"Vasile Alecsandri" University of Bacău Faculty of Sciences Scientific Studies and Research Series Mathematics and Informatics Vol. 22 (2012), No. 2, 31 - 36

A COMMON FIXED POINT THEOREM FOR SET-VALUED MAPPINGS USING δ -DISTANCE IN COMPLETE METRIC SPACES

EMİRHAN HACIOĞLU AND MUSTAFA TELCİ

Abstract. A common fixed point theorem for set-valued mappings on a complete metric space is established using δ -distance function.

1. Preliminaries

We let (X, d) be a complete metric space and let B(X) be the set of all nonempty bounded subsets of X. As in [1, 2, 4, 5], we define the function $\delta(A, B)$ with A and B in B(X) by $\delta(A, B) = \sup\{d(a, b) :$ $a \in A, b \in B\}$. If A consists of a single point a we write $\delta(A, B) =$ $\delta(a, B)$ and if B also consists of single point b, we write $\delta(A, B) =$ $\delta(a, b) = d(a, b)$. It follows immediately that $\delta(A, B) = \delta(B, A) \ge 0$, and $\delta(A, B) \le \delta(A, C) + \delta(C, B)$ for all A, B and $C \in B(X)$. If $\delta(A, B) = 0$, then $A = B = \{a\}$.

Now if $\{A_n : n = 1, 2, ...\}$ is a sequence of sets in B(X), we say that it converges to the set A in B(X) if

(i) each point $a \in A$ is the limit of some convergent sequence $\{a_n \in A_n : n = 1, 2, \ldots\}$,

(ii) for arbitrary $\epsilon > 0$, there exists an integer N such that $A_n \subset A_{\epsilon}$ for n > N, where A_{ϵ} is the union of all open spheres with centers in A and radius ϵ .

The set A is then said to be the limit of the sequence $\{A_n\}$. The following lemma was proved in [1].

Keywords and phrases: common fixed point, set-valued mapping. (2010)Mathematics Subject Classification: 47H10, 54H25.

Lemma 1.1. If $\{A_n\}$ and $\{B_n\}$ are sequences of nonempty, bounded subsets of a complete metric space (X, d) which converge to the bounded subsets A and B, respectively, then the sequence $\{\delta(A_n, B_n)\}$ converges to $\delta(A, B)$.

Now, let T be a mapping of X into B(X). We say that the mapping T is continuous at a point x in X if whenever $\{x_n\}$ is a sequence of points in X converging to x, the sequence $\{Tx_n\}$ in B(X) converges to Tx in B(X). We say that T is continuous mapping of X into B(X) if T is continuous at each point x in X. We say that a point z in X is a fixed point of T if z is in Tz. If A is in B(X), we define the set $TA = \bigcup_{a \in A} Ta$. If S is a second mapping of X into B(X), we define the composition $(ST)(x) = \bigcup_{y \in T(x)} S(y)$.

2. Main results

We now prove the following theorem.

Theorem 2.1. Let S and T be mappings of a complete metric space (X, d) into B(X) satisfying the following inequalities

(1)
$$\delta(TSx, Sx) \leq \varphi(\delta(Sx, x)),$$

(2)
$$\delta(STx, Tx) \leq \varphi(\delta(Tx, x))$$

for all x in X, where $\varphi : [0, \infty) \to [0, \infty)$ is a nondecreasing function with $\sum_{n=1}^{\infty} \varphi^n(t) < \infty$ for all t > 0. If S or T is continuous, then S and T have a common fixed point z. Further, $Tz = Sz = \{z\}$.

Proof. Let x_0 be an arbitrary point in X. Define sequence $\{x_n\}$ in X as follows. Choose a point x_1 in Tx_0 and then a point x_2 in Sx_1 . In general, having chosen x_n in X choose x_{2n+1} in Tx_{2n} and then x_{2n+2} in Sx_{2n+1} for $n = 0, 1, \ldots$.

Then using inequalities (1) and (2), we have

$$d(x_{2n+1}, x_{2n}) \leq \delta(Tx_{2n}, x_{2n})$$

$$\leq \delta(TSx_{2n-1}, Sx_{2n-1})$$

$$\leq \varphi(\delta(Sx_{2n-1}, x_{2n-1}))$$

$$\leq \varphi(\delta(STx_{2n-2}, Tx_{2n-2}))$$

$$\leq \varphi^{2}(\delta(Tx_{2n-2}, x_{2n-2}))$$

$$\dots$$

$$\leq \varphi^{2n}(\delta(Tx_{0}, x_{0}))$$

(3)

and, similarly,

$$d(x_{2n+2}, x_{2n+1}) \leq \delta(Sx_{2n+1}, x_{2n+1}) \\\leq \delta(STx_{2n}, Tx_{2n}) \\\leq \varphi(\delta(Tx_{2n}, x_{2n})) \\\leq \varphi(\delta(TSx_{2n-1}, Sx_{2n-1})) \\\leq \varphi^{2}(\delta(Sx_{2n-1}, x_{2n-1})) \\\leq \varphi^{2}(\delta(STx_{2n-2}, Tx_{2n-2})) \\\leq \varphi^{3}(\delta(Tx_{2n-2}, x_{2n-2})) \\ \dots \\\leq \varphi^{2n+1}(\delta(Tx_{0}, x_{0})).$$

Then from inequalities (3) and (4), we obtain

(5)
$$d(x_{n+1}, x_n) \le \varphi^n(\delta(Tx_0, x_0))$$

for n = 0, 1, ...

(4)

Now let m > n. Then from inequality (5), we have

$$d(x_n, x_m) \leq d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{m-1}, x_m)$$

$$\leq \varphi^n(\delta(Tx_0, x_0)) + \varphi^{n+1}(\delta(Tx_0, x_0)) + \dots + \varphi^{m-1}(\delta(Tx_0, x_0))$$

$$= \sum_{k=n}^{m-1} \varphi^k(\delta(Tx_0, x_0)) \leq \sum_{k=n}^{\infty} \varphi^k(\delta(Tx_0, x_0)).$$

Take any $\varepsilon > 0$. Since $\sum_{n=1}^{\infty} \varphi^n(t) < \infty$ for all t > 0, we can choose a sufficiently large natural number N such that

$$d(x_n, x_m) \le \sum_{k=N}^{\infty} \varphi^k(\delta(Tx_0, x_0)) < \varepsilon,$$

for all $m > n \ge N$. It follows that the sequence $\{x_n\}$ is a Cauchy sequence in the complete metric space X and so has a limit z in X.

Now we suppose that the mapping T is continuous. Then the sequence $\{Tx_{2n}\}$ in B(X) converges to Tz in B(X). Using inequality (3), we now have

$$\begin{aligned} \delta(z, Tx_{2n}) &\leq d(z, x_{2n}) + \delta(x_{2n}, Tx_{2n}) \\ &\leq d(z, x_{2n}) + \varphi^{2n}(\delta(Tx_0, x_0)). \end{aligned}$$

Letting n tends to infinity, we have

$$\lim_{n \to \infty} \delta(z, Tx_{2n}) = 0.$$

Further, using Lemma 1.1, we have $Tz = \{z\}$. Then from inequality (2), we have

$$\delta(Sz,z) \le \delta(STz,Tz) \le \varphi(\delta(Tz,z)) = \varphi(0) = 0$$

which implies

$$Sz = Tz = \{z\}.$$

The same result of course holds if S is continuous instead of T.

Putting T = S in Theorem 2.1, then we get the following corollary; Corollary 2.2. Let T be mapping of a complete metric space (X, d)into B(X) satisfying the following inequality

$$\delta(T^2x, Tx) \le \varphi(\delta(Tx, x))$$

for all x in X, where $\varphi : [0, \infty) \to [0, \infty)$ is a nondecreasing function with $\sum_{n=1}^{\infty} \varphi^n(t) < \infty$ for all t > 0. If T is continuous, then T has a fixed point z. Further, $Tz = \{z\}$.

If we let S and T be single valued self -mappings of X, we obtain the following result given in [3].

Corollary 2.3. Let (X, d) be a complete metric space and let S and T be self-mappings of X satisfying the following inequalities

$$d(TSx, Sx) \leq \varphi(d(Sx, x)), d(STx, Tx) \leq \varphi(d(Tx, x))$$

for all x in X, where $\varphi : [0, \infty) \to [0, \infty)$ is a nondecreasing function with $\sum_{n=1}^{\infty} \varphi^n(t) < \infty$ for all t > 0. If S or T is continuous, then S and T have a common fixed point.

Example 2.4. Let X = [0, 1] with usual metric d and let

$$Tx = [0, x/2], \quad Sx = \begin{cases} [0, x/4] & \text{if } x < 1/2\\ \{0\} & \text{if } x \ge 1/2 \end{cases}$$

Then we have,

$$\delta(TSx, Sx) = 0, \delta(STx, Tx) = x/2, \delta(Sx, x) = x \text{ and } \delta(Tx, x) = x$$

for all $x \ge 1/2$.

For all x < 1/2, we have also

$$\delta(TSx, Sx) = x/4, \delta(STx, Tx) = x/2, \delta(Sx, x) = x \text{ and } \delta(Tx, x) = x.$$

Then, assuming $\varphi(t) = t/2$ for all $t \ge 0$, all the conditions of Theorem 2.1 are satisfied. Also $T0 = S0 = \{0\}$.

Acknowledgment

The authors are grateful to the referees for some helpful comments and suggestions.

References

- B. Fisher, Common fixed point theorems for mappings and set-valued mappings, Rostock. Math. Kolloq., 18 (1981), 69–77.
- [2] B. Fisher, Set-valued mappings on metric spaces, Fund. Math., 122 (1981), 141–145.
- [3] H. Karayılan and M. Telci, Common fixed points of two maps in complete G-metric spaces, Sci. Stud. Res. Ser. Math. Inf. Univ. V. Alecsandri Bacău, 20 (2010), 39–48.
- [4] I. A. Rus, Some general fixed point theorems for multivalued mappings in complete metric spaces, Proc. of the thirt Colloq. Research, Cluj-Napoca, 1979, 240–248.
- [5] I. A. Rus, Principles and applications of fixed point theory, (Romanian), Dacia Publishing House, Cluj-Napoca, 1979.

Emirhan Hacıoğlu

Department of Mathematics, Faculty of Science, Trakya University, 22030 Edirne, TURKEY, e-mail:emirhanhacioglu@hotmail.com

Mustafa Telci

Department of Mathematics, Faculty of Science, Trakya University, 22030 Edirne, TURKEY, e-mail:mtelci@trakya.edu.tr