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ON TEMPERED DISTRIBUTIONS WHOSE GABOR
TRANSFORM IN LORENTZ-KARAMATA SPACES

İLKER ERYILMAZ

Abstract. In this paper, some fundamental properties of Lorentz-
Karamata (LK) spaces are examined by using the properties of Lorentz
spaces. Also, we define and show some properties of the spaces of
tempered distributions where Gabor transform of these tempered dis-
tributions are in Lorentz-Karamata spaces in analog to modulation
spaces.

1. Introduction and Preliminaries

Gabor transform is a special case of the short-time Fourier trans-
form (STFT) that is used to determine the sinusoidal frequency and
phase content of local sections of a signal as it changes over time.
The function to be transformed is first multiplied by a Gaussian func-
tion, which can be regarded as a window function, and the resulting
function is then transformed with a Fourier transform to derive the
time-frequency analysis. [6]. Since the Fourier transform of a function
in L1

(
Rd
)

is not so useful to get information about spectrum of the
transform, it is effective to use Gabor transform or STFT. In Gabor
transform, a (window) function g is taken and fixed. Then the Gabor
transform of any function f according to this window g is found by

Vgf (x,w) =

∫
Rd

f (u) g (u− x)e−2πi〈t,w〉dt

for x,w ∈ Rd where 〈t, w〉 is the usual product on Rd.
————————————–
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For any measurable, complex valued function on Rd, the transla-
tion and modulation operators are defined by Lxf (t) = f (t− x) and
Mwf (t) = e2πi〈t,w〉f (t) for any x,w ∈ Rd, respectively. The Fourier

transform f̂ of any f ∈ L1
(
Rd
)

is given by

f̂ (t) =

∫
Rd

f (x) e−2πi〈x,t〉dx.

A new generalization of Lebesgue, Lorentz, Zygmund, Lorentz-
Zygmund and generalized Lorentz-Zygmund spaces was studied by
D.E.Edmunds, R.Kerman and L.Pick in [8]. By using Karamata
theory, they introduced Lorentz-Karamata (LK) spaces and com-
pared quasinorms on these spaces. Also J.S.Neves studied LK
spaces Lp,q;b (R, µ) in [15] where p, q ∈ (0,∞] , b is a slowly vary-
ing function on [1,∞) and (R, µ) is a measure space. These spaces
cover the generalized Lorentz-Zygmund spaces Lp,q;α1,...αm (R) (intro-
duced in [7]), Lorentz-Zygmund spaces Lp,q (logL)α (R) (introduced in
[1]), Zygmund spaces Lp (logL)α (R) (introduced in [2, 18]), Lorentz
spaces Lp,q (R) and Lebesgue spaces Lp (R) under convenient choices
of slowly varying functions and parameters p, q. In [9,15], it is
proved that Lp,q;b (R, µ) space endowed with a convenient norm, is
a rearrangment-invariant Banach function space and has an associate
space Lp′,q′;b−1 (R, µ) if (R, µ) is a resonant measure space, p ∈ (1,∞)
and q ∈ [1,∞]. Also it is showed that when p ∈ (1,∞) and q ∈ [1,∞),
LK spaces have absolutely continuous norm.

Throughout this paper, G,Rd and dx will stand for locally compact
abelian group, Euclidean d-dimensional space and Lebesgue measure,
respectively. Besides these, C0

(
Rd
)

will denote the space of all con-
tinuous functions that vanish at infinity. For any two non-negative ex-
pressions (i.e. functions or functionals), A and B, the symbol A - B
means that A ≤ cB, for some positive constant c independent of the
variables in the expressions A and B. If A - B and B - A, we write
A ≈ B and say that A and B are equivalent.

Definition 1. Let f be a measurable function defined on a measure
space (X,µ) and finite valued almost everywhere. The distribution
function λf of f is defined by

(1.1) λf (y) = µ {x ∈ X : |f (x)| > y} .

The nonnegative rearrangement of f is given by
(1.2)
f ∗ (t) = inf {y > 0 : λf (y) ≤ t } = sup {y > 0 : λf (y) > t } , t ≥ 0
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where we assume that inf φ = ∞ and supφ = 0. Also the aver-
age(maximal) function of f on (0,∞) is given by

(1.3) f ∗∗ (t) =
1

t

∫ t

0

f ∗ (s) ds.

Note that λf (·) , f ∗ (·) and f ∗∗ (·) are nonincreasing and right contin-
uous functions.

Definition 2. A positive and Lebesgue measurable function b is said
to be slowly varying (s.v.) on [1,∞) in the sense of Karamata if,
for each ε > 0, tεb (t) is equivalent to a non-decreasing function and
t−εb (t) is equivalent to a non-increasing function on [1,∞).

Given a s.v. function b on [1,∞), we denote by γb the positive
function defined by

γb (t) = b

(
max

{
t,

1

t

})
for all t > 0.

It is known that any s.v. function b on (0,∞) is equivalent to a

s.v. continuous function b̃ on (0,∞). Consequently, without loss of
generality, we assume that all s.v. functions in question are continuous
functions on (0,∞) [10]. The detailed study of Karamata Theory,
properties and examples of s.v. functions can be found in [3], [8], [14],
[15] and [18, Chapter V, pp.186].

Definition 3. Let p, q ∈ (0,∞] and b be a s.v. function on [1,∞).
The Lorentz-Karamata (LK) space Lp,q;b (G) is defined to be the set
of all measurable functions f such that

(1.4) ‖f‖(p,q;b) :=
∥∥∥t 1p− 1

q γb (t) f ∗ (t)
∥∥∥
q;(0,∞)

is finite. Here ‖·‖q;(0,∞) stands for the usual Lq (quasi-) norm over the

interval (0,∞).

Let us introduce the functional ‖f‖p,q;b defined by

(1.5) ‖f‖p,q;b :=
∥∥∥t 1p− 1

q γb (t) f ∗∗ (t)
∥∥∥
q;(0,∞)

;

this is identical with that defined in (1.4) except that f ∗ is replaced
by f ∗∗. It is easy to see that LK spaces Lp,q;b (G) endowed with a
convenient norm (1.5), are rearrangment-invariant Banach function
spaces and have absolutely continuous norm when p ∈ (1,∞) and
q ∈ [1,∞). It is clear that, for 0 < p < ∞, LK spaces contain
the characteristic function of every measurable subset of G with finite
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measure and hence, by linearity, every µ−simple function. From the
definition of ‖·‖(p,q;b), it follows that if f ∈ Lp,q;b (G) and p, q ∈ (0,∞),

then the function λf (y) is finite valued. In this case, with a little
thought, it is easy to see that it is possible to construct a sequence of
(simple) functions which satisfy Lemma 1.1 in [4]. Therefore, if we use
the same method as employed in the proof of proposition 2.4 in [13],
we can show that Lebesgue dominated convergence theorem holds and
so the set of simple functions is dense in LK space. Also, we can see
the density of Cc (G), the set of all continuous and complex-valued
functions with compact support.

Lemma 1. [15, Lemma 3.1] Let b be a s.v. function on [1,∞). Then

(i) br is also a s.v. function on [1,∞) for any r ∈ R and
γbr (t) = γrb (t) for all t > 0.
(ii) Let α > 0. Then

(1.6)

∫ τ

0

tα−1γb (t) dt ≈ sup
0<t<τ

tαγb (t) ≈ ταγb (τ) for all τ > 0;

(1.7)

∫ ∞
τ

t−α−1γb (t) dt ≈ sup
τ<t<∞

τ−αγb (t) ≈ τ−αγb (τ) for all τ > 0.

Lemma 2. [18, Lemma 5.1(i)] Let 1 < p <∞, 1 ≤ q <∞ and b be
a s.v. function. Then C∞0

(
Rd
)
, the space of all smooth functions with

compact support, is dense in Lp,q;b
(
Rd
)
.

In anolog to modulation spaces, Gürkanlı defined M (p, q)
(
Rd
)

spaces of tempered distributions whose Gabor transform in Lorentz
spaces and showed some properties of these spaces. Also, a new Segal
algebra S (p, q)

(
Rd
)

is established and examined which is obtained by

intersecting M (p, q)
(
Rd
)

and L1
(
Rd
)

in [11].
In the next section, we will show some new properties of Lorentz-

Karamata (LK) spaces that are examined by using the properties of
Lorentz spaces. Later, we will define and examine M (p, q; b)

(
Rd
)

spaces of tempered distributions whose Gabor transform in LK spaces.
For this part, we mostly benefit from [11] and [12, Chapter 11].

2. Main Results

2.1. Some Properties of LK spaces.

Lemma 3. The Schwartz space S
(
Rd
)

is contained by Lp,q;b
(
Rd
)
.
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Remark 1. If we consider [18, Lemma 5.1(iii)] with σ = 0, we see
the density of S

(
Rd
)

in Lp,q;b
(
Rd
)

for p ∈ (1,∞) and q ∈ [1,∞).
However, we may give an alternative proof to [18, Lemma 5.1(iii)].

Proof. Let us take any f ∈ S
(
Rd
)
. Then for every m ∈ N, there is a

positive constant cm such that

(2.1) |f (u)| ≤ cm
(
1 + |u|2

)−m/2
for all u ∈ Rd. If we take m = 0, then it shows that f ∗ (t) ≤ c0 for all
t > 0. Therefore

(2.2)
∥∥∥t 1p− 1

q γb (t) f ∗ (t)
∥∥∥
q;(0,1)

≤ cq0

∥∥∥t 1p− 1
q γb (t)

∥∥∥
q;(0,1)

<∞

by Lemma 1. Also, if we choose m > d
p
, then we get

f ∗ (t) ≤ cmw
m/d
d

(
w

2/d
d + t2/d

)−m/2
where wd is the volume of the unit ball in Rd and

(2.3)
∥∥∥t 1p− 1

q γb (t) f ∗ (t)
∥∥∥
q;(1,∞)

≤
∫ ∞
1

t−qm/d+q/p−1γbq (t) dt <∞

by Lemma 1. Hence ‖f‖p,q;b;G <∞ by (2.2) and (2.3). �

Proposition 1. Let f be a scalar valued, measurable functions on
(G, µ). Then for any s ∈ G, we have the following:

(i) λLsf (y) = λf (y) for all y ≥ 0,
(ii) (Lsf)∗ (t) = f ∗ (t) for all t ≥ 0 and (Lsf)∗∗ (t) = f ∗∗ (t) for

all t > 0,
(iii) If p, q ∈ (0,∞), then ‖Lsf‖(p,q;b) = ‖f‖(p,q;b) , ‖Lsf‖p,q;b =

‖f‖p,q;b.

Proof. It is straightforward by taking into consideration [5, Lemma
3.1]. �

Proposition 2. For any f ∈ Lp,q;b (G), 1 < p < ∞ and 1 ≤ q < ∞,
the function s→ Lsf is continuous from G into Lp,q;b (G).

Proof. Since the set of simple functions is dense in Lp,q;b (G), it is
sufficient to show the mapping s→ Lsf is continuous for any simple
function f . Let f =

∑n
i=1 kiχEi

where χE is the characteristic function
of E. Then we have Lsf =

∑n
i=1 kiχEi+s,

(2.4) |χEi+s − χEi
| (t) = { 1, t ∈ (Ei + s) M Ei

0, otherwise
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and

(2.5) λχEi+s−χEi
(y) = { µ ((Ei + s) M Ei) , t < 1

0, t ≥ 1

where M denotes the symmetric difference of sets. Therefore, we write

(2.6) (χEi+s − χEi
)∗ (t) = { 1, t < µ ((Ei + s) M Ei)

0, t ≥ µ ((Ei + s) M Ei)

and

‖χEi+s − χEi
‖q(p,q;b) =

∥∥∥t 1p− 1
q γb (t) (χEi+s − χEi

)∗ (t)
∥∥∥q
q;(0,∞)

=

∫ ∞
0

∣∣∣t 1p− 1
q γb (t) (χEi+s − χEi

)∗ (t)
∣∣∣q dt(2.7)

=

∫ µ((Ei+s)MEi)

0

t
q
p
−1γqb (t) dt

=

∫ µ((Ei+s)MEi)

0

t
q
p
−1γbq (t) dt

≈ sup
0<t<µ((Ei+s)MEi)

t
q
pγbq (t)

≈ µ ((Ei + s) M Ei)
q
p γbq (µ ((Ei + s) M Ei))

by (1.6). By using the absolutely continuity of the norm, we get
‖Lsf − f‖(p,q;b) → 0 as s → 0 and similarly ‖Lsf − f‖p,q;b → 0 as
s→ 0. �

In [4], a convolution operator T is defined and the necessary condi-
tions for convolution of two simple functions are found. By the help of
O’Neil Theorem (see [17], pp.133), convolution theorems for Lorentz
spaces are established in [4]. Now we will give a proposition for LK
spaces by the same method used in there.

Proposition 3. Let T be a convolution operator defined as in [4, Def-
inition 2.1] and h = T (f, g). T can be uniquely extended so that if
f ∈ Lp,q;b (G), 1 < p, q <∞ and g ∈ L1 (G), then h ∈ Lp,s;b (G), where
q ≤ s. Moreover ‖h‖p,q;b - ‖f‖p,q;b ‖g‖1.

Proof. Since q ≤ s implies ‖h‖p,s;b - ‖h‖p,q;b, it is sufficient to assume
q = s. Let f and g be simple functions. By Lemma 2.2 and Theorem
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2.4 in [4], we have

h∗∗ (t) - tf ∗∗ (t) g∗∗ (t) +

∫ ∞
t

f ∗ (u) g∗ (u) du

- tf ∗∗ (t) g∗∗ (t) + f ∗∗ (t)

∫ ∞
t

g∗ (u) du

= tf ∗∗ (t)
1

t

∫ t

0

g∗ (u) du+ f ∗∗ (t)

∫ ∞
t

g∗ (u) du

= f ∗∗ (t)

∫ ∞
0

g∗ (u) du

and
h∗∗ (t) - f ∗∗ (t) ‖g‖1 .

Thus, we get the result by the definition of ‖·‖p,q;b and the density of

the simple functions in L1 (G) and LK spaces. �

2.2. The Space M (p, q; b)
(
Rd
)
. Let us choose and fix a non zero

window g ∈ S
(
Rd
)
, p ∈ (1,∞) and q ∈ [1,∞). Now, we will define

a space M (p, q; b)
(
Rd
)

of tempered distributions by using the Gabor
transform with respect to rapidly decreasing functions.

Lemma 4. Let g ∈ S
(
Rd
)
. Then for any f ∈ S ′

(
Rd
)
, the following

are equivalent:
(i) f ∈ S

(
Rd
)

(ii) Vgf ∈ S
(
R2d
)

(iii) For every m ∈ N, there is a positive constant cm such that

(2.8) |Vgf (u,w)| ≤ cm (1 + |u|+ |w|)−m

for all u,w ∈ Rd [12, Theorem 11.2.5].

Definition 4. For fixed window g ∈ S
(
Rd
)
, M (p, q; b)

(
Rd
)

will

denote the subpace of tempered distributions S ′
(
Rd
)

consisting of

f ∈ S ′
(
Rd
)

such that the Gabor transform Vg (f) of f is in Lp,q;b
(
R2d
)

space. We endow the vector space M (p, q; b)
(
Rd
)

with the norm

(2.9) ‖f‖M(p,q;b) := ‖Vg (f)‖p,q;b =
∥∥∥t 1p− 1

q γb (t) (Vg (f))∗∗ (t)
∥∥∥
q;(0,∞)

.

Although it seems that this definition depends on the choice of the
window function, we know from [12] that choosing different windows
just give equivalent norms. Therefore, we will use a fixed window
function and measure all norms with respect to this window. Before
starting to study properties ofM (p, q; b)

(
Rd
)

spaces, recall the adjoint
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operator of Vg. For a given non zero window h and a function F on
R2d, it is known that

(2.10) 〈V ∗h F, f〉 = 〈F, Vhf〉 .

Lemma 5. Let 1 < p <∞, 1 ≤ q <∞ and γqb (1) = γbq (1) = bq (1) <
∞. If f ∈ L1

(
Rd
)

and bounded, then f ∈ Lp,q;b
(
Rd
)
.

Remark 2. By [2, Theorem II.6.6], we know that L1
(
Rd
)
∩L∞

(
Rd
)

is the smallest rearrangement invariant Banach function space. There-
fore we can easily get the result. Nevertheless, we may give an alter-
native proof similar to [11].

Proof. Let 1 < p < ∞, 1 ≤ q < ∞ and γqb (1) = γbq (1) < ∞. Then,
we have

‖f‖q(p,q;b) =
∥∥∥t 1p− 1

q γb (t) f ∗ (t)
∥∥∥q
q;(0,∞)

=
∥∥∥t 1p− 1

q γb (t) f ∗ (t)
∥∥∥q
q;(0,1)

+
∥∥∥t 1p− 1

q γb (t) f ∗ (t)
∥∥∥q
q;(1,∞)

.

By using the (right) continuity of f ∗, we get∥∥∥t 1p− 1
q γb (t) f ∗ (t)

∥∥∥q
q;(0,1)

=

∫ 1

0

t
q
p
−1γqb (t) (f ∗ (t))q dt

≤ sup
x∈[0,1]

((f ∗ (t))q)

∫ 1

0

t
q
p
−1γbq (t) dt.(2.11)

Since q
p
> 0, using (2.11) and (1.6), we have∥∥∥t 1p− 1

q γb (t) f ∗ (t)
∥∥∥q
q;(0,1)

≤ sup
x∈[0,1]

((f ∗ (t))q)

∫ 1

0

t
q
p
−1γbq (t) dt

- sup
x∈[0,1]

((f ∗ (t))q) sup
0<t<1

t
q
pγbq (t) - γbq (1) <∞.(2.12)

We know that (f ∗ (t))q - t−q ‖f‖q1 for all t > 0 by [15, Lemma 3.6].
Therefore f ∈ L1

(
Rd
)

implies that∥∥∥t 1p− 1
q γb (t) f ∗ (t)

∥∥∥q
q;(1,∞)

=

∫ ∞
1

t
q
p
−1γqb (t) (f ∗ (t))q dt

-
∫ ∞
1

t
q
p
−1γqb (t) t−q ‖f‖q1 dt(2.13)

= ‖f‖q1
∫ ∞
1

t
q
p
−q−1γbq (t) dt.
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Since p > 1 causes q
p
− q < 0, using (2.13) and (1.7), we get∥∥∥t 1p− 1

q γb (t) f ∗ (t)
∥∥∥q
q;(1,∞)

- ‖f‖q1
∫ ∞
1

t
q
p
−q−1γbq (t) dt

≈ ‖f‖q1 sup
1<t<∞

t
q
p
−qγbq (t) - γbq (1) <∞.(2.14)

So, using (2.12) and (2.14) we see that ‖f‖(p,q;b) <∞ and so ‖f‖p,q;b <
∞. �

Proposition 4. Let 1 < p < ∞, 1 ≤ q < ∞ and g ∈ S
(
Rd
)
. Then

S
(
Rd
)

is dense in M (p, q; b)
(
Rd
)
.

Proof. Let us take any f ∈ S
(
Rd
)
. Since f ∈ S

(
Rd
)
⊂ S ′

(
Rd
)
, we

have Vg (f) ∈ S
(
R2d
)

and

(2.15) sup
z∈R2d

{(1 + |z|)m Vgf (z)} <∞

by Lemma 4. Also, by (2.8)

‖f‖M(p,q;b) = ‖Vg (f)‖p,q;b =
∥∥(1 + |z|)m (1 + |z|)−m Vg (f)

∥∥
p,q;b

≤ sup
z∈R2d

{(1 + |z|)m Vgf (z)}
∥∥(1 + |z|)−m

∥∥
p,q;b

(2.16)

can be found. Since the right hand side of (2.16) is finite for sufficiently
large m by (2.1), (2.2) and Lemma 5, it is obvious that ‖f‖M(p,q;b) <∞
and S

(
Rd
)
⊂ M (p, q; b)

(
Rd
)
.

For the density part of the proof, one can use the techniques mutatis
mutandis applied in [12, Proposition 11.3.4]. �

Theorem 1. Let g1, g2 ∈ S
(
Rd
)

be two non zero windows and
1 < p <∞, 1 ≤ q <∞. Then

(i) V ∗g1 is a map from Lp,q;b
(
R2d
)

into M (p, q; b)
(
Rd
)

with∥∥V ∗g1F∥∥M(p,q;b)
≤ ‖Vg2g1‖1 ‖F‖p,q;b .

(ii) The inversion formula

f =
1

〈g1, g2〉

∫∫
R2d

Vg2 (f) (x,w)MwLxg1dxdw

holds in M (p, q; b)
(
Rd
)
.
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Proof. (i) We must first show that V ∗g1F is a tempered distribution.

We can easily see that Vg1 (f) ∈ Lp′,q′;b−1

(
R2d
)

for all f ∈ S
(
Rd
)

by

definition of Lp′,q′;b−1

(
R2d
)

where 1
p

+ 1
p′

= 1 = 1
q

+ 1
q′

. We also have∣∣〈V ∗g1F, f〉∣∣ = |〈F, Vg1f〉| =
∣∣∣∣∫∫

R2d

F (x,w)Vg1 (f) (x,w)dxdw

∣∣∣∣
≤ ‖F‖p,q;b ‖Vg1f‖p′,q′;b−1(2.17)

for all f ∈ S
(
Rd
)

with Hölder’s inequality for LK spaces. By (2.17),
we get∣∣〈V ∗g1F, f〉∣∣ ≤ ‖F‖p,q;b ‖Vg1f‖p′,q′;b−1

≤ ‖F‖p,q;b sup
z∈R2d

{(1 + |z|)m Vg1f (z)}
∥∥(1 + |z|)−m

∥∥
p′,q′;b−1.

(2.18)

Since the right hand side of (2.18) is finite for sufficiently large m
by Lemma 5 and [12, Corollary 11.2.6], we see that V ∗g1F ∈ S

′ (Rd
)
.

So it possesses Gabor transform such that

Vg2V
∗
g1
F (u, v) =

〈
V ∗g1F,MvLug2

〉
= 〈F, Vg1 (MvLug2)〉

=

∫∫
R2d

F (x,w)Vg2 (g1) (u− x, v − w) e−2πix(v−w)dxdw.(2.19)

By (2.19), we obtain∣∣Vg2V ∗g1F (u, v)
∣∣ ≤ (|F | ∗ |Vg2 (g1)|) (u, v)

and ∥∥V ∗g1F∥∥M(p,q;b)
=

∥∥Vg2V ∗g1F∥∥p,q;b ≤ ‖|F | ∗ |Vg2 (g1)|‖p,q;b
≤ ‖F‖p,q;b ‖Vg2 (g1)‖1

since Vg2 (g1) ∈ S
(
R2d
)
⊂ L1

(
R2d
)

and Lp,q;b
(
R2d
)

is

L1
(
R2d
)
−module.

(ii) From the definition of M (p, q; b)
(
Rd
)
, we see the result by The-

orem 11.2.3 and Corollary 11.2.7 in [12]. �

We know that Lp,q;b
(
R2d
)

is a rearrangement invariant Banach space
for 1 < p, q < ∞ and it is easy to show that it is a solid translation
invariant function space. Therefore M (p, q; b)

(
Rd
)

is a coorbit space
and a Banach space where b is a s.v. function and 1 < p, q <∞. Also
M (p, q; b)

(
Rd
)

spaces are strongly invariant under time-frequency
shifts, i.e. ‖LxMwf‖M(p,q;b) = ‖f‖M(p,q;b).
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Proposition 5. The mapping s → Lsf is continuous from Rd into
M (p, q; b)

(
Rd
)

for all f ∈ M (p, q; b)
(
Rd
)
, 1 < p < ∞ and 1 ≤ q <

∞.

Proof. Let 1 < p <∞, 1 ≤ q <∞ and f ∈M (p, q; b)
(
Rd
)
. Then, we

have
(2.20)

‖Lsf − f‖M(p,q;b) = ‖Vg (Lsf − f)‖p,q;b
= ‖Vg (Lsf)− Vgf‖p,q;b =

∥∥e−2πwsiL(s,0) (Vgf)− Vgf
∥∥
p,q;b

≤
∥∥e−2πwsiL(s,0) (Vgf)− e−2πwsiVgf

∥∥
p,q;b

+ ‖e−2πwsiVgf − Vgf‖p,q;b
=
∥∥e−2πwsi (L(s,0)Vgf − Vgf

)∥∥
p,q;b

+ ‖(e−2πwsi − 1)Vgf‖p,q;b
=
∥∥L(s,0) (Vgf)− Vgf

∥∥
p,q;b

+ ‖(e−2πwsi − 1)Vgf‖p,q;b

for all g ∈ S
(
Rd
)
. Now, if we let hs (x,w) = |e−2πwsi − 1| |Vgf (x,w)|,

then it is easily seen that hs (x,w) → 0 as s → 0 for all
(x,w) ∈ R2d. Therefore, we can see that the rearrangement of
(e−2πwsi − 1)Vgf (x,w) also converges to zero as s → 0. Since
hs (x,w) ≤ 2 |Vgf (x,w)| and Vgf ∈ Lp,q;b

(
R2d
)
, we have h∗s ≤

(2 |Vgf |)∗ and ‖hs‖p,q;b = ‖(e−2πwsi − 1)Vgf‖p,q;b → 0 as s → 0 by
Lebesgue dominated convergence theorem. On the other hand, by
proposition 2, we can deduce that the mapping s → Ls (Vgf) is con-
tinuous for all f ∈ Lp,q;b

(
R2d
)

and s ∈ R2d. Hence, we get the result
with the last two assertions. �

Theorem 2. M (p, q; b)
(
Rd
)

is an essential Banach L1
(
Rd
)
−module.

Proof. Let h ∈ M (p, q; b)
(
Rd
)

and f ∈ L1
(
Rd
)
. It is known by [12,

Lemma 3.1.1] that

(2.21) Vg (f ∗ h) (x,w) = e−2πixw (f ∗ h) ∗Mwg̃
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where Mwg̃ (x) = e2πixwg (x). Therefore, if we use the strongly trans-
lation invariance property of LK spaces and (2.21) together, we have

‖f ∗ h‖M(p,q;b) = ‖Vg (f ∗ h)‖p,q;b = ‖f ∗ h ∗Mwg̃‖p,q;b

=

∥∥∥∥∫
Rd

f (t) (h ∗Mwg̃) (x− t) dt
∥∥∥∥
p,q;b

≤
∫
Rd

|f (t)| ‖Lt (h ∗Mwg̃) (x)‖p,q;b dt

=

∫
Rd

|f (t)| ‖(h ∗Mwg̃) (x)‖p,q;b dt

= ‖(h ∗Mwg̃) (x)‖p,q;b
∫
Rd

|f (t)| dt

= ‖h‖p,q;b ‖f‖1 .

For the essentiality part, take any h ∈ M (p, q; b)
(
Rd
)
. We know

by Proposition 5 that the mapping s → Lsh is continuous of Rd

into M (p, q; b)
(
Rd
)

for all h ∈ M (p, q; b)
(
Rd
)
. Therefore for any

ε > 0, there exits a compact neighborhood U of 0 ∈ Rd such that
‖Lsh− h‖M(p,q;b) < ε for all s ∈ U . Now let g ∈ L1

(
Rd
)

be a positive
and continuous function with compact support such that suppg ⊂ U
and

∫
Rd g (x) dx = 1. Then, we get

‖g ∗ h− h‖M(p,q;b) =

∥∥∥∥∫
Rd

g (z)h (u− z) dz−

−
∫
Rd

h (u) g (z) dz

∥∥∥∥
M(p,q;b)

≤
∫
Rd

g (z) ‖Lzh− h‖M(p,q;b) dz

≤ ε

∫
Rd

g (z) dz = ε.

Since M (p, q; b)
(
Rd
)

is a Banach L1
(
Rd
)
−module and L1

(
Rd
)
∗

M (p, q; b)
(
Rd
)
⊂ M (p, q; b)

(
Rd
)
, we say that L1

(
Rd
)
∗

M (p, q; b)
(
Rd
)

is dense in M (p, q; b)
(
Rd
)
. Hence, M (p, q; b)

(
Rd
)

is

an essential Banach L1
(
Rd
)
−module by Module Factorization Theo-

rem. �

Theorem 3. Let p, q ∈ (1,∞) and b be s.v. function. The as-
sociate space of M (p, q; b)

(
Rd
)

is M (p′, q′; b−1)
(
Rd
)

with the norm
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‖·‖M(p′,q′;b−1) where 1
p

+ 1
p′

= 1 and 1
q

+ 1
q′

= 1. In other words, these

spaces are reflexive.

Proof. Let h ∈ M (p′, q′; b−1)
(
Rd
)
. It is known that Lp,q;b

(
R2d
)

is a

Banach space with associate space Lp′,q′;b−1

(
R2d
)

and both of them

have absolutely continuous norms where 1
p

+ 1
p′

= 1 and 1
q

+ 1
q′

= 1. It

is known (generally) that the dual form is

(2.22) 〈u, v〉 =

∫
R2d

u (x) v (x) dx

where u ∈ Lp,q;b
(
R2d
)

and v ∈ Lp′,q′;b−1

(
R2d
)
. If we define a linear

functional on M (p, q; b)
(
Rd
)

with h ∈M (p′, q′; b−1)
(
Rd
)
, then

(2.23) Hh (f) =

∫
R2d

Vgf (x)Vgh (x) dx

can be written. Also, if we use Hölder’s inequality and [9, Theorem
3.2.10], then we get

|Hh (f)| ≤ ‖Vgh‖p′,q′;b−1 ‖Vgf‖p,q;b
for all f ∈M (p, q; b)

(
Rd
)
. Hence the linear functional Hh is bounded.

Conversely, let us take any H ∈
(
M (p, q; b)

(
Rd
))∗

. By proposition

4, it is easy to see that M (p, q; b)
(
Rd
)

is isometrically isomorphic to
the closed subspace

(2.24) N =
{
Vgf ∈ Lp,q;b

(
R2d
)

: f ∈M (p, q; b)
(
Rd
)}

of Lp,q;b
(
R2d
)
. Hence H̃ (Vgf) := H (f) defines a continuous linear

functional on N and H̃ can be extended continuously to Lp,q;b
(
R2d
)
.

Thus by [9, Theorem 3.4.41], there exists k ∈ Lp′,q′;b−1

(
R2d
)

such that

(2.25) H̃ (Vgf) =

∫
R2d

Vgf (x) k (x) dx = H (f) .

On the other hand, since k ∈ Lp′,q′;b−1

(
R2d
)
, we can find K ∈

M (p′, q′; b−1)
(
Rd
)

by Theorem 1 such that K = V ∗g k. As a result,

every continuous linear functional on M (p, q; b)
(
Rd
)

is of the form

(2.25) and
(
M (p, q; b)

(
Rd
))∗

= M (p′, q′; b−1)
(
Rd
)
. �

Lastly, we are going to give a theorem without its proof. It can be
proved by the techniques used in [5].

Theorem 4. Let g ∈ S
(
Rd
)

and p, q ∈ (1,∞). Then the multipli-

ers space M
(
L1
(
Rd
)
,M (p, q; b)

(
Rd
))

is isometrically isomorphic to

M (p, q; b)
(
Rd
)
.
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