"Vasile Alecsandri" University of Bacău
Faculty of Sciences
Scientific Studies and Research
Series Mathematics and Informatics
Vol. 21 (2011), No. 1, 139-148

ABOUT THE AREA OF TRIANGLE DETERMINED BY CEVIANS OF RANK (k, l, m)

NICUŞOR MINCULETE AND CĂTĂLIN BARBU

Abstract. In this article we give a characterization of the areas of pedal triangles of some important points from the triangle chosen from C. Kimberling's Encyclopedia of triangle centers. A series of these points being points of concurrence of cevians of rank (k, l, m), of the triangle. Also, we present several equalities regarding these points.

1. INTRODUCTION

The barycentric coordinates were introduced in 1827 by Möbius in [3]. Barycentric coordinates are triplets of numbers $\left(t_{1}, t_{2}, t_{3}\right)$ corresponding to masses placed at the vertices of a reference triangle $A B C$. These masses then determine a point P, which is the geometric centroid of the three masses and is identified with coordinates $\left(t_{1}, t_{2}, t_{3}\right)$. The areas of $B P C, C P A$ and $A P B$ triangles are proportional with barycentric coordinates t_{1}, t_{2} and t_{3}. Characteristics of barycentric coordinates can be found in the monographs of C. Bradley [3], C. Coandă [4], C. Coşniţă [5], C. Kimberling [7], S. Loney [8] and to the papers of O. Bottema [2], J. Scott [14], H. Tanner [15], and P. Yiu [16]. Denote by a, b, c the lenghts of the sides in the standard order, by s the semiperimeter of triangle $A B C$, by $\Delta[A B C]$ the area of the triangle $A B C$.

Keywords and phrases: barycentric coordinates, cevian triangle, area of the triangle, cevians of rank (k, l, m)
(2010)Mathematics Subject Classification: 30F45, 20N99, 51B10, 51 M 10

An interesting property regarding barycentric coordinates is given by Coşniţă [5], in the following way:

If the vertices P_{i} of a triangle $P_{1} P_{2} P_{3}$ have the barycentric coordinates $\left(x_{i}, y_{i}, z_{i}\right)$ in relation with a triangle $A B C$, then the area of the triangle $P_{1} P_{2} P_{3}$ is

$$
\Delta\left[P_{1} P_{2} P_{3}\right]=\Delta[A B C] \cdot\left|\begin{array}{lll}
x_{1} & x_{2} & x_{3} \tag{1}\\
y_{1} & y_{2} & y_{3} \\
z_{1} & z_{2} & z_{3}
\end{array}\right|: \prod_{i=1}^{3}\left(x_{i}+y_{i}+z_{i}\right)
$$

Also, Bottema [2], Coandă [4], Muggeridge [11] and Yiu [16] refer to the relation between the areas of the triangle $P_{1} P_{2} P_{3}$ and $A B C$, written by normalized barycentric coordinates (i.e. $x_{i}+y_{i}+z_{i}=1$, for all $i=\overline{1,3}$).

Let P be a point inside of the triangle $A B C$. The cevian triangle $D E F$ is defined as the triangle composed of the endpoints of the cevians though the cevian point P. If the point P has barycentric coordinates $t_{1}: t_{2}: t_{3}$, then the cevian triangle $D E F$ has barycentric coordinates for the vertices given thus: $D\left(0: t_{2}: t_{3}\right), E\left(t_{1}: 0: t_{3}\right)$ and $F\left(t_{1}: t_{2}: 0\right)$. Therefore, relation (1) becomes

$$
\begin{equation*}
\Delta[D E F]=\frac{2 t_{1} t_{2} t_{3}}{\left(t_{1}+t_{2}\right)\left(t_{2}+t_{3}\right)\left(t_{3}+t_{1}\right)} \Delta[A B C] . \tag{2}
\end{equation*}
$$

In [9], we presented the cevians of rank (k, l, m) given in following way: If on side $(B C)$ of a unisosceles triangle $A B C$ a point D is taken, so that:

$$
\begin{equation*}
\frac{B D}{D C}=\left(\frac{c}{b}\right)^{k} \cdot\left(\frac{s-c}{s-b}\right)^{l} \cdot\left(\frac{a+b}{a+c}\right)^{m} \tag{3}
\end{equation*}
$$

$k, l, m \in \mathbb{R}$, then $A D$ is called cevian of rank (k, l, m), and if $D \in$ $B C \backslash[B C]$, so that $\frac{B D}{D C}=\left(\frac{c}{b}\right)^{k} \cdot\left(\frac{s-c}{s-b}\right)^{l} \cdot\left(\frac{a+b}{a+c}\right)^{m}, k, l, m \in \mathbb{R}^{*}$, then $A D$ is called excevian of rank (k, l, m) or exterior cevian of rank (k, l, m). If the triangle $A B C$ is isosceles $(A B=A C)$, then, by convention, the cevian of $\operatorname{rank}(k, l, m)$ is the median from A.

In [9], it is shown that in a triangle the cevians of rank (k, l, m) are concurrent in the point $I(k, l, m)$ and the barycentric coordinates of $I(k, l, m)$ are:

$$
\begin{equation*}
a^{k}(s-a)^{l}(b+c)^{m}: b^{k}(s-b)^{l}(a+c): c^{k}(s-c)^{l}(a+b)^{m} . \tag{4}
\end{equation*}
$$

A series of points from Encyclopedia of triangle centers of C. Kimberling are points of intersection of the cevians of rank (k, l, m).

2. THE AREA OF TRIANGLE DETERMINED BY CEVIANS OF RANK (k, l, m)

Theorem 1. Let DEF be the cevian triangle coresponding to the point $I(k, l, m)$ in relation with the triangle $A B C$. There is the following relation:

$$
\begin{equation*}
\Delta[D E F]=\frac{2(a b c)^{k}[(s-a)(s-b)(s-c)]^{l}[(a+b)(b+c)(c+a)]^{m}}{\prod_{\text {cyclic }}\left[b^{k}(s-b)^{l}(a+c)^{m}+c^{k}(s-c)^{l}(a+b)^{m}\right]} \cdot \Delta[A B C] . \tag{5}
\end{equation*}
$$

Proof. Taking into acount that barycentric coordinates of $I(k, l, m)$ are
$t_{1}=a^{k}(s-a)^{l}(b+c)^{m}: t_{2}=b^{k}(s-b)^{l}(a+c)^{m}: t_{3}=c^{k}(s-c)^{l}(a+b)^{m}$, by replacing in relation (2), we deduce the relation of the statement.
Remark 1. In [9] the notion of cevian of rank (k, l, m) was extended to the cevian of $\operatorname{rank}\left(k_{u}, k_{u+1}, \ldots, k_{w}\right)$ thus:

$$
\frac{B D}{D C}=\prod_{i=u}^{w}\left(\frac{i s-c}{i s-b}\right)^{k_{i}}
$$

where $u \leq w, u, w \in \mathbb{Z}, k_{i} \in \mathbb{R}$, for all $i \in\{u, \ldots, w\}$.
Therefore, the relation (5) becomes

$$
\Delta[D E F]=\frac{\prod_{i=u}^{w}[(i s-a)(i s-b)(i s-c)]^{k_{i}}}{\prod_{c y c i c}\left[\prod_{i=u}^{w}(i s-b)^{k_{i}}+\prod_{i=u}^{w}(i s-c)^{k_{i}}\right]} \cdot \Delta[A B C],
$$

where the triangle $D E F$ is the cevian triangle coresponding to the point $I\left(k_{u}, k_{u+1}, \ldots, k_{w}\right)$, which is the point of the intersection of cevians of rank $\left(k_{u}, k_{u+1}, \ldots, k_{w}\right)$.

Theorem 2. Let $A B C$ be a triangle. Denote by D, E and F respectively, the point of intersection of the cevians of rank (k, l, m) from A, B, C with the opposite sides. Let P be the point of intersection of the cevians of rank (k, l, m), and X, Y and Z, respectively, the perpendicular feet of P on the side $B C, C A$ and $A B$. There are the following relations:

$$
\begin{equation*}
\frac{x}{a^{k-1}(s-a)^{l}(b+c)^{m}}=\frac{y}{b^{k-1}(s-b)^{l}(a+c)^{m}}=\frac{z}{c^{k-1}(s-c)^{l}(a+b)^{m}}, \tag{6}
\end{equation*}
$$

Figure 1
where $|P X|=x,|P Y|=y,|P Z|=z$.
Proof. Since $A D$ is the cevian of $\operatorname{rank}(k, l, m)$, implies the relation

$$
\frac{B D}{D C}=\left(\frac{c}{b}\right)^{k}\left(\frac{s-c}{s-b}\right)^{l}\left(\frac{a+b}{a+c}\right)^{m}
$$

We have

$$
\frac{\Delta[A B D]}{\Delta[A C D]}=\frac{B D}{D C}=\frac{c \cdot A D \cdot \sin B A D}{b \cdot A D \cdot \sin C A D}=\frac{c}{b} \cdot \frac{\sin B A D}{\sin C A D}
$$

Hence:

$$
\frac{\sin B A D}{\sin C A D}=\left(\frac{c}{b}\right)^{k-1}\left(\frac{s-c}{s-b}\right)^{l}\left(\frac{a+b}{a+c}\right)^{m}
$$

In the right triangles $A P Y$ and $A P Z$ (see Figure 1), we have $y=$ $A P \cdot \sin P A E=A P \cdot \sin C A D$ and $z=A P \cdot \sin F A P=A P \cdot \sin B A D$.

Thus $\frac{\sin B A D}{\sin C A D}=\frac{z}{y}$, and, therefore,

$$
\frac{y}{b^{k-1}(s-b)^{l}(a+c)^{m}}=\frac{z}{c^{k-1}(s-c)^{l}(a+b)^{m}}
$$

Similarly:

$$
\frac{x}{a^{k-1}(s-a)^{l}(b+c)^{m}}=\frac{y}{b^{k-1}(s-b)^{l}(a+c)^{m}}
$$

and the conclusion follows.

Remark 2. From (6), we get:

$$
\frac{a x}{a^{k}(s-a)^{l}(b+c)^{m}}=\frac{b y}{b^{k}(s-b)^{l}(a+c)^{m}}=\frac{c z}{c^{k}(s-c)^{l}(a+b)^{m}}=
$$

$$
\frac{\sum a x}{\sum a^{k}(s-a)^{l}(b+c)^{m}}=\frac{2 \Delta[A B C]}{\sum a^{k}(s-a)^{l}(b+c)^{m}}
$$

In [9], shows that if $D E F$ is the cevian triangle coresponding to the point $I(k, l, m)$ in relation with the triangle $A B C, Q$ is a point on the side $E F$, and X^{\prime}, Y^{\prime} and Z^{\prime} respectively, the perpendicular feet of Q on the side $B C, C A$ and $A B$ then we have

$$
\begin{equation*}
\frac{\alpha}{a^{k-1}(s-a)^{l}(b+c)^{m}}=\frac{\beta}{b^{k-1}(s-b)^{l}(a+c)^{m}}+\frac{\gamma}{c^{k-1}(s-c)^{l}(a+b)^{m}} \tag{7}
\end{equation*}
$$

where $\left|Q X^{\prime}\right|=\alpha,\left|Q Y^{\prime}\right|=\beta,\left|Q Z^{\prime}\right|=\gamma$. Combining (6) and (7), we obtain

$$
\frac{\alpha}{x}=\frac{\beta}{y}+\frac{\gamma}{z} .
$$

3. CHARACTERIZATION OF THE AREAS OF CEVIAN TRIANGLES OF SOME IMPORTANT POINTS

C. Kimberling, in [7], presents a set of points, which are written as $X(q)$. If we take $P \equiv X(q)$, where the point $X(q)$ is a point of type $I(k, l, m)$, then we obtain a series of equalities for several particular cases in relation (5). Denote by Δ the area of the triangle $A B C$, and by Δ^{\prime} the area of the triangle $D E F$.

$X(q)$	$I(k, l, m)$	Point description	$P \equiv X(q)$ in relation (5)
$X(1)$	$I(1,0,0)$	incenter	$\Delta^{\prime}=\frac{2 a b c}{\prod(b+c)} \cdot \Delta$
$X(2)$	$I(0,0,0)$	centroid	$\Delta^{\prime}=\frac{1}{4} \cdot \Delta$
$X(6)$	$I(2,0,0)$	Lemoine point	$\Delta^{\prime}=\frac{2(a b c)^{2}}{\prod\left(b^{2}+c^{2}\right)} \cdot \Delta$
$X(7)$	$I(0,-1,0)$	Gergonne point	$\Delta^{\prime}=\frac{2}{s a b c e} \cdot \Delta^{3}$
$X(8)$	$I(0,1,0)$	Nagel point	$\Delta^{\prime}=\frac{2}{s a b c} \cdot \Delta^{3}$
$X(9)$	$I(1,1,0)$	mittenpunkt	$\Delta^{\prime}=\frac{\frac{s a b c}{2 a b c}}{s \prod[b(s-b)+c(s-c)]} \cdot \Delta^{3}$
$X(10)$	$I(0,0,1)$	Spieker point	$\Delta^{\prime}=\frac{2 \prod(b+c)}{\prod(2 s+a)} \cdot \Delta$
$X(31)$	$I(3,0,0)$	2 nd power point	$\Delta^{\prime}=\frac{2(a b c)^{3}}{\prod\left(b^{3}+c^{3}\right)} \cdot \Delta$
$X(32)$	$I(4,0,0)$	2 rd power point	$\Delta^{\prime}=\frac{2(a b c)^{4}}{\prod\left(b^{4}+c^{4}\right)} \cdot \Delta$
$X(76)$	$I(-2,0,0)$	3rd Brocard point	$\Delta^{\prime}=\frac{2(a b c)^{2}}{\prod\left(b^{2}+c^{2}\right)} \cdot \Delta$
$X(86)$	$I(0,0,-1)$	Cevapoint of incenter and centroid	$\Delta^{\prime}=\frac{2}{\prod(2 s+c)} \cdot \Delta$
$X(321)$	$I(-1,0,1)$	isotomic conjugate of $X(81)$	$\Delta^{\prime}=\frac{2 \prod(b+c)}{a b c \prod\left(\frac{a+c}{b}+\frac{a+b}{c}\right)} \cdot \Delta$
$X(346)$	$I(0,2,0)$	isotomic conjugate of $X(279)$	$\Delta^{\prime}=\frac{2}{s a b c} \cdot \Delta^{2}$
$X(365)$	$I\left(\frac{3}{2}, 0,0\right)$	square root point	$\Delta^{\prime}=\frac{2\left(a b c c^{3 / 2}\right.}{\prod_{\left(b^{3 / 2}\right.}^{\left(b^{3}+c^{3 / 2}\right)}} \cdot \Delta$
$X(366)$	$I\left(\frac{1}{2}, 0,0\right)$	isogonal conjugate of $X(365)$	$\Delta^{\prime}=\frac{2 \sqrt{a b c}}{\prod(\sqrt{b}+\sqrt{c})} \cdot \Delta$
$X(560)$	$I(5,0,0)$	4 th power point	$\Delta^{\prime}=\frac{2(a b c)^{5}}{\prod\left(b^{5}+c^{5}\right)} \cdot \Delta$
$X(561)$	$I(-3,0,0)$	isogonal conjugate of 4th power point	$\Delta^{\prime}=\frac{2(a b c)^{3}}{\prod\left(b^{3}+c^{3}\right)} \cdot \Delta$
$X(593)$	$I(2,0,-2)$	1st Hatzipolakis-Yiu point	$\Delta^{\prime}=\frac{2(a b c)^{2} \prod(b+c)^{2}}{\left\lfloor\left[b^{2}(a+b)^{2}+c^{2}(a+c)^{2}\right]\right.} \cdot \Delta$

Remark 3. We can see that the areas of the cevian triangles coresponding to the points $X(6)$ and $X(76), X(7)$ and $X(8), X(10)$ and $X(86), X(31)$ and $X(561)$, respectively, are equals.

4. THE CONDITION THAT THE POINT $I(k, l, m)$ BELONGS TO A LINE

Theorem 3. (Oprea [1], [12], [13]) Let D be on the side $B C$ and l is a line not through any vertex of a triangle $A B C$ such that l meets $A B$ in $M, A C$ in N, and $A D$ in P. The following relation holds

$$
\begin{equation*}
\frac{M B}{M A} \cdot \frac{D C}{B C}+\frac{N C}{N A} \cdot \frac{B D}{B C}=\frac{P D}{P A} . \tag{8}
\end{equation*}
$$

Starting from the idea of a problem [13], we obtain the following:
Theorem 4. Let $A B C$ be a triangle. Denote by D, E and F respectively, the point of intersection of the cevians of rank (k, l, m) from A, B, C with the opposite sides. Let P be the point of concurrence of the lines $A D$ and $B E$. If M and N are the point situated on the sides

Figure 2
$A B$ and $A C$, respectively, then the point P is situated on the line $M N$ if and only if the following relation is true:
(9) $\frac{M B}{M A} \cdot b^{k}(s-b)^{l}(a+c)^{m}+\frac{N C}{N A} \cdot c^{k}(s-c)^{l}(a+b)^{m}=a^{k}(s-a)^{l}(b+c)^{m}$.

Proof. We consider the point P is on the line $M N$. By Van Aubel's relation in the triangle $A B C$ (see Figure 2), we have

$$
\begin{equation*}
\frac{A E}{E C}+\frac{A F}{F B}=\frac{A P}{P D} \tag{10}
\end{equation*}
$$

Since $B E$ and $C F$ are the cevians of rank (k, l, m), it follows that

$$
\begin{equation*}
\frac{A F}{F B}=\left(\frac{b}{a}\right)^{k}\left(\frac{s-b}{s-a}\right)^{l}\left(\frac{c+a}{c+b}\right)^{m} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{A E}{E C}=\left(\frac{c}{a}\right)^{k}\left(\frac{s-c}{s-a}\right)^{l}\left(\frac{b+a}{b+c}\right)^{m} . \tag{12}
\end{equation*}
$$

From the relations (10), (11) and (12) we get

$$
\begin{equation*}
\frac{P D}{P A}=\frac{a^{k}(s-a)^{l}(b+c)^{m}}{b^{k}(s-b)^{l}(a+c)^{m}+c^{k}(s-c)^{l}(a+b)^{m}} \tag{13}
\end{equation*}
$$

Since $A D$ is the cevian of rank (k, l, m), implies the relation

$$
\frac{B D}{D C}=\left(\frac{c}{b}\right)^{k}\left(\frac{s-c}{s-b}\right)^{l}\left(\frac{a+b}{a+c}\right)^{m}
$$

so

$$
\begin{equation*}
\frac{B D}{B C}=\frac{c^{k}(s-c)^{l}(a+b)^{m}}{b^{k}(s-b)^{l}(a+c)^{m}+c^{k}(s-c)^{l}(a+b)^{m}}, \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{D C}{B C}=\frac{b^{k}(s-b)^{l}(a+c)^{m}}{b^{k}(s-b)^{l}(a+c)^{m}+c^{k}(s-c)^{l}(a+b)^{m}} \tag{15}
\end{equation*}
$$

From (8), (13), (14) and (15) we obtain (9). Conversely, we suppose that the line $M N$ intersect the line $A D$ in the point P^{\prime}. Applying Theorem 4 to triangle $A B C$ with cevian $A D$ and the line $M N$, we have

$$
\begin{equation*}
\frac{M B}{M A} \cdot \frac{D C}{B C}+\frac{N C}{N A} \cdot \frac{B D}{B C}=\frac{P^{\prime} D}{P^{\prime} A} \tag{16}
\end{equation*}
$$

By (9) we get
$\frac{M B}{M A} \cdot\left(\frac{b}{a}\right)^{k}\left(\frac{s-b}{s-a}\right)^{l}\left(\frac{c+a}{c+b}\right)^{m}+\frac{N C}{N A} \cdot\left(\frac{c}{a}\right)^{k}\left(\frac{s-c}{s-a}\right)^{l}\left(\frac{b+a}{b+c}\right)^{m}=1$,
or

$$
\begin{equation*}
\frac{M B}{M A} \cdot \frac{A F}{F B}+\frac{N C}{N A} \cdot \frac{A E}{E C}=1 \tag{17}
\end{equation*}
$$

Considering the triangle $A D C$ and the transversal $B E$, we have by Menelaus's theorem:

$$
\begin{equation*}
\frac{A E}{E C}=\frac{A P}{P D} \cdot \frac{B D}{B C} \tag{18}
\end{equation*}
$$

Similarly:

$$
\begin{equation*}
\frac{A F}{F B}=\frac{A P}{P D} \cdot \frac{C D}{B C} \tag{19}
\end{equation*}
$$

From (17), (18) and (19) it follows that

$$
\frac{M B}{M A} \cdot \frac{D C}{B C}+\frac{N C}{N A} \cdot \frac{B D}{B C}=\frac{P^{\prime} D}{P^{\prime} A}
$$

Comparison with (16) gives

$$
\frac{P D}{P A}=\frac{P^{\prime} D}{P^{\prime} A} .
$$

Hence the points P and P^{\prime} coincide.
If we take $P \equiv X(q)$, where the point $X(q)$ is a point of type $I(k, l, m)$, then we obtain a series of equalities for several particular cases in relation (9).

$X(q)$	$I(k, l, m)$	Point description	$P \equiv X(q)$ in relation (9)
$X(1)$	$I(1,0,0)$	incenter	$b \cdot \frac{M B}{M A}+c \cdot \frac{N C}{N A}=a$
$X(2)$	$I(0,0,0)$	centroid	$\frac{M B}{M A}+\frac{N C}{N A}=1$
$X(6)$	$I(2,0,0)$	Lemoine point	$b^{2} \cdot \frac{M B}{M A}+c^{2} \cdot \frac{N C}{N A}=a^{2}$
$X(7)$	$I(0,-1,0)$	Gergonne point	$\frac{1}{s-b} \cdot \frac{M B}{M A}+\frac{1}{s-c} \cdot \frac{N C}{N A}=\frac{1}{s-a}$
$X(8)$	$I(0,1,0)$	Nagel point	$(s-b) \cdot \frac{M B}{M A}+(s-c) \cdot \frac{N C}{N A}=s-a$
$X(9)$	$I(1,1,0)$	mittenpunkt	$b(s-b) \cdot \frac{M B}{M A}+c(s-c) \cdot \frac{N C}{N A}=a(s-a)$
$X(10)$	$I(0,0,1)$	Spieker point	$(a+c) \cdot \frac{M B}{M A}+(a+b) \cdot \frac{N C}{N A}=b+c$
$X(21)$	$I(1,1,-1)$	Schiffler point	$\frac{b(s-b)}{a+c} \cdot \frac{M B}{M A}+\frac{c(s-c)}{a+b} \cdot \frac{N C}{N A}=\frac{a(s-a)}{b+c}$
$X(31)$	$I(3,0,0)$	2nd power point	$b^{3} \cdot \frac{M B}{M A}+c^{3} \cdot \frac{N C}{N A}=a^{3}$
$X(32)$	$I(4,0,0)$	2rd power point	$b^{4} \cdot \frac{M B}{M A}+c^{4} \cdot \frac{N C}{N A}=a^{4}$
$X(55)$	$I(2,1,0)$	insimilicenter	$b^{2}(s-b) \cdot \frac{M B}{M A}+c^{2}(s-c) \cdot \frac{N C}{N A}=a^{2}(s-a)$
$X(56)$	$I(2,-1,0)$	exsimilicenter	$\frac{b^{2}}{s-b} \cdot \frac{M B}{M A}+\frac{c^{2}}{s-c} \cdot \frac{N C}{N A}=\frac{a^{2}}{s-a}$
$X(76)$	$I(-2,0,0)$	3rd Brocard point	$\frac{1}{b^{2}} \cdot \frac{M B}{M A}+\frac{1}{c^{2}} \cdot \frac{N C}{N A}=\frac{1}{a^{2}}$
$X(86)$	$I(0,0,-1)$	Cevapoint of $X(1)$ and $X(2)$	$\frac{1}{a+c} \cdot \frac{M B}{M A}+\frac{1}{a+b} \cdot \frac{N C}{N A}=\frac{1}{b+c}$
$X(321)$	$I(-1,0,1)$	isotomic conjugate of $X(81)$	$\frac{a+c}{b} \cdot \frac{M B}{M A}+\frac{a+b}{c} \cdot \frac{N C}{N A}=\frac{b+c}{a}$
$X(346)$	$I(0,2,0)$	isotomic conjugate of X (279)	$(s-b)^{2} \cdot \frac{M B}{M A}+(s-c)^{2} \cdot \frac{N C}{N A}=(s-a)^{2}$
$X(365)$	$I\left(\frac{3}{2}, 0,0\right)$	square root point	$b^{3 / 2} \cdot \frac{M B}{M A}+c^{3 / 2} \cdot \frac{N C}{N A}=a^{3 / 2}$
$X(366)$	$I\left(\frac{1}{2}, 0,0\right)$	isogonal conjugate of $X(365)$	$\sqrt{b} \cdot \frac{M B}{M A}+\sqrt{c} \cdot \frac{N C}{N A}=\sqrt{a}$
$X(560)$	$I(5,0,0)$	4th power point	$b^{5} \cdot \frac{M B}{M A}+c^{5} \cdot \frac{N C}{N A}=a^{5}$
$X(3596)$	$I(-2,1,0)$	1st Odehnal point	$\frac{\frac{a}{}^{3}}{s-a} x=\frac{b^{3}}{s-b} y+\frac{c^{3}}{s-c} z$

References

[1] C. Barbu, Teoreme fundamentale din geometria triunghiului, Editura Unique, Bacău, 2008.
[2] O. Bottema, On the Area of a Triangle in Barycentric Coordinates, Crux. Math., 8 (1982) 228-231.
[3] C.J. Bradley, The Algebra of Geometry: Cartesian, Areal and Projective Coordinates, Bath: Highperception, 2007.
[4] C. Coandă, Geometrie analitică în coordonate baricentrice, Editura Reprograph, Craiova, 2005, p. 13.
[5] C. Coşniţă, Coordonnées barycentriques, Librairie Vuibert, Paris, 1941, p.51.
[6] H. S. M. Coxeter, Introduction to Geometry, 2nd ed., New York, Wiley, pp.216-221, 1969.
[7] C. Kimberling, Encyclopedia of triangle centers, http://faculty.evansville.edu/ck6/encyclopedia/
[8] S. L. Loney, The Elements of Coordinate Geometry, London, Macmillan, 1962.
[9] N. Minculete, C. Barbu, Cevians of rank (k, l, m) in triangle, (submitted).
[10] N. Minculete, Teoreme şi probleme specifice de geometrie, Editura Eurocarpatica, Sfântu Gheorghe, 2007.
[11] G. D. Muggeridge, Areal Coordinates, The Mathematical Gazette, 2 (1901), 45-51.
[12] L. Nicolescu, A. Bumbacea, A. Catana, P. Horja, G. Niculescu, N. Oprea, C. Zara, Metode de rezolvare a problemelor de geometrie, Ed. Universităţii, Bucureşti, 1998.
[13] N. Oprea, Ceviene de rang k, Gazeta matematică, 8 (1989).
[14] J. A. Scott, Some examples of the use of areal coordinates in triangle geometry, The Mathematical Gazette, 11 (1999) 472-477.
[15] H. W. Tanner, Areal Coordinates, The Mathematical Gazette, 28 (1901).
[16] P. Yiu, The Uses of Homogeneous Barycentric Coordinates in Plane Euclidean Geometry, Internat. J. Math. Ed. Sci. Tech., 31 (2000) 569-578.

Department of REI, Dimitrie Cantemir
University of Brasov,
Str. Bisericii Romane, nr. 107, Brasov, Romania
e-mail: minculeten@yahoo.com
Vasile Alecsandri National College, Str. Vasile Alecsandri, 37, Bacău, Romania
e-mail: kafka_mate@yahoo.com

