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N–SUBALGEBRAS AND N–FILTERS IN
CI–ALGEBRAS

A. REZAEI AND A. BORUMAND SAEID

Abstract. In this paper, we introduce the notions of N –
subalgebras and N –filters in CI–algebras and give a number of their
properties. The relationship between N –subalgebras and N –filters is
also investigated.

1. Introduction and preliminaries

Some recent researches led to generalizations of the notion of fuzzy
set introduced by Zadeh in 1965 [12]. The generalization of the crisp
set to fuzzy sets relied on spreading positive information that fit the
point {1} into the interval [0, 1]. In order to provide a mathematical
tool to deal with negative information, Jun et al. [2] introduced N –
structures, based on negative-valued functions.

In 1966, Y. Imai and K. Iseki [1] introduced two classes of abstract
algebras: BCK-algebras and BCI-algebras. It is known that the class
of BCK-algebras is a proper subclass of the class of BCI-algebras.
Recently, H. S. Kim and Y. H. Kim defined a BE-algebra [6]. Biao
Long Meng, defined notion of CI–algebra as a generalization of a BE–
algebra [8].
BE-algebra and CI-algebra are studied by some authors [5, 9, 10,

11].
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Jun et al. [2, 3, 4] discussed the notion of N –structures in BCH
/BCK/BCI–algebras and investigated their properties. They intro-
duced the notions of N –ideals of subtraction algebras and N –closed
ideals in BCK/BCI–algebras.

In the present paper we continue to study CI–algebras and apply
the N –structures to the filter theory in CI–algebras, also investigate
the relationship between N –subalgebra and N –filters.

In this section we review the basic definitions and some elementary
aspects that are necessary for this paper.

Recall that a CI–algebra is an algebra (X; ∗, 1) of type (2, 0) satis-
fying the following axioms:

(CI1) x ∗ x = 1;
(CI2) 1 ∗ x = x;
(CI3) x ∗ (y ∗ z) = y ∗ (x ∗ z) for all x, y, z ∈ X. A CI–algebra

X satisfying the condition x ∗ 1 = 1 is called a BE–algebra. In any
CI–algebra X one can define a binary relation ” ≤ ” by x ≤ y if and
only if x ∗ y = 1.

A CI–algebra X has the following properties:
(1.1) y ∗ ((y ∗ x) ∗ x) = 1,
(1.2) (x ∗ 1) ∗ (y ∗ 1) = (x ∗ y) ∗ 1,
(1.3) if 1 ≤ x, then x = 1,
for all x, y ∈ X.
A non-empty subset S of a CI–algebra X is called a subalgebra of

X if x∗y ∈ S whenever x, y ∈ S. A mapping f : X → Y of CI–algebra
is called a homomorphism if f(x ∗ y) = f(x) ∗ f(y) for all x, y ∈ X.
A non-empty subset F of CI–algebra X is called a filter of X if (1)
1 ∈ F , (2) x ∈ F and x∗y ∈ F implies y ∈ F. A filter F of CI–algebra
X is said to closed if x ∈ F implies x ∗ 1 ∈ F.

A nonempty subset S of a CI–algebra X is called a subalgebra of
X if x ∗ y ∈ S, for all x, y ∈ S. For our convenience, the empty set ∅
is regarded as a subalgebra of X.

Denote by Q(X, [−1, 0]) the collection of functions from a set X to
[−1, 0]. We say that an element of Q(X, [−1, 0]) is a negative-valued
function from X to [−1, 0] (briefly, N –function on X). By an N –
structure we mean an ordered pair (X, f) of X and an N –function f
on X.

2. N–subalgebras of CI–algebras

In what follows, let X denote a CI–algebra and f an N –function
on X unless otherwise specified.
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Definition 2.1. By a subalgebra of X based on N–function f (briefly,
N–subalgebra of X), we mean an N–structure (X, f) in which f sat-
isfies the following assertion:

(2.1) (∀x, y ∈ X)(f(x ∗ y) ≤ max{f(x), f(y)}).
Example 2.1. Let X = {1, a, b} be a set. With the following Cayley
table:

∗ 1 a b
1 1 a b
a 1 1 b
b 1 a 1

Then (X; ∗, 1) is a CI–algebra. Define an N–function f : X →
[−1, 0] by f(1) = −0.6, f(a) = −0.4 and f(b) = −0.2. Then (X, f)
is an N–subalgebra of X. But N–function g : X → [−1, 0] defined by
g(1) = −0.1, g(a) = −0.3 and g(b) = −0.4 is not an N–subalgebra
because

Example 2.2. Let N be the set of all natural numbers and ”∗” be the
binary operation on N defined by

x ∗ y =

 y if x = 1
1 if x 6= 1

Then (N; ∗, 1) is a CI–algebra. Define an N–function f : N →
[−1, 0] by

f(x) =

 α if x = 1
β if x 6= 1

where α < β < 0, then (N, f) is an N–subalgebra of N.

Lemma 2.1. Every N–subalgebra (X, f) of X satisfies the following
inequality:

(i) (∀x ∈ X)(f(x) ≥ f(1)).
(ii) (∀x ∈ X)(f(x ∗ 1) ≤ f(x)).

Proof. (i) Note that x ∗ x = 1 for all x ∈ X. Using (2.1), we have

f(1) = f(x ∗ x) ≤ max{f(x), f(x)} = f(x),

for all x ∈ X.
(ii) Let x ∈ X. Then

f(x ∗ 1) ≤ max{f(x), f(1)} = max{f(x), f(x ∗ x)}
≤ max{f(x),max{f(x), f(x)}}
= f(x).



106 A. REZAEI AND A. BORUMAND SAEID

Proposition 2.1. If an N–subalgebra (X, f) of X satisfies the fol-
lowing inequality:

(2.2) (∀x, y ∈ X)(f(x ∗ y) ≤ f(x)).
Then f is a constant function.

Proof. Let x ∈ X. Using Lemma 2.1, we have f(x) = f(1 ∗ x) ≤ f(1).
It follows that f(x) = f(1), and so f is a constant function.

Theorem 2.1. The family of N–subalgebras of X forms a complete
distributive lattice under the ordering of set inclusion ⊂.

Proof. Let {fi | i ∈ I} be a family ofN – subalgebra of X. Since [−1, 0]
is a completely distributive lattice with respect to the usual ordering
in [−1, 0], it is sufficient to show that ∪i∈Ifi is an N –subalgebra of X.
Let x, y ∈ X. Then

(∪i∈Ifi)(x ∗ y) = sup{fi(x ∗ y) | i ∈ I}
≤ sup{max{fi(x), fi(y)} | i ∈ I}
= max(sup{fi(x) | i ∈ I}, sup{fi(y) | i ∈ I})
= max(∪i∈Ifi(x),∪i∈Ifi(y)).

Hence ∪i∈Ifi is an N –subalgebra of X.

Theorem 2.2. If (X, f) is an N–subalgebra of X, then the set

Xf := {x ∈ X | f(x) = f(1)}
is a subalgebra of X.

Proof. Let x, y ∈ Xf . Then f(x) = f(1) = f(y), and so

f(x ∗ y) ≤ max{f(x), f(y)} = max{f(1), f(1)} = f(1).

By Lemma 2.1, we get that f(x∗y) = f(1) which means that x∗y ∈ Xf .

Theorem 2.3. Let M be a (crisp) subset of X. Suppose that (X, f)
is an N–subalgebra of X defined by:

f(x) =

{
α if x ∈M
β otherwise

for some α, β ∈ [−1, 0] with α < β. Then (X, f) is an N–subalgebra if
and only if M is a subalgebra of X. Moreover, in this case Xf = M .

Proof. Let (M, f) be an N –subalgebra. Let x, y ∈ X be such that
x, y ∈M . Then

f(x ∗ y) ≤ max{f(x), f(y)} = max{α, α} = α

and so x ∗ y ∈M .
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Conversely, suppose that M is a subalgebra of X and x, y ∈ X.
(i) If x, y ∈M then x ∗ y ∈M , thus

f(x ∗ y) = α = max{f(x), f(y)}
(ii) If x 6∈M or y 6∈M , then

f(x ∗ y) ≤ β = max{f(x), f(y)}
This shows that (M, f) is an N –subalgebra.

Moreover, we have

Xf := {x ∈ X | f(x) = f(1)} = {x ∈ X | f(x) = α} = M.

For any N –function f on X and t ∈ [−1, 0), the set

C(f ; t) := {x ∈ X|f(x) ≤ t}
is called a closed (f, t)–cut (level subalgebra) of f, and the set

O(f ; t) := {x ∈ X|f(x) < t}
is called an open (f, t)–cut of f.

It follows easily that for any N –functions f, g on X;
(1) f ≤ g, t ∈ [−1, 0]⇒ C(g; t) ⊆ C(f ; t);
(2) t1 ≤ t2, t1, t2 ∈ [−1, 0]⇒ C(f ; t1) ⊆ C(f ; t2);
(3) f = g ⇔ C(f ; t) = C(g; t), for all t ∈ [−1, 0].

Example 2.3. In Example 2.1, we can see that C(f,−0.2) = {1, a, b}
and O(f,−0.2) = {1, a}.

Theorem 2.4. Let X be a CI-algebra. Then two level subalgebras
C(f, t1), C(f, t2) (where t1 < t2) of f are equal if and only if there is
no x ∈ X such that t1 < f(x) ≤ t2.

Proof. Let C(f, t1) = C(f, t2) where t1 < t2 and there exists x ∈ X
such that t1 < f(x) ≤ t2. Then C(f, t1) is a proper subset of C(f, t2),
which is a contradiction.

Conversely, suppose that there is no x ∈ X such that t1 < f(x) ≤
t2. If x ∈ C(f, t2), then f(x) ≤ t2 and so f(x) ≤ t1. Therefore
x ∈ C(f, t1), thus C(f, t2) ⊆ C(f, t1). Hence C(f, t1) = C(f, t2).

Theorem 2.5. Let (X, f) be an N–structure of X with the greatest
lower bound λ0. Then the following conditions are equivalent:

(i) (X, f) is an N–subalgebra of X.
(ii) For all λ ∈ Im(f), the non-empty set C(f, λ) is a subalgebra of

X.
(iii) For all λ ∈ Im(f)\λ0, the non-empty set O(f ;λ) is a subalgebra

of X.
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(iv) For all λ ∈ [0, 1], the non-empty set O(f ;λ) is a subalgebra of
X.

(v) For all λ ∈ [0, 1], the non-empty C(f ;λ) is a subalgebra of X.

Proof. (i → iv) Let (X, f) be an N –subalgebra of X, λ ∈ [0, 1] and
x, y ∈ O(f ;λ), then we have

f(x ∗ y) ≤ max{f(x), f(y)} < max{λ, λ} = λ.

Thus x ∗ y ∈ O(f ;λ). Hence O(f ;λ) is a subalgebra of X.
(iv → iii) It is clear.
(iii → ii) Let λ ∈ Im(f). Then C(f ;λ) is a non-empty set. Since

C(f ;λ) =
⋂
β>λ

O(f ; β), where β ∈ Im(f) \ λ0. Then by (iii) and

Theorem 2.1, C(f ;λ) is a subalgebra of X.
(ii → v) Let λ ∈ [0, 1] and C(f ;λ) be non-empty set. Sup-

pose x, y ∈ C(f ;λ). Let α = max{f(x), f(y)}, it is clear that α =
max{f(x), f(y)} ≤ {λ, λ} = λ. Thus x, y ∈ C(f ;α) and α ∈ Im(f),
by (ii) C(f ;α) is a subalgebra of X, hence x ∗ y ∈ C(f ;α). Then we
have

f(x ∗ y) ≤ max{f(x), f(y)} ≤ {α, α} = α ≤ λ.

Therefore x ∗ y ∈ C(f ;λ). Then C(f ;λ) is a subalgebra of X.
(v → i) Assume that the non-empty set C(f ;λ) is a subalgebra of

X, for every λ ∈ [0, 1]. In contrary, let x0, y0 ∈ X be such that

f(x0 ∗ y0) > max{f(x0), f(y0)}.
Let f(x0) = γ, f(y0) = θ and f(x0 ∗ y0) = λ. Then

λ > max{γ, θ}.
Consider

λ1 =
1

2
(f(x0 ∗ y0) + max{f(x0), f(y0)})

We get that

λ1 =
1

2
(λ+ max{γ, θ})

Therefore

γ < λ1 =
1

2
(λ+ max{γ, θ} < λ

θ < λ1 =
1

2
(λ+ max{γ, θ} < λ
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Hence

max{γ, θ} < λ1 < λ = f(x0 ∗ y0)
so that x0 ∗ y0 6∈ C(f ;λ1) which is a contradiction, since

f(x0) = γ ≤ max{γ, θ} < λ1

f(y0) = θ ≤ max{γ, θ} < λ1

imply that x0, y0 ∈ C(f ;λ1). Thus f(x ∗ y) ≤ max{f(x), f(y)}, for all
x, y ∈ X.

Theorem 2.6. Each subalgebra of X is a level subalgebra of an N–
subalgebra of X.

Proof. Let Y be a subalgebra of X, and f be an N –function set on X
defined by

f(x) =

{
α if x ∈ Y
0 otherwise

where α ∈ [−1, 0]. It is clear that C(f ;α) = Y . Let x, y ∈ X. We
consider the following cases:

case 1) If x, y ∈ Y , then x ∗ y ∈ Y therefore

f(x ∗ y) = α = max{α, α} = max{f(x), f(y)}.

case 2) If x, y 6∈ Y , then f(x) = 0 = f(y) and so

f(x ∗ y) ≤ 0 = max{0, 0} = max{f(x), f(y)}.

case 3) If x ∈ Y and y 6∈ Y (respectively, x 6∈ Y and y ∈ Y ), then
f(x) = α and f(y) = 0. Thus

f(x ∗ y) ≤ 0 = max{α, 0} = max{f(x), f(y)}.

Therefore A is an N –subalgebra of X.

3. N–filters in CI–algebras

Definition 3.1. By a filter of X based on N–function f (briefly,
N–filter of X), we mean an N–structure (X, f) in which f satisfies
the following assertion: (3.1) (∀x, y ∈ X)(f(1) ≤ f(y) and f(y) ≤
max{f(x ∗ y), f(x)}).

Example 3.1. In Example 2.1, we can see that (X, f) is an N–filter
of X.
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Example 3.2. Let X = {1, a} with the following Cayley table:

∗ 1 a
1 1 a
a a 1

Then (X; ∗, 1) is a CI–algebra. Define an N–function f : X →
[−1, 0] by f(1) = −0.1, f(a) = −0.3. Then (X, f) is not an N–filter
of X. Because

Theorem 3.1. The family of N–filters of X forms a complete dis-
tributive lattice under the ordering of set inclusion ⊂.

Proof. Let {fi | i ∈ I} be a family of N – filters of X. Since [−1, 0]
is a completely distributive lattice with respect to the usual ordering
in [−1, 0], it is sufficient to show that ∪i∈Ifi is an N –filter of X. Let
x ∈ X. Then

(∪i∈Ifi)(y) = sup{fi(y) | i ∈ I}
≤ sup{max{fi(x), fi(x ∗ y)} | i ∈ I}
= max(sup{fi(x) | i ∈ I}, sup{fi(x ∗ y) | i ∈ I})
= max(∪i∈Ifi(x),∪i∈Ifi(x ∗ y)).

Hence ∪i∈Ifi is an N –filter of X.

Proposition 3.1. If (X, f) is an N–filter of X, then
(3.2) (∀x, y ∈ X)(x ≤ y ⇒ f(y) ≤ f(x)).

Proof. Let x, y ∈ X be such that x ≤ y. Then x ∗ y = 1, and so

f(y) ≤ max{f(x ∗ y), f(x)} = max{f(1), f(x)} = f(x).

Proposition 3.2. Let (X, f) be an N–filter of X. If x, y, z ∈ X
satisfies the following condition:

(3.3) (∀x, y, z ∈ X)(z ≤ x ∗ y).
Then f(y) ≤ max{f(z), f(x)}.

Proof. Assume that x, y, z ∈ X satisfies (3.3). Then

f(x ∗ y) ≤ max{f(z ∗ (x ∗ y)), f(z)} = max{f(1), f(z)} = f(z).

It follows that

f(y) ≤ max{f(x ∗ y), f(x)} ≤ max{f(z), f(x)}.

Theorem 3.2. Every N–filter of X is an N–subalgebra of X.
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Proof. If x, y ∈ X, then

f(x ∗ y) ≤ max{f(y ∗ (x ∗ y)), f(y)}
= max{f(x ∗ (y ∗ y)), f(y)}
= max{f(x ∗ 1), f(y)}
= max{f(1), f(y)} ≤ max{f(x), f(y)}.

Therefore (X, f) is an N –subalgebra of X.

The converse of Theorem 3.2 may not be true in general as seen in
the following example.

Example 3.3. Let X := {1, a, b, c, } be a CI–algebra with the follow-
ing Cayley table.

∗ 1 a b c
1 1 a b c
a 1 1 a a
b 1 1 1 a
c 1 1 a 1

Define an N–function f : X → [−1, 0] by f(1) = −0.7, f(a) =
−0.7, f(b) = −0.1 and f(c) = −0.6. Then (X, f) is an N–subalgebra
of X. But it is not an N–filter of X because

Theorem 3.3. If an N–subalgebra (X, f) satisfies:

(∀x, y ∈ X)(f(y) ≤ max{f(x ∗ y), f(x)}).
Then (X, f) is an N–filter of X.

Proof. Since (X, f) is an N –subalgebra of X, by Lemma 2.4 we have
f(1) ≤ f(y), for all y ∈ Y . Therefore f(1) ≤ f(y) ≤ max{f(x ∗
y), f(x)}, for all x, y ∈ Y . Hence (X, f) is an N –filter of X.

Theorem 3.4. Let (X, f) be an N–subalgebra of X such that f sat-
isfies:

(3.4)(∀x, y ∈ X)(f(y ∗ x) ≥ f(x ∗ y)).

Then (X, f) is an N–filter of X.

Proof. Taking x = 1 in (3.4) induces f(y ∗ 1) ≥ f(1 ∗ y) = f(y), for
all y ∈ X. Using (CI1), (CI3), (3.1), (3.4), we have

f(y) = f(1 ∗ y) ≤ f(y ∗ 1) = f(y ∗ (x ∗ x)) = f(x ∗ (y ∗ x))

≤ max{f(x), f(y ∗ x)} ≤ max{f(x), f(x ∗ y)}
for all x, y ∈ X. Therefore (X, f) is an N –filter of X.
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Proposition 3.3. Let (X, f) be an N–filter of X which satisfies the
following inequality

(∀x ∈ X)(f(x) ≤ f(x ∗ 1)).

Then (X, f) satisfies

(∀x, y ∈ X)(f(y ∗ x) = f(x ∗ y)).

Proof. Using hypothesis and (3.1), (1.2), (1.1), (CI3), (2.2) we have

f(y ∗ x) ≤ f((y ∗ x) ∗ 1) ≤ max{f((x ∗ y) ∗ ((y ∗ x) ∗ 1)), f(x ∗ y)}
= max{f((x ∗ y) ∗ ((y ∗ 1) ∗ (x ∗ 1))), f(x ∗ y)}
= max{f((y ∗ 1) ∗ ((x ∗ y) ∗ (x ∗ 1)), f(x ∗ y)}
= max{f((y ∗ 1) ∗ (x ∗ ((x ∗ y) ∗ 1))), f(x ∗ y)}
= max{f((y ∗ 1) ∗ (x ∗ ((x ∗ y) ∗ 1)), f(x ∗ y)}
= max{f(x ∗ ((y ∗ 1) ∗ ((x ∗ 1) ∗ (y ∗ 1)), f(x ∗ y)}
= max{f(x ∗ ((x ∗ 1) ∗ 1)), f(x ∗ y)}
= max{f(1), f(x ∗ y)} = f(x ∗ y).

Similarly we have f(x ∗ y) ≤ f(y ∗ x).
For any element a of X, consider the following set

Xa := {x ∈ X : f(x) ≤ f(a)}.
Obviously, a ∈ Xa, and so Xa is a non-empty subset of X.

Theorem 3.5. Let a be an element of X. If (X, f) is an N–filter of
X. Then the set Xa is a filter of X.

Proof. Obviously, 1 ∈ Xa. Let x, y ∈ X be such that x ∗ y ∈ Xa and
x ∈ Xa. Then f(x ∗ y) ≤ f(a) and f(x) ≤ f(a). Since (X, f) is an
N –filter of X, it follows from Definition 3.1,

f(y) ≤ max{f(x ∗ y), f(x)} ≤ f(a)

So that y ∈ Xa. Hence Xa is a filter of X.
If f is an N –function of X and α is a mapping from X into itself,

we define a mapping fα : X → [0, 1] by fα(x) = f(α(x)) for all x ∈ X.

Theorem 3.6. Let f be an N–subalgebra of X, and α be an endomor-
phism of X. Then fα is also an N–subalgebra (respectively, N–filters).

Proof. For any x, y ∈ X, we have

fα(x ∗ y) = f(α(x ∗ y)) = f(α(x) ∗ α(y)) ≤ max{f(α(x)), f(α(y))}
= max{fα(x), fα(y)}.
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Since α is an endomorphism, then α(1) = 1 and so the proof is similar
in the case when f is an N –filter.

Definition 3.2. Let f and g be the N–function in a set X. The N–
cartesian product f ×g : X×X → [−1, 0] is defined by (f ×g)(x, y) =
max{f(x), g(y)}, for all x, y ∈ X.

We can define on X×X the product structure by (x1, x2)∗(y1, y2) =
(x1 ∗ y1, x2 ∗ y2).

Theorem 3.7. If f and g are N–filters of a CI–algebra X, then f×g
is an N–filter of X ×X.

Proof. For any (x, y) ∈ X ×X, we have

(f × g)(1, 1) = max{f(1), g(1)} ≤ max{f(x), g(y)} = (f × g)(x, y).

Let (x1, x2), (y1, y2) ∈ X ×X. Then

(f × g)(y1, y2) = max{f(y1), g(y2)}
≤ max{max{f(x1), f(x1 ∗ y1)},max{g(x2), g(x2 ∗ y2)}}
= max{max{f(x1), g(x2)},max{f(x1 ∗ y1), g(x2 ∗ y2)}}
= max{(f × g)(x1, x2), (f × g)(x1 ∗ y1, x2 ∗ y2)}
= max{(f × g)(x1, x2), (f × g)((x1, x2) ∗ (y1, y2))}.

Hence f × g is an N –filter of X ×X.

Lemma 3.1. Let f and g are N–function in X such that f × g is an
N–filter of X ×X. Then
(i) (∀x ∈ X) (f(1) ≤ f(x)) or (∀x ∈ X) ( g(1) ≤ g(x));
(ii) If f(1) ≤ f(x), for all x ∈ X, then (∀x ∈ X) (g(1) ≤ f(x)) or
(∀x ∈ X) (f(1) ≤ g(x)).
(iii) If g(1) ≤ g(x), for all x ∈ X, then (∀x ∈ X) (f(1) ≤ g(x)) or
(∀x ∈ X) (g(1) ≤ f(x)).

Proof. Assume that there exist x, y ∈ X such that f(x) <
f(1) and g(y) < g(1). Then (f × g)(x, y) = max{f(x), g(y)} <
max{f(1), g(1)} = (f × g)(1, 1). Which is a contradiction. Hence
(i) is proved.

(ii) Again, using reduction to absurdity: we assume that there
exist x, y ∈ X such that f(x) < g(1) and g(y) < f(1). Then
(f × g)(x, y) = max{f(x), g(y)} < max{f(1), g(1)} = (f × g)(1, 1),
hence (f × g)(x, y) < (f × g)(1, 1), which is a contradiction.

(iii) The proof is similar to (ii).
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Theorem 3.8. If f × g is an N–filter of X × X, then f or g is an
N–filter of X.

Proof. Since f × g is an N –filter of X ×X,

(f × g)(y1, y2) ≤ max{(f × g)(x1, x2), (f × g)((x1, x2) ∗ (y1, y2))}
= max{(f × g)(x1, x2), (f × g)(x1 ∗ y1, x2 ∗ y2)}.

By Lemma 3.1, without loss of generality we assume that g(1) ≤
g(x), for all x ∈ X. Then f(1) ≤ g(x), or g(1) ≤ f(x).

Let f(1) ≤ g(x), for all x ∈ X. Then (f × g)(1, y) =
max{f(1), g(y)} = g(y) and

(f × g)(1, y) ≤ max{(f × g)(1, x), (f × g)(1, x ∗ y))}
= max{f(1), g(x), g(x ∗ y)}
= max{g(x), g(x ∗ y)}.

Therefore g(y) ≤ max{g(x), g(x∗y)} for all x, y ∈ X. This proves that
g is an N –filter of X.

The other case is similar.

4. Conclusion

In this paper, we have introduced the concept of N –subalgebra (fil-
ter) of CI–algebra and and some related properties are investigated.
We show that any N –filter is an N –subalgebra but the converse it is
not true. We give a condition for an N –subalgebras to be N –filters.

We believe these results are very useful in developing algebraic struc-
tures and these concepts can be further generalized.
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