"Vasile Alecsandri" University of Bacău Faculty of Sciences Scientific Studies and Research Series Mathematics and Informatics Vol. 21 (2011), No. 2, 157 - 172

ON WEAKLY θ -PRE-I CONTINUOUS FUNCTIONS

SAZIYE YUKSEL, ZEHRA GUZEL ERGUL AND TUGBA HAN SIMSEKLER

Abstract. In this paper, a strong form in ideal topological spaces of weak θ -pre continuity, called weak θ -pre-I continuity, is introduced. It is shown that weak θ -pre-I continuity is strictly weaker than strong θ -pre-I continuity and that it is between continuity and almost weak continuity. Also additional properties of these functions are investigated.

1. Introduction and preliminaries

Weakly θ -pre continuous functions were developed by Baker [5]. The purpose of this note is to introduce a strong form of weak θ -pre continuity, which we call weak θ -pre-I continuity. We establish that weak θ -pre-I continuity is strictly weaker than strong θ -pre-I continuity and that it is strictly between continuity and almost weak continuity. Also it is shown that weak θ -pre-I continuity is independent of weak continuity. Conditions are proved under which weak θ -pre-I continuity and weak continuity are related. Properties related to the graph of a weakly θ -pre-I continuous function are investigated. We show that the graph of a weakly θ -pre-I continuous function with a Hausdorff codomain is strongly pre-I-closed. Finally, additional properties of these functions are investigated.

Keywords and phrases: weakly θ -pre-I-continuous functions, contra θ -pre-I continuous functions, pre I- θ -closed functions. (2010)Mathematics Subject Classification: 54C08, 54A05

Throughout this paper, Cl(A) and Int(A) denote the closure and interior of A, respectively. Let (X,τ) be a topological space and let I be an ideal of subsets of X. An ideal is defined as a nonempty collection I of subsets of X satisfying the following two conditions: 1) If $A \in I$ and $B \subset A$, then $B \in I$; 2) If $A \in I$ and $B \in I$, then $A \cup B \in I$. An ideal topological space is a topological space (X,τ) with an ideal I on X and is denoted by (X,τ,I) . For a subset $A \subset X$, $A^*(I) = \{x \in X : U \cap A \notin I \text{ for each neighbourhood } U \text{ of } x\}$ is called the local function of A with respect to I and τ [13]. We simply write A^* instead of $A^*(I)$ in case there is no chance for confusion. For every ideal topological space (X,τ,I) , there exists a topology $\tau^*(I)$, finer than τ , generated by $\beta(I,\tau) = \{U - A : U \in \tau \text{ and } A \in I\}$, but in general $\beta(I,\tau)$ is not a topology [10]. Additionally, $Cl^*(A) = A \cup A^*$ defines a Kuratowski closure operator for $\tau^*(I)$. We recall some known definitions.

A subset A of a topological space (X, τ) is said to be pre open [1] if $A \subset Int(Cl(A))$. The family of all pre open sets of X is denoted by PO(X). The family of all pre open sets of X containing a point $x \in X$ is denoted by PO(X, x).

The complement of a pre open set is called preclosed [1]. The intersection of all pre closed sets containing A is called preclosure [2] of A and is denoted by pCl(A). A point $x \in X$ is called a precluster point of A if $U \cap A \neq \emptyset$ for each $U \in PO(X, x)$ [8]. A subset A is pre closed if and only if pCl(A) = A [8]. The preinterior [2] of A is defined by the union of all sets contained in A and is denoted by pInt(A). A point $x \in X$ is called a pre- θ -cluster point of A if $pCl(U) \cap A \neq \emptyset$ for every PO(X, x) [7]. The set of all pre- θ -cluster points of A is called the pre- θ -closure of A and denoted by $pCl_{\theta}(A)$. A subset A is said to be pre- θ -closed if $pCl_{\theta}(A) = A$ [7].

A subset A of an ideal topological space (X, τ, I) is said to be pre-I-open [6] (semi-I-open [11], α -I-open [11]) if $A \subset Int(Cl^*(A))$, $(A \subset Cl^*(Int(A)), A \subset Int(Cl^*(Int(A)))$. The complement of a pre-I-open set is called pre-I-closed [6]. The family of all pre-I-open sets of X is denoted by PIO(X) [6]. The family of all pre-I-open sets of X containing a point $x \in X$ is denoted by PIO(X, x) [6]. A point $x \in X$ is called a pre-I-cluster point [4] of X if X is called the pre-I-closure of X and denoted by X is called a pre-I-closed if and only if X if X if X is called a pre-I-closed if and only if X if X is called a pre-I-closed if and only if X if X if X is called a pre-I-cluster point [3] of X if X if X is called a pre-I-cluster point [3] of X if X if X is called a pre-I-cluster point [3] of X if X if X is called a pre-I-cluster point [4] of X is called a pre-I-cluster point [5] of X if X is called a pre-I-cluster point [6] of X if X is called a pre-I-cluster point [7] of X is called a pre-I-cluster point [8] of X if X is called a pre-I-cluster point [8] of X if X is called a pre-I-cluster point [8] of X if X is called a pre-I-cluster point [8] of X if X is called a pre-I-cluster point [8] of X if X is called a pre-I-cluster point [8] of X if X is called a pre-I-cluster point [8] of X if X is called a pre-I-cluster point [8] of X if X is called a pre-I-cluster point [8] of X if X is called a pre-I-cluster point [8] of X if X is called a pre-I-cluster point [8] of X if X is called a pre-I-cluster point [8] of X if X is called a pre-I-cluster point [8] of X if X is called a pre-I-cluster point [8] of X if X is called a pre-I-cluster point [8] of X if X is called a pre-I-cluster point [8] of X if X is called a pre-I-cluster point [8] of X if X is called a pre-I-cluster point [8] of X is called a pre-I-cluster point [8] of X if X is called a pre-I-cluster point [8] of

set of all pre-I- θ -cluster points of A is called the pre-I- θ -closure of A and denoted by $_{PI}Cl_{\theta}\left(A\right)$. A subset A is pre-I- θ -closed if and only if $_{PI}Cl_{\theta}\left(A\right)=A$ [3]. A point $x\in X$ is called pre-I-interior point [4] (pre-I- θ -interior point [3]) of A if there exists $U\in PIO\left(X,x\right)$ such that $x\in U\subset A$ ($x\in _{PI}Cl\left(U\right)\subset A$). The set of all pre-I-interior (pre-I- θ -interior) points of A is said to be pre-I-interior (pre-I- θ -interior) of A and denoted by $_{PI}Int\left(A\right)$ [4] ($_{PI}Int_{\theta}\left(A\right)$ [3]).

Definition 1. [5] A function $f:(X,\tau)\to (Y,\nu)$ is said to be weakly θ -pre continuous if $pCl_{\theta}(f^{-1}(V))\subset f^{-1}(Cl(V))$ for every open subset V of Y.

Definition 2. [14] A function $f:(X,\tau)\to (Y,\nu)$ is said to be weakly continuous, if for every $x\in X$ and every neighborhood V of f(x), there exists a neighborhood U of x such that $f(U)\subset Cl(V)$.

Definition 3. [12] A function $f:(X,\tau)\to (Y,\nu)$ is said to be almost weakly continuous if $f^{-1}(V)\subset Int(Cl(f^{-1}(Cl(V))))$ for every open subset V of Y.

Definition 4. [9] A function $f:(X,\tau,I)\to (Y,\nu)$ is said to be strongly θ -pre-I continuous, if for every $x\in X$ and every open subset V of Y containing f(x), there exists $U\in PIO(X,x)$ such that $f(P_ICl(U))\subset V$.

Lemma 1. Let A and B be subsets of (X, τ, I) . Then the following properties hold:

- (i) $_{PI}Cl_{\theta}\left(_{PI}Cl_{\theta}\left(A\right)\right) = _{PI}Cl_{\theta}\left(A\right)$
- (ii) $A \subset B \Rightarrow {}_{PI}Cl_{\theta}(A) \subset {}_{PI}Cl_{\theta}(B)$
- (iii) $PIInt_{\theta}(X A) = (X PICl_{\theta}(A))$
- (iv) $_{PI}Cl_{\theta}(X A) = (X _{PI}Int_{\theta}(A))$.

Proof. (i): Let $_{PI}Cl_{\theta}(A) = B$. Since $_{PI}Cl_{\theta}(A)$ is a pre-I- θ -closed set, B is a pre-I- θ -closed set and hence $_{PI}Cl_{\theta}(B) = B$, it is obvious that $_{PI}Cl_{\theta}(P_{I}Cl_{\theta}(A)) = _{PI}Cl_{\theta}(A)$. This proves (i).

The proof of (ii) is obvious.

(iii): Let $x \in (X - {}_{PI}Cl_{\theta}(A))$. Since $x \notin {}_{PI}Cl_{\theta}(A)$, there exists $U \in PIO(X, x)$ such that ${}_{PI}Cl(U) \cap A = \emptyset$. Hence we obtain $x \in {}_{PI}Cl(U) \subset (X - A)$ and $x \in {}_{PI}Int_{\theta}(X - A)$. This shows that $(X - {}_{PI}Cl_{\theta}(A)) \subset {}_{PI}Int_{\theta}(X - A)$. Let $x \in {}_{PI}Int_{\theta}(X - A)$. Then, there exists $U \in PIO(X)$ containing x such that $x \in {}_{PI}Cl(U) \subset (X - A)$. Then ${}_{PI}Cl(U) \cap A = \emptyset$. Hence $x \notin {}_{PI}Cl_{\theta}(A)$ and $x \in A$

 $(X - {}_{PI}Cl_{\theta}(A))$. This shows that ${}_{PI}Int_{\theta}(X - A) \subset (X - {}_{PI}Cl_{\theta}(A))$. Therefore, we obtain ${}_{PI}Int_{\theta}(X - A) = (X - {}_{PI}Cl_{\theta}(A))$.

Since $X - {}_{PI}Cl_{\theta}(X - A) = {}_{PI}Int_{\theta}(X - (X - A)) = {}_{PI}Int_{\theta}(A)$, the statement in (iv) is obviously implied by (iii).

2. Weakly θ -pre-I continuous functions and relationships with other forms of continuity

Definition 5. A function $f:(X,\tau,I)\to (Y,\nu)$ is said to be weakly θ -pre-I continuous if $_{PI}Cl_{\theta}\left(f^{-1}\left(V\right)\right)\subset f^{-1}\left(Cl\left(V\right)\right)$ for every open subset V of Y.

The following theorem gives characterizations of weakly θ -pre-I continuous functions.

Theorem 2. The following statements are equivalent for a function $f:(X,\tau,I)\to (Y,\nu)$:

- (a) f is weakly θ -pre-I continuous;
- (b) $_{PI}Cl_{\theta}\left(f^{-1}\left(Int\left(Cl\left(B\right)\right)\right)\right)\subset f^{-1}\left(Cl\left(B\right)\right)$ for every $B\subset Y$;
- (c) $_{PI}Cl_{\theta}\left(f^{-1}\left(V\right)\right)\subset f^{-1}\left(Cl\left(V\right)\right)$ for every pre-I-open $V\subset Y$;
- (d) $_{PI}Cl_{\theta}\left(f^{-1}\left(Int\left(Cl\left(V\right)\right)\right)\right)\subset f^{-1}\left(Cl\left(V\right)\right)$ for every open $V\subset Y$;
- (e) $_{PI}Cl_{\theta}\left(f^{-1}\left(Int\left(F\right)\right)\right)\subset f^{-1}\left(F\right)$ for every closed $F\subset Y$;
- (f) $f^{-1}(Int(B)) \subset PIInt_{\theta}(f^{-1}(Cl(Int(B))))$ for every $B \subset Y$;
- (g) $f^{-1}(Int(F)) \subset {}_{PI}Int_{\theta}(f^{-1}(F))$ for every pre-I-closed $F \subset Y$;
- (h) $f^{-1}(V) \subset PIInt_{\theta}(f^{-1}(Cl(V)))$ for every open $V \subset Y$.

Proof. (a) \Rightarrow (b) Let B be any subset of Y. Since Int(Cl(B)) is open in Y, by (a)

$$_{PI}Cl_{\theta}\left(f^{-1}\left(Int\left(Cl\left(B\right)\right)\right)\right)\subset f^{-1}\left(Cl\left(Int\left(Cl\left(B\right)\right)\right)\right)$$

$$\subset f^{-1}\left(Cl\left(Cl\left(B\right)\right)\right)=f^{-1}\left(Cl\left(B\right)\right)$$

and hence we obtain $_{PI}Cl_{\theta}\left(f^{-1}\left(Int\left(Cl\left(B\right)\right)\right)\right)\subset f^{-1}\left(Cl\left(B\right)\right)$.

(b) \Rightarrow (c) Let V be any pre-I-open subset of Y. For every pre-I-open set, we can see easily that $V \subset Int(Cl^*(V)) \subset Int(Cl(V))$ and by Lemma 1,

$$_{PI}Cl_{\theta}\left(f^{-1}\left(V\right)\right)\subset _{PI}Cl_{\theta}\left(f^{-1}\left(Int\left(Cl\left(V\right)\right)\right)\right)$$

and by (b) we have $_{PI}Cl_{\theta}\left(f^{-1}\left(V\right)\right)\subset _{PI}Cl_{\theta}\left(f^{-1}\left(Int\left(Cl\left(V\right)\right)\right)\right)\subset f^{-1}\left(Cl\left(V\right)\right)$.

(c) \Rightarrow (d) Let V be any open subset of Y. Since every open set is pre-I-open [6], Int(Cl(V)) is an open set hence a pre-I-open set of Y.

By (c) we have

$$_{PI}Cl_{\theta}\left(f^{-1}\left(Int\left(Cl\left(V\right)\right)\right)\right) \subset f^{-1}\left(Cl\left(Int\left(Cl\left(V\right)\right)\right)\right)$$
$$\subset f^{-1}\left(Cl\left(Cl\left(V\right)\right)\right) = f^{-1}\left(Cl\left(V\right)\right).$$

Hence we obtain $_{PI}Cl_{\theta}\left(f^{-1}\left(Int\left(Cl\left(V\right)\right)\right)\right)\subset f^{-1}\left(Cl\left(V\right)\right)$.

(d) \Rightarrow (e) Let F be any closed subset of Y. Then Int(F) is an open set. We get

$$_{PI}Cl_{\theta}\left(f^{-1}\left(Int\left(Cl\left(Int\left(F\right)\right)\right)\right)\right)\subset f^{-1}\left(Cl\left(Int\left(F\right)\right)\right)$$

and

$$P_{I}Cl_{\theta}\left(f^{-1}\left(Int\left(F\right)\right)\right) \subset P_{I}Cl_{\theta}\left(f^{-1}\left(Int\left(Cl\left(Int\left(F\right)\right)\right)\right)\right)$$

$$\subset f^{-1}(Cl\left(Int\left(F\right)\right)) \subset f^{-1}\left(Cl\left(F\right)\right) = f^{-1}\left(F\right).$$

Therefore $_{PI}Cl_{\theta}\left(f^{-1}\left(Int\left(F\right) \right) \right) \subset f^{-1}\left(F\right) .$

(e) \Rightarrow (f) Let B be any subset of Y. Since Cl(Y-B) is a closed set we get

$$_{PI}Cl_{\theta}\left(f^{-1}\left(Int\left(Cl\left(Y-B\right)\right)\right)\right)\subset f^{-1}\left(Cl\left(Y-B\right)\right)$$

and by Lemma 1

$$X - {}_{PI}Int_{\theta}\left(f^{-1}\left(Cl\left(Int\left(B\right)\right)\right)\right) \subset X - f^{-1}\left(Int\left(B\right)\right).$$

Hence we obtain $f^{-1}\left(Int\left(B\right)\right)\subset{}_{PI}Int_{\theta}\left(f^{-1}\left(Cl\left(Int\left(B\right)\right)\right)\right).$

 $(f)\Rightarrow(g)$ Let F be a pre-I-closed subset of Y. By (f) we have,

$$f^{-1}\left(Int\left(F\right)\right) \subset {}_{PI}Int_{\theta}\left(f^{-1}\left(Cl\left(Int\left(F\right)\right)\right)\right)$$

and since F is pre-I-closed,

$$f^{-1}\left(Int\left(F\right)\right) \subset {}_{PI}Int_{\theta}\left(f^{-1}\left(Cl\left(Int\left(F\right)\right)\right)\right) \subset {}_{PI}Int_{\theta}\left(f^{-1}\left(F\right)\right)$$

and $f^{-1}\left(Int\left(F\right)\right) \subset {}_{PI}Int_{\theta}\left(f^{-1}\left(F\right)\right)$.

(g) \Rightarrow (h) Let V be any open subset of Y. Then Cl(V) is closed and every closed set is pre-I-closed[6]. By (g),

$$f^{-1}\left(Int\left(Cl\left(V\right)\right)\right) \subset {}_{PI}Int_{\theta}\left(f^{-1}\left(Cl\left(V\right)\right)\right)$$

Since V is open,

$$f^{-1}(V) \subset f^{-1}(Int(Cl(V))) \subset PIInt_{\theta}(f^{-1}(Cl(V)))$$

Consequently, $f^{-1}\left(V\right)\subset {}_{PI}Int_{\theta}\left(f^{-1}\left(Cl\left(V\right)\right)\right)$.

(h) \Rightarrow (a) Let V be any open subset of Y. Since Int(Y-V) is open, we obtain

$$f^{-1}\left(Int\left(Y-V\right)\right) \subset {}_{PI}Int_{\theta}\left(f^{-1}\left(Cl\left(Int\left(Y-V\right)\right)\right)\right)$$

and by Lemma 1 $X-f^{-1}\left(Cl\left(V\right)\right)\subset X-{}_{PI}Cl_{\theta}\left(f^{-1}\left(Int\left(Cl\left(V\right)\right)\right)\right)$. Hence we have

$$_{PI}Cl_{\theta}\left(f^{-1}\left(Int\left(Cl\left(V\right)\right)\right)\right)\subset f^{-1}\left(Cl\left(V\right)\right)$$

and

$$P_{I}Cl_{\theta}\left(f^{-1}\left(V\right)\right) = P_{I}Cl_{\theta}\left(f^{-1}\left(Int\left(V\right)\right)\right)$$

$$\subset P_{I}Cl_{\theta}\left(f^{-1}\left(Int\left(Cl\left(V\right)\right)\right)\right) \subset f^{-1}\left(Cl\left(V\right)\right)$$

and $_{PI}Cl_{\theta}\left(f^{-1}\left(V\right) \right) \subset f^{-1}\left(Cl\left(V\right) \right) .$ Thus f is weakly $\theta\text{-pre-I}$ continuous. \blacksquare

Lemma 3. Let (X, τ, I) be an ideal topological space. $pCl_{\theta}(A) \subset p_{I}Cl_{\theta}(A)$ for every subset $A \subset X$.

Proof. Let $x \in pCl_{\theta}(A)$ and $U \in PIO(X)$ such that $x \in U$. Since every pre-I-open set is pre open [6], $pCl(U) \cap A \neq \emptyset$ and we know that $pCl(U) \subset {}_{PI}Cl(U)$ for every subset U of X, hence ${}_{PI}Cl(U) \cap A \neq \emptyset$. Therefore $x \in {}_{PI}Cl_{\theta}(A)$.

By Lemma 3, obviously every weakly θ -pre-I continuous function is weakly θ -pre continuous. The following example shows that the converse implication does not hold.

Example 1. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a, b\}\}$, $\nu = \{\emptyset, X, \{a\}, \{b, c\}\}$ and $I = \{\emptyset, \{b\}\}$. The identity mapping $f : (X, \tau, I) \to (X, \nu)$ is weakly θ -pre-continuous but not weakly θ -pre-I continuous.

Theorem 4. [9] A function $f:(X,\tau,I)\to (Y,\nu)$ is strongly θ -pre-I continuous if and only if $_{PI}Cl_{\theta}\left(f^{-1}\left(B\right)\right)\subset f^{-1}\left(Cl\left(B\right)\right)$ for every subset B of Y.

Obviously strongly θ -pre-I continuity implies weakly θ -pre-I continuity. The following example shows that the converse implication does not hold.

Example 2. Let $X = \{a, b\}$, $\tau = \{X, \emptyset, \{a\}\}$ and $\mathbf{I} = \{\emptyset, \{\mathbf{b}\}\}$. The function $f: (X, \tau, I) \to (X, \tau)$ given by f(a) = b and f(b) = a is weakly θ -pre-I continuous but not strongly θ -pre-I continuous.

Lemma 5. If a subset A of an ideal topological space (X, τ, I) is open, then $Cl(A) = PICl_{\theta}(A)$.

Proof. Let A be any open subset of (X, τ, I) . We must show that $_{PI}Cl_{\theta}(A) \subset Cl(A)$. Let $x \notin Cl(A)$. Then, there exists an open subset U containing x such that $U \cap A = \emptyset$. Then $U \subset (X - A)$, X-A is closed. Since every closed set is pre-I-closed, $_{PI}Cl(U) \subset _{PI}Cl(X - A) = X - A$. Hence we have $_{PI}Cl(U) \cap A = \emptyset$ and $x \notin _{PI}Cl_{\theta}(A)$. Thus we obtain; $_{PI}Cl_{\theta}(A) \subset Cl(A)$.

Now we must show that $Cl(A) \subset {}_{PI}Cl_{\theta}(A)$. Let $x \in Cl(A)$ and $x \in V \in PIO(X)$. Then $x \in V \subset Int(Cl^*(V))$ and hence $A \cap Int(Cl^*(V)) \neq \emptyset$. Since A is open

$$A \cap Int\left(Cl^{*}\left(V\right)\right) \subset A \cap Int\left(Cl\left(V\right)\right) = Int\left(A\right) \cap Int\left(Cl\left(V\right)\right)$$
$$= Int\left(A \cap Cl\left(V\right)\right) \subset Int\left(Cl\left(A \cap V\right)\right) \subset Cl\left(A \cap V\right).$$

Therefore, we obtain $Cl(A \cap V) \neq \emptyset$ and hence $A \cap V \neq \emptyset$.

$$(A \cap V) \cup (A \cap Cl (Int (V))) = A \cap (V \cup Cl (Int (V))) = A \cap_{P} Cl (V).$$

Since $A \cap V \neq \emptyset$, $A \cap pCl(V) \neq \emptyset$. By the pre- θ cluster point definition, $x \in pCl_{\theta}(A)$. By Lemma 3, $pCl_{\theta}(A) \subset {}_{PI}Cl_{\theta}(A)$ and hence $x \in {}_{PI}Cl_{\theta}(A)$. This shows that $Cl(A) = {}_{PI}Cl_{\theta}(A)$ for any open set A of X.

Theorem 6. If $f:(X,\tau,I)\to (Y,\nu)$ is continuous, then f is weakly θ -pre-I continuos.

Proof. Let $V \subset Y$ be open. Then, since f is continuous $f^{-1}(V)$ is open ,

$$_{PI}Cl_{\theta}\left(f^{-1}\left(V\right)\right)=Cl\left(f^{-1}\left(V\right)\right).$$

Also, $Cl\left(f^{-1}\left(V\right)\right)\subset f^{-1}\left(Cl\left(V\right)\right)$. We can easily see that $_{PI}Cl_{\theta}\left(f^{-1}\left(V\right)\right)=Cl\left(f^{-1}\left(V\right)\right)\subset f^{-1}\left(Cl\left(V\right)\right)$ and hence f is weakly θ -pre-I continuous. \blacksquare

Remark 1. Example 2. shows that a weakly θ -pre-I continuous function is not continuous.

Thus weak θ -pre-I continuity is strictly weaker than continuity.

Theorem 7. [15] A function $f:(X,\tau)\to (Y,\nu)$ is almost weakly continuous if and only if $pCl(f^{-1}(V)\subset f^{-1}(Cl(V)))$ for every open subset V of Y.

Lemma 8. Let (X, τ, I) be an ideal topological space. $pCl(A) \subset PICl_{\theta}(A)$ for every subset $A \subset X$.

Proof. It is clear that $pCl(A) \subset {}_{P}Cl_{\theta}(A)$ for every subset $A \subset X$. Hence the proof is a direct consequence of Lemma 3.

The following theorem is an immediate consequence of Theorem 7 and Lemma 8.

Theorem 9. If $f:(X,\tau,I)\to (Y,\nu)$ is weakly θ -pre-I continuous, then f is almost weakly continuos.

In the next example we see that weak θ -pre-I continuity is not implied by almost weak continuity.

Example 3. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}, \nu = \{\emptyset, X, \{b\}, \{c\}, \{b, c\}\}, I = \{\emptyset, \{b\}\}.$ The identity function $f : (X, \tau, I) \to (X, \nu)$ is almost weakly continuous but not weakly θ -pre-I continuous.

Thus weak θ -pre-I continuity is strictly between continuity and almost weak continuity.

Definition 6. An ideal topological space (X, τ, I) is said to be pre-I-regular [3](p-I-regular [9]), if for each pre-I-closed (closed) set F and each point $x \in (X - F)$, there exist disjoint pre-I-open sets U and V such that $x \in U$ and $F \subset V$.

Lemma 10. An ideal topological space (X, τ, I) is pre-I-regular [3](p-I-regular [9]) if and only if for each $x \in X$ and each pre-I-open (open) set U of X containing x, there exists $V \in PIO(X, x)$ such that $x \in V \subset_{PI}Cl(V) \subset U$.

Theorem 11. [6] Let I_n be the ideal of nowhere dense sets in (X, τ) . For ideal topological space (X, τ, I) and $A \subset X$; if $I = I_n$, then A is pre-I-open if and only if A is pre-open.

Lemma 12. A space $(X, \tau, I = I_n)$ is pre-I-regular if and only if $P_ICl_\theta(A) = pCl(A)$ for every subset A of X.

Proof. ⇒ : Assume that (X, τ, I_n) is pre-I-regular. Let $A \subset X$ and $x \in {}_{PI}Cl_{\theta}(A)$. Let U be a pre-open subset of X with $x \in U$. By Theorem 11, U is pre-I-open. Then there exists $W \in PIO(X, x)$ such that $x \in W \subset {}_{PI}Cl(W) \subset U$. Since $x \in {}_{PI}Cl_{\theta}(A)$, ${}_{PI}Cl(W) \cap A \neq \emptyset$ and hence $U \cap A \neq \emptyset$. Thus $x \in pCl(A)$. Since $pCl(A) \subset {}_{PI}Cl_{\theta}(A)$ for every subset $A \subset X$, we obtain ${}_{PI}Cl_{\theta}(A) = pCl(A)$.

 \Leftarrow : Assume that $_{PI}Cl_{\theta}\left(A\right)=pCl\left(A\right)$ for every $A\subset X$. Let $x\in X$ and $x\notin F$, where F is pre-I-closed. Since $F=_{PI}Cl\left(F\right), x\notin_{PI}Cl\left(F\right)$. Since in general, we have $pCl\left(F\right)\subset_{PI}Cl\left(F\right)$ for every subsets F of X, $x\notin_{PC}Cl\left(F\right)$ and hence $x\notin_{PI}Cl_{\theta}\left(F\right)$. So there exists $U\in_{PI}Cl\left(X,x\right)$ such that $_{PI}Cl\left(U\right)\cap_{F}=\emptyset$. Thus $x\in U$ and $F\subset_{X-PI}Cl\left(U\right)$ which proves that (X,τ,I_{n}) is pre-I-regular. \blacksquare

The next theorem is an immediate consequence of Theorem 9 and Lemma 12.

Theorem 13. If (X, τ, I_n) is pre-I-regular, then a function $f:(X, \tau, I_n) \to (Y, \nu)$ is weakly θ -pre-I continuous if and only if it almost weakly continuous.

It follows from the next example that weak θ -pre-I continuity is independent of weak continuity.

Remark 2. Example 3. shows that a weakly continuous function is not weakly θ -pre-I continuos.

Example 4. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$, $\nu = \{\emptyset, X, \{c\}, \{a, b\}\}$, $I = \{\emptyset, \{a\}\}$. The identity function $f : (X, \tau, I) \rightarrow (X, \nu)$ is weakly θ -pre-I continuous but not weakly continuous.

We now investigate conditions under which weak θ -pre-I continuity is related to weak continuity.

Theorem 14. [16] A function $f:(X,\tau)\to (Y,\nu)$ is weakly continuous if and only if $Cl(f^{-1}(V))\subset f^{-1}(Cl(V))$ for every open subset V of Y.

Lemma 15. An ideal topological space (X, τ, I) is p-I-regular if and only if $_{PI}Cl_{\theta}(A) \subset Cl(A)$ for every subset A of X.

Proof. ⇒ Assume that (X, τ, I) is p-I-regular. Let $A \subset X$ and let $x \in_{PI} Cl_{\theta}(A)$. Let U be an open subset of X with $x \in U$. Then there exists $W \in PIO(X, x)$ such that $x \in W \subset_{PI} Cl(W) \subset U$. Since $x \in_{PI} Cl_{\theta}(A)$, $_{PI}Cl(W) \cap A \neq \emptyset$. Hence $U \cap A \neq \emptyset$. Thus $x \in Cl(A)$. \Leftarrow Assume that $_{PI}Cl_{\theta}(A) \subset Cl(A)$ for every $A \subset X$. Let $x \in X$ and $x \notin F$, where F is closed. Then $x \notin Cl(F)$ and hence $x \notin_{PI} Cl_{\theta}(F)$. So, there exists $U \in PIO(X, x)$ such that $_{PI}Cl(U) \cap F = \emptyset$. Thus $x \in U$ and $F \subset X \cap_{PI} Cl(U)$ which proves that (X, τ, I) is p-I-regular. \blacksquare

Theorem 16. If (X, τ, I) is a p-I-regular space and $f: (X, \tau, I) \to (Y, \nu)$ is weakly continuous, then f is weakly θ -pre-I continuous.

Proof. Let $V \subset Y$ be an open. Since (X, τ, I) is p-I-regular, by Lemma 15

$$_{PI}Cl_{\theta}\left(f^{-1}\left(V\right)\right)\subset Cl\left(f^{-1}\left(V\right)\right).$$

Since f is weakly continuous, $Cl(f^{-1}(V)) \subset f^{-1}(Cl(V))$. Thus

$$_{PI}Cl_{\theta}\left(f^{-1}\left(V\right) \right) \subset f^{-1}\left(Cl\left(V\right) \right)$$

and hence f is weakly θ -pre-I continuous.

Lemma 17. Let (X, τ, I) be an ideal topological space. If every pre-I-open subset of X is α -I-open, then $Cl(A) \subset_{PI} Cl_{\theta}(A)$ for every subset A of X.

Proof. Let $A \subset X$ and $x \in Cl(A)$. Let $U \in PIO(X)$ such that $x \in U$. Then U is α -I-open and

$$x \in U \subset Int(Cl^*(Int(U))) \subset Int(U \cup Cl^*(Int(U)))$$

 $\subset Int(U \cup Cl(Int(U))) = Int(pCl(U)).$

Since $x \in Cl(A)$, $Int(pCl(U)) \cap A \neq \emptyset$ and hence $pCl(U) \cap A \neq \emptyset$. Therefore $x \in pCl_{\theta}(A)$. Since in general $pCl_{\theta}(A) \subset {}_{PI}Cl_{\theta}(A)$, then $x \in {}_{PI}Cl_{\theta}(A)$. Hence $Cl(A) \subset {}_{PI}Cl_{\theta}(A)$.

Theorem 18. If (X, τ, I) satisfies the condition that every pre-I-open set is α -I-open and $f: (X, \tau, I) \to (Y, \nu)$ is weakly θ -pre-I continuous, then f is weakly continuous.

Proof. Let $V \subset Y$ be open. Since f is weakly θ - pre-I continuous,

$$_{PI}Cl_{\theta}\left(f^{-1}\left(V\right) \right) \subset f^{-1}\left(Cl\left(V\right) \right) .$$

By Lemma 17, $Cl(f^{-1}(V)) \subset_{PI} Cl_{\theta}(f^{-1}(V))$. Hence $Cl(f^{-1}(V)) \subset f^{-1}(Cl(V))$ which proves that f is weakly continuous.

Definition 7. A function $f:(X,\tau,I)\to (Y,\nu)$ is said to be contra θ -pre-I continuous provided that for every open subset V of Y, $f^{-1}(V)$ is pre-I- θ -closed.

Theorem 19. If $f:(X,\tau,I)\to (Y,\nu)$ is contra θ -pre-I continuous, then f is weakly θ - pre-I continuous.

Proof. Let V be an open subset of Y. Then, since $f^{-1}(V)$ is pre-I- θ -closed,

$$_{PI}Cl_{\theta}\left(f^{-1}\left(V\right)\right)=f^{-1}\left(V\right)\subset f^{-1}\left(Cl\left(V\right)\right)$$

which proves that f is weakly θ - pre-I continuous.

The following example shows that weak θ -pre-I continuity is not equivalent to contra θ -pre-I continuity.

Example 5. Let $X = \{a, b\}$, $\tau = \{\emptyset, X, \{a\}\}$ $I = \{\emptyset, \{b\}\}$. The identity function $f: (X, \tau, I) \to (X, \tau)$ is weakly θ -pre-I continuous but not contra θ -pre-I continuous.

3. Properties

Definition 8. [9] The graph G(f) of a function $f:(X,\tau,I) \to (Y,\nu)$, is said to be strongly pre-I-closed provided that for every $(x,y) \in (X \times Y) - G(f)$ there exist $U \in PIO(X,x)$ and an open set $V \subset Y$ containing y such that $(x,y) \in (PICl(U) \times V) \subset X \times Y - G(f)$.

Theorem 20. If $f:(X,\tau,I)\to (Y,\nu)$ is weakly θ -pre-I continuous and Y is Hausdorff, then the graph of f is strongly pre-I-closed.

Proof. Let $(x,y) \in (X \times Y) - G(f)$. Then there exist disjoint open sets V and W in Y with $y \in V$ and $f(x) \in W$. Thus $f(x) \notin Cl(V)$ and hence $x \notin f^{-1}(Cl(V))$. Since f is weakly θ-pre-I continuous, $x \notin P_ICl_\theta(f^{-1}(V))$. So there exists $U \in PIO(X,x)$ such that $P_ICl(U) \cap f^{-1}(V) = \emptyset$. Therefore $(x,y) \in (P_ICl(U) \times V) \subset X \times Y - G(f)$, which proves that G(f) is strongly pre-I-closed. ■

Corollary 21. [9] If $f:(X,\tau,I)\to (Y,\nu)$ is strongly θ -pre-I continuous and Y is Hausdorff, then the graph of f is strongly pre-I-closed.

Theorem 22. [4] Let (X, τ, I) be an ideal topological space, A and X_0 be subsets of X. Then, the following properties hold:

- (1) If $A \in PIO(X)$ and $X_0 \in SIO(X)$, then $A \cap X_0 \in PIO(X_0)$
- (2) If $A \in PIO(X_0)$ and $X_0 \in PIO(X)$, then $A \in PIO(X)$.

Theorem 23. [4] Let (X, τ, I) be an ideal topological space, X_0 and A be subsets of X such that $A \subset X_0 \subset X$. Let $_{PI}Cl_{X_0}(A)$ denote the pre-I-closure of A in the subspace X_0 .

- (1) If X_0 is semi-I-open in X, then $P_ICl_{X_0}(A) \subset P_ICl(A)$.
- (2) If $A \in PIO(X_0)$ and $X_0 \in PIO(X)$, then $_{PI}Cl(A) \subset _{PI}Cl_{X_0}(A)$.

If $B \subset A \subset X$, then we shall denote the pre–I- θ -closure of B with respect to relative topology on A by $_{PI}Cl_{A\theta}\left(B\right) .$

Lemma 24. Let A and B be subsets of a space X such that $B \subset A \subset X$. If A is semi-I-open, then $_{PI}Cl_{A\theta}\left(B\right) \subset _{PI}Cl_{\theta}\left(B\right)$.

Proof. Let $x \in {}_{PI}Cl_{A\theta}\left(B\right)$ and let $U \in PIO\left(X,x\right)$. Then $x \in U \cap A$ and by Theorem 22, $U \cap A \in PIO\left(A\right)$. Since $x \in {}_{PI}Cl_{A\theta}\left(B\right)$, ${}_{PI}Cl_{A}\left(U \cap A\right) \cap B \neq \emptyset$. By Theorem 23, ${}_{PI}Cl_{A}\left(U \cap A\right) \subset {}_{PI}Cl\left(U \cap A\right)$. So ${}_{PI}Cl\left(U \cap A\right) \cap B \neq \emptyset$ and hence ${}_{PI}Cl\left(U\right) \cap B \neq \emptyset$. Thus $x \in {}_{PI}Cl_{\theta}\left(B\right)$. ■

Theorem 25. If $f:(X,\tau,I)\to (Y,\nu)$ is weakly θ -pre-I continuous and A is a semi-I-open subset of X, then $f/_A:(A,\tau_A,I_A)\to (Y,\nu)$ is weakly θ -pre-I continuous.

Proof. Let V be an open subset of Y. Then, by Lemma 24, we see that

$$P_{I}Cl_{A\theta}\left(f/_{A}^{-1}\left(V\right)\right) =_{P_{I}}Cl_{A\theta}\left(f^{-1}\left(V\right)\cap A\right) \subset_{P_{I}}Cl_{\theta}\left(f^{-1}\left(V\right)\cap A\right)\cap A$$

$$\subset_{P_{I}}Cl_{\theta}\left(f^{-1}\left(V\right)\right)\cap A\subset f^{-1}\left(Cl\left(V\right)\right)\cap A=f/_{A}^{-1}\left(Cl\left(V\right)\right).$$
Hence $f/_{A}:\left(A,\tau_{A},I_{A}\right)\to\left(Y,\nu\right)$ is weakly θ -pre-I continuous. \blacksquare

Theorem 26. If $f:(X,\tau,I)\to (Y,\nu)$ is weakly θ -pre-I continuous and $g:(Y,\nu)\to (Z,\sigma)$ is continuous, then $g\circ f:(X,\tau,I)\to (Z,\sigma)$ is weakly θ -pre-I continuous.

Proof. Let V be an open set in Z. Then

$$PICl_{\theta} ((g \circ f)^{-1} (V)) = PICl_{\theta} (f^{-1} (g^{-1} (V))) \subset f^{-1} (Cl (g^{-1} (V)))$$

$$\subset f^{-1} (g^{-1} (Cl(V)) = (gof)^{-1} (Cl(V))$$

which proves that gof is weakly θ -pre-I continuous.

Definition 9. A function $f:(X,\tau,I)\to (Y,\nu,I_1)$ is said to be pre-I- θ -closed provided that for every pre-I- θ -closed subset V of X, f(V) is pre-I- θ -closed in Y.

Theorem 27. A function $f:(X,\tau,I)\to (Y,\nu,I_1)$ is pre-I- θ -closed function if and only if $_{PI}Cl_{\theta}\left(f\left(A\right)\right)\subset f\left(_{PI}Cl_{\theta}\left(A\right)\right)$ for every subset $A\subset X$.

Proof. ⇒ Let A be any subset of (X, τ, I) . Since $A \subseteq_{PI} Cl_{\theta}(A)$ for every subset $A \subset X$, $f(A) \subseteq f(P_ICl_{\theta}(A))$ and $P_ICl_{\theta}(f(A)) \subseteq_{PI} Cl_{\theta}(f(P_ICl_{\theta}(A)))$. Since f is pre-I-θ-closed function, $f(P_ICl_{\theta}(A))$ pre-I-θ-closed. Therefore,

 $_{PI}Cl_{\theta}\left(f\left(p_{I}Cl_{\theta}\left(A\right)\right)\right)=f\left(p_{I}Cl_{\theta}\left(A\right)\right)$ and hence $_{PI}Cl_{\theta}\left(f\left(A\right)\right)\subseteq f\left(p_{I}Cl_{\theta}\left(A\right)\right)$.

 \Leftarrow Let K be a pre-I- θ -closed subset of (X, τ, I) . Then $K =_{PI} Cl_{\theta}(K)$ and hence $_{PI}Cl_{\theta}(f(K)) \subseteq f(_{PI}Cl_{\theta}(K)) = f(K)$. Since $A \subseteq_{PI} Cl_{\theta}(A)$ for every subset $A \subset X$, $f(K) \subset_{PI} Cl_{\theta}(f(K))$. This shows that $_{PI}Cl_{\theta}(f(K)) = f(K)$.

Theorem 28. Let $f:(X,\tau,I) \to (Y,\nu,I_1)$ and $g:(Y,\nu,I_1) \to (Z,\sigma)$ be functions. If $g \circ f:(X,\tau,I) \to (Z,\sigma)$ is weakly θ -pre-I continuous and f is surjective, pre-I- θ closed, then g is weakly θ -pre-I continuous.

Proof. Let V be an open subset of Z. Since $g \circ f: (X, \tau, I) \to (Z, \sigma)$ is weakly θ -pre-I continuous, $PICl_{\theta}(f^{-1}(g^{-1}(V))) \subset f^{-1}(g^{-1}(Cl(V)))$ and hence

$$f\left(p_{I}Cl_{\theta}\left(f^{-1}\left(g^{-1}\left(V\right)\right)\right)\right)\subset g^{-1}\left(Cl\left(V\right)\right).$$

Since f is pre-I- θ closed, $f(p_ICl_{\theta}(f^{-1}(g^{-1}(V))))$ is pre-I- θ closed,

$$_{PI}Cl_{\theta}\left(f\left(f^{-1}\left(g^{-1}\left(V\right)\right)\right)\right)\subset f\left(_{PI}Cl_{\theta}\left(f^{-1}\left(g^{-1}\left(V\right)\right)\right)\right)$$

and hence $_{PI}Cl_{\theta}\left(f\left(f^{-1}\left(g^{-1}\left(V\right)\right)\right)\right)\subset g^{-1}\left(Cl\left(V\right)\right)$. Finally, since f is surjective, it follows that $_{PI}Cl_{\theta}\left(\left(g^{-1}\left(V\right)\right)\right)\subset g^{-1}\left(Cl\left(V\right)\right)$, which proves that g is weakly θ -pre-I continuous. \blacksquare

Theorem 29. Let $f:(X,\tau,I)\to (Y,\nu)$ and $g:(Y,\nu)\to (Z,\sigma)$ be functions. If $g\circ f:(X,\tau,I)\to (Z,\sigma)$ is weakly θ -pre-I continuous and g is a clopen injection, then f is weakly θ -pre-I continuous.

Proof. Let V be an open subset of Y. Since g is open and $g \circ f$ is weakly θ -pre-I continuous, we have

$$_{PI}Cl_{\theta}\left(f^{-1}\left(V\right)\right)\subset_{PI}Cl_{\theta}\left(f^{-1}\left(g^{-1}\left(g\left(V\right)\right)\right)\right)\subset f^{-1}\left(g^{-1}\left(Cl\left(g\left(V\right)\right)\right)\right).$$
 Furthermore, since g is closed and injective,

$$f^{-1}\left(g^{-1}\left(Cl\left(g\left(V\right)\right)\right)\right) \subset f^{-1}\left(g^{-1}\left(g\left(Cl\left(V\right)\right)\right)\right) = f^{-1}\left(Cl\left(V\right)\right).$$

Hence $_{PI}Cl_{\theta}\left(f^{-1}\left(V\right)\right)\subset f^{-1}\left(Cl\left(V\right)\right)$, which proves that f is weakly θ -pre-I continuous. \blacksquare

References

- [1] M. E. Abd El-Monsef, S. N. El-Deep and A. S. Mashhour, **On precontinuous** and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47–53.
- [2] M. E. Abd El-Monsef, I. A. Hasanein and A. S. Mashhour, **On pretopological spaces**, Bull. Soc. Math. R. S. Roumanie, 28 (76) (1984), 39–45.
- [3] A. Acikgoz, E. Gursel and S. Yuksel, **On a new concept of functions in ideal topological spaces**, Journal of Faculty of Science, Ege University, 29 (2006), 30–35.
- [4] A. Acikgoz, E. Gursel and S. Yuksel, **On a new type of continuous functions in ideal topological space**, The Journal of the Indian Academy of Mathematics, 28 (2007), 427–438.
- [5] C. W. Baker, **Weakly** θ **precontinuous functions**, Acta Math. Hungar. 100 (4) (2003), 343–351.
- [6] J. Dontchev, On pre-I-open sets and a decomposition of I-continity, Banyan Math., 2, 1996.
- [7] J. Dontchev, M. Ganster and T. Noiri, On p-closed spaces, Internat. J. Math. & Math. Sci. 24, No:3 (2000), 203–212.
- [8] N. El-Deeb, I. A. Hasanein, A. S. Mashhour and T. Noiri, On p-regular spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 27 (75) (1983), 311–315.
- [9] S. Yuksel, T. H. Simsekler, Z. Guzel and T. Noiri, Strongly θ-pre-Icontinuous functions, Scientific Studies and Research Series Mathematics and InformaticsVol. 20 (2010), No. 2, 111 - 126.
- [10] T.R. Hamlett and D. Jankoviæ, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295–310.
- [11] E. Hatir and T. Noiri, On decompositions of continuity via idealization, Acta Math. Hungar. 96 (4) (2002), 341–349.
- [12] D. S. Jankovic, θ -regular spaces, Internat. J. Math. & Math. Sci. Vol.8, No. 3 (1985) 615–619.
- [13] K. Kuratowski, **Topology**, Vol. I, Academic Pres New York, 1966.
- [14] N. Levine, A decomposition of continuity in topological spaces, Amer. Math. Monthly, 68 (1961), 44–46.
- [15] T. Noiri and V. Popa, Almost weakly continuous functions, Demonstratio Math. 25 (1992), 241–251.
- [16] D. A. Rose, Weak continuity and almost continuity, Internat. J. Math. & Math. Sci. Vol. 7, No.2 (1984), 311–318.

Saziye YUKSEL Selcuk University, Faculty of Science, Department of Mathematics, 42031 Konya, Turkey syuksel@selcuk.edu.tr

Zehra GUZEL ERGUL Ahi Evran University, Faculty of Science, Department of Mathematics, 40100 Konya, Turkey zguzel@ahievran.edu.tr

Tugba Han SIMSEKLER Selcuk University, Faculty of Science, Department of Mathematics, 42031 Konya, Turkey tugbahan@selcuk.edu.tr