(G) = α(G(A)) + α(G(R)) and
ω(G) = max{ω(G(A)), ω(G(R))}+ |N |.

As a consequence of the above theorem, we give an algorithm that
leads to a clique of maximal cardinal in a quasi-threshold graph.

Input: A quasi-threshold, connected graph with at least two non-
adjacent vertices, G = (V,E)

Output: Determination of ω(G)
begin

Q = ∅; q := 0; i := 1; Gi := G;

Determine the degree of vertices in Gi;
while |V (Gi)| ≥ 4 do

Determine a weakly decomposition (Ai, Ni, Ri) of Gi, with
Ni clique and G(Ai), G(Ni) quasi-threshold graphs

if (Gi is complete) then
Q := Q ∪ V (Gi), q := q + |V (Gi)|

else
Q := Q ∪Ni, q := q + |Ni|;
determine the degree vertices in G(Ai);
// (∀v ∈ Ai : dG(Ai)(v) = dGi

− |Ni|)
let q1 be the number of vertices in Ai with maximum de-

gree in G(Ai);
// = the number of vertices in Ai with maximum degree

in Gi;
determine the degree vertices in G(Ri);
determine the connected components of G(Ri);
let G(Rc

i ) the connected component of G(Ri) which con-
tains the vertices of maximum degree in G(Ri);

let q2 be the number of vertices in Ri of maximum degree
in G(Ri);

if (q1 > q2) then
Gi+1 := G(Ai)

else
Gi+1 := G(Rc

i )
i := i+ 1;
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ω(G) := q
end

As a consequence of the above theorem, we give an algorithm that
leads to a stable set of maximal cardinal in a quasi-threshold graph.

Input: A quasi-threshold, connected graph with at least two non-
adjacent vertices, G = (V,E)

Output: Determination of α(G)
begin

S = ∅;
L := {G};
while L 6= ∅ do

let H be in L ;
Determine a weakly decomposition (A,N,R) of H
if (H is complete) then
S := S ∪ {v}, ∀v ∈ V (H)

else
enter G(A), G(R) in L;

α(G) := |S|;
end

5. Some Applications in Optimization Problems

In this section we point some applications of threshold graphs in
optimization problems.

Facility location analysis deals with the problem of finding optimal
locations for one or more facilities in a given environment [4]. Location
problems are classical optimization problems with many applications
in industry and economy. The spatial location of the facilities often
takes place in the context of a given transportation, communication,
or transmission system. A first paradigme for location is based on the
minimization of transportation cost.

According to their objective function, we can consider two types of
location problems. The first type consists of those problems that use a
minimax criterion. For example, if we want to determine the location
of a hospital the main objective is to find a site that minimizes the
maximum response time between the hospital and site of a possible
emergency. More generally, the aim of the first problem type is to de-
termine a location that minimizes the maximum distance to any other
location in the network. The second type of location problems opti-
mizes a ”minimum of a sum” criterion, which is used in determining
the location for a service facility like a shopping mall, for which we
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try to minimize the total travel time. The following centrality indices
are defined in [4].

The eccentricity of a vertex u is eG(u) = max{d(u, v)|v ∈ V }.
The radius is r(G) = min{eG(u)|u ∈ V }.
The center of a graph G is C(G) = {u ∈ V |r(G) = eG(u)}.
We consider the second type of location problems. Suppose we want

to place a service facility such that the total distance to all customers in
the region is minimal. The problem of finding an appropriate location
can be solved by computing the set of vertices with minimum total
distance.

We denote the sum of the distances from a vertex u to any other
vertex in a graph G=(V,E) as the total distance s(u) =

∑
v∈V d(u, v).

If the minimum total distance of G is denoted by s(G) = min{s(u)|u ∈
V }, the medianM(G) of G is given byM(G) = {u ∈ V |s(G) = s(u)}
.

Our result concerning the center of a threshold graph is the follow-
ing.

Theorem 5. Let G=(V,E) be a connected graph with at least two
nonadjacent vertices. If G is quasi-threshold then the center and the
median are equal to N , the radius is 1.
Proof. Because A ∼ N ∼ R, A 6∼ R, N is a clique it follows that
eG(u) = 1, ∀u ∈ N and eG(u) = 2, ∀u ∈ A ∪ R. So r(G) = 1 and
C(G) = N .
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