"Vasile Alecsandri" University of Bacău
Faculty of Sciences
Scientific Studies and Research
Series Mathematics and Informatics
Vol. 22 (2012), No. 1, 117-124

THE SEMILOCAL CONVERGENCE OF THE CONVEX ACCELERATION OF WHITTAKER'S METHOD

RALUCA ANAMARIA (POMIAN) SĂLĂJAN

Abstract. In this article we study the convex acceleration of Whittaker's iterative method for approximating the roots of a real function of real argument, that is two times differentiable and has a nonvanishing first order derivative. We prove a semilocal convergence theorem for this method and we give a numerical example which illustrates this theorem.

1. Introduction and preliminaries

In numerical analysis one of the most important problems is to locate the roots of the equation

$$
\begin{equation*}
f(x)=0, \tag{1.1}
\end{equation*}
$$

where $f:[a, b] \subset \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable function with simple roots, that is, if $f(\alpha)=0$, then $f^{\prime}(\alpha) \neq 0$.

Let x^{*} be a simple root of the equation (1.1). This root can be determined as a fixed point of some iteration function $g:[a, b] \rightarrow[a, b]$, i.e., $g\left(x^{*}\right)=x^{*}$, by means of the one-point iteration method

$$
\begin{equation*}
x_{n+1}=g\left(x_{n}\right), n \in \mathbb{N} . \tag{1.2}
\end{equation*}
$$

Here g is a function of the form

$$
g(x)=x+\varphi(x),
$$

and $x_{0} \in[a, b]$ is the starting value.
Keywords and phrases: convex acceleration of Whittaker's method, one-point iteration method, fixed point, second order convergence.
(2010)Mathematics Subject Classification: 74H15,78M25,47H10

We consider the convex acceleration of Whittaker's method with second order convergence, where the sequence approximating the solution $x^{*} \in[a, b]$ of the equation (1.1) is given by

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{2 f^{\prime}\left(x_{n}\right)}\left(2-L_{f}\left(x_{n}\right)\right), \tag{1.3}
\end{equation*}
$$

where $x_{0} \in[a, b]$ and $L_{f}(x):=\frac{f(x) f^{\prime \prime}(x)}{\left[f^{\prime}(x)\right]^{2}}$ on some interval containing x_{0}, on which the first derivative of f is non-vanishing.

The convex acceleration of Whittaker's method has been rediscovered by several authors, see for example [1], [2], [3], [7] and references therein.

2. A convergence result for the convex acceleration of Whittaker's method

In this section we will present some general criteria of semilocal convergence of sequence (1.3) generated by the convex acceleration of Whittaker's method.

This theorem ensures the convergence of approximation sequence (1.3) and also provides the existence of a root of the equation (1.1) in a specified interval.

Theorem 2.1. Assume that $x_{0} \in[a, b]$, the function $f:[a, b] \rightarrow \mathbb{R}$ and $\delta>0$ satisfy the following conditions:
a) $\Delta=\left[x_{0}-\delta, x_{0}+\delta\right] \subseteq[a, b]$;
b) f admits a second-order derivative on Δ and its first derivative is non-vanishing on Δ;
c) There exists $\eta>0$ such that $\left|\frac{1}{f^{\prime}(x)}\right| \leq \eta$ for any $x \in \Delta$;
d) $-2 \leq L_{f}(x):=\frac{f(x) f^{\prime \prime}(x)}{\left[f^{\prime}(x)\right]^{2}} \leq 2$ for any $x \in \Delta$;
e) $M_{2}:=\sup _{x \in \Delta}\left|f^{\prime \prime}(x)\right|<\infty$;
f) $\mu_{0}:=\lambda\left|f\left(x_{0}\right)\right|<1$, where $\lambda:=\frac{5 M_{2} \eta^{2}}{2}$;
g) $\frac{2 \eta \mu_{0}}{\lambda\left(1-\mu_{0}\right)} \leq \delta$;

If the initial value x_{0} is sufficiently close to the root of equation (1.1), then the sequence $\left\{x_{n}\right\}_{n \geq 0}$ generated by (1.3) is convergent to some $x^{*} \in[a, b]$. Moreover, the following relations hold:
i) $f\left(x^{*}\right)=0$;
ii) $x_{n} \in \Delta$ for every $n \in \mathbb{N}$;
iii) $\left|f\left(x_{n}\right)\right| \leq \frac{\mu_{0}^{n^{n}}}{\lambda}$ for every $n \in \mathbb{N}$;
iv) $\left|x^{*}-x_{n}\right| \leq \frac{2 \eta \mu_{0}^{2^{n}}}{\lambda\left(1-\mu_{0}^{2^{n}}\right)}$ for every $n \in \mathbb{N}$;

Proof. We consider the function φ defined by

$$
\varphi(x)=-\frac{f(x)}{f^{\prime}(x)} \frac{2-L_{f}(x)}{2} \text {, where } L_{f}(x):=\frac{f(x) f^{\prime \prime}(x)}{\left[f^{\prime}(x)\right]^{2}}, x \in \Delta \text {. }
$$

Then (1.3) becomes $x_{n+1}=x_{n}+\varphi\left(x_{n}\right), n \in \mathbb{N}$.
Denote $\gamma:=\frac{M_{2} \eta^{2}}{2}$.
Taking into account the assumptions c)-e) and the above notations we obtain the following estimate

$$
\begin{align*}
\left|f(x)+\frac{f^{\prime}(x)}{1!} \varphi(x)\right| & =\left|f(x)-\frac{f^{\prime}(x)}{1!} \frac{f(x)}{f^{\prime}(x)} \frac{2-L_{f}(x)}{2}\right| \tag{2.1}\\
& =\left|\frac{f^{2}(x) f^{\prime \prime}(x)}{2\left[f^{\prime}(x)\right]^{2}}\right| \\
& \leq|f(x)|^{2} \frac{M_{2} \eta^{2}}{2}=\gamma|f(x)|^{2}
\end{align*}
$$

for every $x \in \Delta$.
Note that $-2 \leq L_{f}(x) \leq 2$ is equivalent to $0 \leq \frac{2-L_{f}(x)}{2} \leq 2$.
We will show that all the terms of the sequence $\left\{x_{n}\right\}_{n \geq 0}$ generated by (1.3) belong to the interval Δ.

By conditions c), d), f) and g) we have

$$
\begin{gathered}
\left|x_{1}-x_{0}\right|=\left|\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}\right|\left|\frac{2-L_{f}\left(x_{0}\right)}{2}\right| \leq 2\left|\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}\right| \\
\leq 2 \eta\left|f\left(x_{0}\right)\right|=\frac{2 \lambda \eta\left|f\left(x_{0}\right)\right|}{\lambda}<\frac{2 \eta \mu_{0}}{\lambda\left(1-\mu_{0}\right)} \leq \delta,
\end{gathered}
$$

hence $x_{1} \in \Delta$.
Applying the Taylor expansion of the function f around x_{0} and taking into account the inequality from above, the condition f), the relation (2.1) and the fact that $\varphi\left(x_{0}\right)=x_{1}-x_{0}$, we get

$$
\begin{aligned}
\left|f\left(x_{1}\right)\right| & \leq\left|f\left(x_{1}\right)-\left[f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x_{1}-x_{0}\right)\right]\right|+\left|f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x_{1}-x_{0}\right)\right| \\
& \leq \frac{M_{2}}{2!}\left|x_{1}-x_{0}\right|^{2}+\gamma\left|f\left(x_{0}\right)\right|^{2} \leq \frac{M_{2}}{2}\left(2 \eta\left|f\left(x_{0}\right)\right|\right)^{2}+\gamma\left|f\left(x_{0}\right)\right|^{2}= \\
& =\frac{5}{2} M_{2} \eta^{2}\left|f\left(x_{0}\right)\right|^{2}=\frac{\mu_{0}^{2}}{\lambda},
\end{aligned}
$$

hence

$$
\left|f\left(x_{1}\right)\right| \leq \frac{\mu_{0}^{2}}{\lambda}
$$

Taking into account the conditions c), d) and the above inequality we get

$$
\left|x_{2}-x_{1}\right|=\left|\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}\right|\left|\frac{2-\frac{f\left(x_{1}\right) f^{\prime \prime}\left(x_{1}\right)}{\left[f^{\prime}\left(x_{1}\right)\right]^{2}}}{2}\right| \leq 2\left|\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}\right| \leq 2 \eta\left|f\left(x_{1}\right)\right| \leq \frac{2 \eta \mu_{0}^{2}}{\lambda} .
$$

Analogously, applying the Taylor expansion of the function f around x_{1} and taking into account the inequality from above, the condition f), the relation (2.1) and the fact that $\varphi\left(x_{1}\right)=x_{2}-x_{1}$, we have

$$
\begin{aligned}
& \left|f\left(x_{2}\right)\right| \leq\left|f\left(x_{2}\right)-\left[f\left(x_{1}\right)+f^{\prime}\left(x_{1}\right)\left(x_{2}-x_{1}\right)\right]\right|+\left|f\left(x_{1}\right)+f^{\prime}\left(x_{1}\right)\left(x_{2}-x_{1}\right)\right| \\
& \leq \frac{M_{2}}{2!}\left|x_{2}-x_{1}\right|^{2}+\gamma\left|f\left(x_{1}\right)\right|^{2} \leq \frac{M_{2}}{2}\left(\frac{2 \eta \mu_{0}^{2}}{\lambda}\right)^{2}+\frac{\gamma \mu_{0}^{2}}{\lambda^{2}}=\frac{5 M_{2} \eta^{2}}{2 \lambda^{2}} \mu_{0}^{2^{2}}=\frac{\mu_{0}^{2^{2}}}{\lambda}
\end{aligned}
$$

From the previous relations, using the induction, it follows that the relation iii) holds

$$
\begin{equation*}
\left|f\left(x_{n}\right)\right| \leq \frac{\mu_{0}^{2^{n}}}{\lambda}, n \in \mathbb{N} . \tag{2.2}
\end{equation*}
$$

Inductively, by c), d) and (2.2) we can show that

$$
\begin{equation*}
\left|x_{n+1}-x_{n}\right|=\left|\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}\right|\left|\frac{2-\frac{f\left(x_{n}\right) f^{\prime \prime}\left(x_{n}\right)}{\left[f^{\prime}\left(x_{n}\right)\right]^{2}}}{2}\right| \leq \frac{2 \eta \mu_{0}^{2^{n}}}{\lambda}, n \in \mathbb{N} . \tag{2.3}
\end{equation*}
$$

In order to prove the convergence of the sequence given by (1.3) we shall show that this sequence is Cauchy.

Applying inequality (2.3) and taking into account the conditions f) and g) we can deduce the relation ii)

$$
\begin{aligned}
\left|x_{n+1}-x_{0}\right| & \leq \sum_{i=0}^{n}\left|x_{i+1}-x_{i}\right| \leq \sum_{i=0}^{n} \frac{2 \eta \mu_{0}^{2^{i}}}{\lambda} \\
& \leq \frac{2 \eta \mu_{0}}{\lambda}\left(1+\mu_{0}^{2-1}+\mu_{0}^{2^{2}-1}+\ldots+\mu_{0}^{2^{n}-1}\right) \\
& <\frac{2 \eta \mu_{0}}{\lambda\left(1-\mu_{0}\right)} \leq \delta
\end{aligned}
$$

hence $x_{n+1} \in \Delta$ for all $n \in \mathbb{N}$. Moreover, by (2.3) we obtain

$$
\begin{align*}
\left|x_{n+p}-x_{n}\right| & \leq \sum_{i=n}^{n+p-1}\left|x_{i+1}-x_{i}\right| \leq \sum_{i=n}^{n+p-1} \frac{2 \eta \mu_{0}^{2^{i}}}{\lambda} \tag{2.4}\\
& \leq \frac{2 \eta \mu_{0}^{2^{n}}}{\lambda}\left(1+\mu_{0}^{2^{n+1}-2^{n}}+\ldots+\mu_{0}^{2^{n+p-1}-2^{n}}\right) \\
& <\frac{2 \eta \mu_{0}^{2^{n}}}{\lambda\left(1-\mu_{0}^{2^{n}}\right)}
\end{align*}
$$

for all $n, p \in \mathbb{N}$.
From (2.4) and taking into account the condition f), it follow that the sequence $\left\{x_{n}\right\}_{n \geq 0}$ is Cauchy, therefore it is convergent.

Denote $x^{*}:=\lim _{n \rightarrow \infty} x_{n}$. Letting $p \rightarrow \infty$ in inequality (2.4) we deduce

$$
\begin{equation*}
\left|x^{*}-x_{n}\right| \leq \frac{2 \eta \mu_{0}^{2^{n}}}{\lambda\left(1-\mu_{0}^{2^{n}}\right)}, n \in \mathbb{N}, \tag{2.5}
\end{equation*}
$$

that is the relation iv) holds.
Note that $x^{*} \in \Delta$, since $x_{n} \in \Delta$ for all $n \in \mathbb{N}$ and Δ is a closed set.
We show that x^{*} is a root of equation $f(x)=0$.
From the continuity of the function f and from (2.2) for $n \rightarrow \infty$, it follows that

$$
0 \leq\left|f\left(x^{*}\right)\right| \leq \lim _{n \rightarrow \infty} \frac{\mu_{0}^{2^{n}}}{\lambda}=0
$$

hence $f\left(x^{*}\right)=0$.
The proof of the theorem is completed.

3. Numerical example

In the following example, we will present an application of the Theorem 1.

The implementations have been made by using Mathematica 7.0.

We will consider the following test functions and the corresponding roots:

$$
\begin{aligned}
& f_{1}(x)=x^{5}-5 x-2, x \in[-1.575,-1.175], x^{*}=-1.3718817830 ; \\
& f_{2}(x)=e^{x}-3 x, x \in[1.27,1.77], x^{*}=1.5121345516 ; \\
& f_{3}(x)=x^{3}-3 x-3, x \in[1.91,2.25], x^{*}=2.1038034027 ; \\
& f_{4}(x)=\log _{5}(3 x+4)-2, x \in[6.725,7.245], x^{*}=7 ; \\
& f_{5}(x)=2^{x}+2^{x+3}-36, x \in[1.67,2.354], x^{*}=2 ; \\
& f_{6}(x)=\sqrt{2+x}-x, x \in[1.446,2.358], x^{*}=2 ; \\
& f_{7}(x)=\sqrt[3]{7 x+1}-x-1, x \in[0.675,1.355], x^{*}=1 .
\end{aligned}
$$

We calculate the first and second derivative of $f_{i}, i=\overline{1,7}$, then we find the bound M_{2} and an estimate for η, hence we compute λ. We fix x_{0}, then we compute μ_{0} and find a possible value for δ.

$$
\begin{gathered}
f_{1}^{\prime}(x)=5 x^{4}-5, f_{1}^{\prime \prime}(x)=20 x^{3}, \\
f_{2}^{\prime}(x)=e^{x}-3, f_{2}^{\prime \prime}(x)=e^{x}, \\
f_{3}^{\prime}(x)=3 x^{2}-3, f_{3}^{\prime \prime}(x)=6 x, \\
f_{4}^{\prime}(x)=\frac{3}{\ln 5(4+3 x)}, f_{4}^{\prime \prime}(x)=\frac{-9}{\ln 5(4+3 x)^{2}}, \\
f_{5}^{\prime}(x)=2^{x} \ln 2+2^{3+x} \ln 2, f_{5}^{\prime \prime}(x)=2^{x}(\ln 2)^{2}+2^{3+x}(\ln 2)^{2}, \\
f_{6}^{\prime}(x)=-1+\frac{1}{2 \sqrt{2+x}}, f_{6}^{\prime \prime}(x)=\frac{-1}{4(2+x)^{\frac{3}{2}}}, \\
f_{7}^{\prime}(x)=-1+\frac{7}{3(1+7 x)^{\frac{2}{3}}}, f_{7}^{\prime \prime}(x)=\frac{-98}{9(1+7 x)^{\frac{5}{3}}},
\end{gathered}
$$

The table below shows the values for $x_{0}, M_{2}, \eta, \lambda, \mu_{0}, \delta$ and $\frac{2 \eta \mu_{0}}{\lambda\left(1-\mu_{0}\right)}$, for each test function $f_{i}, i=\overline{1,7}$.

f_{i}	x_{0}	M_{2}	η	λ	μ_{0}	δ	$\frac{2 \eta \mu_{0}}{\lambda\left(1-\mu_{0}\right)}$
f_{1}	-1.375	78.1397	0.22072	9.51689	0.379595	0.2	0.028380
f_{2}	1.52	5.87085	1.783	46.6599	0.570426	0.25	0.101484
f_{3}	2.08	13.5	0.12587	0.53476	0.128924	0.17	0.069677
f_{4}	6.995	0.00956	13.8063	4.55952	0.0017	0.25	0.01031
f_{5}	2.012	22.1064	0.05037	0.14024	0.042169	0.342	0.031627
f_{6}	1.902	0.03908	1.36864	0.18301	0.013423	0.456	0.203506
f_{7}	1.015	0.59432	3.69154	20.2479	0.127319	0.34	0.053197

We can see that all the assumptions a)-g) of Theorem 1 are fulfilled.

In the table below we can notice the fast convergence of the method (1.3) to the root x^{*}.

f_{i}	x_{0}	x_{1}	x_{2}	x_{3}	x^{*}
f_{1}	-1.375	-1.3719207655	-1.3718817892	-1.3718817830	-1.3718817830
f_{2}	1.52	1.5123121876	1.5121346447	1.5121345516	1.5121345516
f_{3}	2.08	2.1045240136	2.1038040398	2.1038034027	2.1038034027
f_{4}	6.995	6.9999969996	6.9999999999	7	7
f_{5}	2.012	2.0000992620	2.0000000068	2	2
f_{6}	1.902	2.0004153705	2.0000000071	2	2
f_{7}	1.015	1.0001772354	1.0000000256	1	1

References

[1] S. Amat, S. Busquier and S. Plaza, Review of some iterative root-finding methods from a dynamical point of view, Scientia, Series A: Mathematical Sciences, Vol. 10 (2004), 3-35.
[2] J.M. Gutiérrez, Á.A. Magreñán and J.L. Varona, The "GaussSeidelization" of iterative methods for solving nonlinear equations in the complex plane, Applied Mathematics and Computation, 218 (2011), 2467-2479.
[3] M.A. Hernández Verón, An acceleration procedure of the Whittaker method by means of convexity, Univ. u Novom Sadu, Zb. Rad. Prirod.Mat. Fak. Ser. Mat., 20 (1990), 1, 27-38.
[4] I. Păvăloiu and N. Pop, Interpolation and Applications, Risoprint, ClujNapoca, 2005 (Romanian).
[5] R.A. (Pomian) Sălăjan, The convergence of the Euler's method, Revue d'Analyse Numérique et de Théorie de l'Approximation, Tome 39 (2010), 1, 87-92.
[6] R.A. (Pomian) Sălăjan, The semilocal convergence of the Halley's method, Annals of "Dunărea de Jos" University of Galaţi, Mathematics, Physics, Theoretical Mechanics, Fascicle II, Year III (XXXIV) 2011, 113-118.
[7] J.L. Varona, Graphic and numerical comparison between iterative methods, The Mathematical Intelligencer, 24 (2002), 1, 37-46.

Raluca Anamaria (Pomian) Sălăjan

"Vasile Alecsandri" Secondary School, Păşunii Street, No. 2A, Baia Mare, ROMANIA, e-mail: salajanraluca@yahoo.com

