"Vasile Alecsandri" University of Bacău Faculty of Sciences Scientific Studies and Research Series Mathematics and Informatics Vol. 22 (2012), No. 2, 55 - 70

COUPLED FIXED POINT THEOREMS FOR NONLINEAR CONTRACTIONS IN PARTIALLY ORDERED GENERALIZED METRIC SPACES

NGUYEN VAN LUONG AND NGUYEN XUAN THUAN

Abstract. In this paper, we prove some coupled fixed point theorems for nonlinear contractive mappings having the mixed monotone property in partially ordered G - metric spaces.

1. INTRODUCTION

In recent years, many studies in the area of fixed point theory in partially ordered metric spaces have been performed. Many well-known fixed point theorems in this area can be found in [1], [2], [4], [7 - 15], [21 - 26]. Some of these theorems were given and proved by Bhaskar and Lakshmikantham in [10]. In this paper, the authors introduced the notions of mixed monotone mapping and coupled fixed point and discussed the existence and uniqueness of a solution for periodic boundary value problem. Coupled fixed point theorems and coupled coincidence point results are given in [3 - 5], [9], [13 - 15], [26]. Mustafa and Sims [17] introduced a new structure of generalized metric spaces, namely G-metric space. As a result, many fixed point theorems for various mappings in this space was established [6], [17 - 19], [27]. In this research stream, Choudhury and Maity [5] proved several fixed point theorems for mixed monotone mappings satisfying a contractive condition. In this paper, we prove some coupled fixed point theorems for nonlinear contractive mappings in partially ordered G-metric spaces, which generalize results in [5].

Keywords and phrases: Coupled fixed point, Mixed monotone, Order set, *G*-metric spaces.

(2010) Mathematics Subject Classification: 47H10, 54H25

2. Preliminaries

Definition 2.1. ([17]) Let X be a non-empty set and $G: X \times X \times X \rightarrow \mathbb{R}_+$ be a function satisfying the following properties:

(i) G(x, y, z) = 0 if x = y = z,

(ii) 0 < G(x, x, y), for all $x, y \in X$ with $x \neq y$,

(iii) $G(x, x, y) \leq G(x, y, z)$, for all $x, y, z \in X$ with $z \neq y$,

(iv) $G(x, y, z) = G(x, z, y) = G(y, z, x) = \dots$, (symmetry in all three variables),

(v) $G(x, y, z) \leq G(x, a, a) + G(a, y, z)$, for all $x, y, z, a \in X$ (rectangle inequality).

Then the function G is called a G-metric on X and the pair (X, G) is called a G-metric space.

Definition 2.2. ([17]) Let (X, G) be a *G*-metric space and let $\{x_n\}$ be a sequence of points of *X*. A point $x \in X$ is said to be the limit of the sequence $\{x_n\}$ if $\lim_{n,m\to\infty} G(x, x_n, x_m) = 0$ and one says that the sequence $\{x_n\}$ is *G*-convergent to *x*.

Thus, if $x_n \to x$ in the *G*-metric space (X, G) then for any $\varepsilon > 0$, there exists a positive integer N such that $G(x, x_n, x_m) < \varepsilon$, for all n, m > N.

In [17], the authors have shown that the G-metric induces a Hausdorff topology and the convergence described in the above definition is relative to this topology. The topology being Hausdorff, a sequence can converge at most to a point.

Definition 2.3. ([17]) Let (X, G) be a *G*-metric space. A sequence $\{x_n\}$ is called *G*-Cauchy if for every $\varepsilon > 0$, there is a positive integer *N* such that $G(x_n, x_m, x_l) < \varepsilon$, for all $n, m, l \ge N$, that is, if $G(x_n, x_m, x_l) \to 0$, as $n, m, l \to \infty$.

Lemma 2.4. ([17]) If (X, G) is a G-metric space, then the following are equivalent:

- (1) $\{x_n\}$ is G-convergent to x,
- (2) $G(x_n, x_n, x) \to 0 \text{ as } n \to \infty$,
- (3) $G(x_n, x, x) \to 0 \text{ as } n \to \infty$,
- (4) $G(x_m, x_n, x) \to 0 \text{ as } m, n \to \infty.$

Lemma 2.5. ([17]) If (X, G) be a G-metric space, then the following are equivalent:

- (1) The sequence $\{x_n\}$ is G-Cauchy,
- (2) For every $\varepsilon > 0$, there exists a positive integer N such that $G(x_n, x_m, x_m) < \varepsilon$, for all $n, m \ge N$.

Lemma 2.6. ([17]) If (X,G) is a G-metric space then $G(x,y,y) \leq 2G(y,x,x)$ for all $x, y \in X$.

Lemma 2.7. If (X, G) is a G-metric space then

$$G(x, x, y) \le G(x, x, z) + G(z, z, y)$$

for all $x, y, z \in X$.

Proof. For all $x, y, z \in X$, by Definition 2.1 (iv) and (v), we have

$$\begin{array}{rcl} G(x,x,y) = G(y,x,x) &\leq & G(y,z,z) + G(z,x,x) \\ &= & G(x,x,z) + G(z,z,y) \end{array}$$

This ends the proof.

Definition 2.8. ([17]) Let (X, G), (X', G') be two *G*-metric spaces. Then a function $f : X \to X'$ is said to be *G*-continuous at a point $x \in X$ if and only if it is *G* sequentially continuous at *x*, that is, whenever $\{x_n\}$ is *G*-convergent to $x, \{f(x_n)\}$ is *G*'-convergent to f(x).

Lemma 2.9. ([17]) Let (X, G) be a G-metric space, then the function G(x, y, z) is jointly continuous in all three of its variables.

Definition 2.10. ([17]) A *G*-metric space (X, G) is called symmetric *G*-metric space if G(x, y, y) = G(y, x, x) for all $x, y \in X$.

Definition 2.11. ([17]) A *G*-metric space (X, G) is said to be *G*-complete (or complete *G*-metric space) if every *G*-Cauchy sequence in (X, G) is convergent in *X*.

Definition 2.12. ([5]) Let (X, G) be a *G*-metric space. A mapping $F: X \times X \to X$ is said to be continuous if for any two *G*-convergent sequences $\{x_n\}$ and $\{y_n\}$ converging to x and y respectively, $\{F(x_n, y_n)\}$ is *G*-convergent to F(x, y).

Definition 2.13. ([10]) Let (X, \preceq) be a partially ordered set and $F: X \times X \to X$. The mapping F is said to have the mixed monotone property if F(x, y) is monotone non - decreasing in x and is monotone non - increasing in y, that is, for any $x, y \in X$,

$$x_1, x_2 \in X, \quad x_1 \preceq x_2 \Rightarrow F(x_1, y) \preceq F(x_2, y)$$

and

$$y_1, y_2 \in X, \quad y_1 \preceq y_2 \Rightarrow F(x, y_1) \succeq F(x, y_2)$$

Definition 2.14. ([10]) An element $(x, y) \in X \times X$ is called a coupled fixed point of the mapping $F : X \times X \to X$ if

$$x = F(x, y)$$
 and $y = F(y, x)$

The following Lemma will be useful in the sequel.

Lemma 2.15. (See e.g. [16]) Let $\{x_n\}$ and $\{y_n\}$ are two sequences of positive real numbers such that

$$\lim_{n \to \infty} (x_n + y_n) = \alpha > 0$$

Then there exists subsequences $\{x_{n_{k_j}}\}$ of $\{x_n\}$ and $\{y_{n_{k_j}}\}$ of $\{y_n\}$ such that

$$\lim_{j \to \infty} x_{n_{k_j}} = \alpha_1, \lim_{j \to \infty} y_{n_{k_j}} = \alpha_2 \text{ and } \alpha_1 + \alpha_2 = \alpha$$

Proof. Since the sequence $\{x_n + y_n\}$ is convergent, it is bounded. On other hand, due to $0 \le x_n, y_n \le x_n + y_n$, $\{x_n\}$ and $\{y_n\}$ are also bounded.

Since $\{x_n\}$ is bounded, by Bolzano - Weierstrass theorem, $\{x_n\}$ has a convergent subsequence, say $\{x_{n_k}\}$. Assume that $\lim_{k\to\infty} x_{n_k} = \alpha_1$. Also, due to $\{y_{n_k}\}$ is bounded, there exists a subsequence $\{y_{n_{k_j}}\}$ of $\{y_{n_k}\}$ such that $\lim_{j\to\infty} y_{n_{k_j}} = \alpha_2$. Since $\lim_{k\to\infty} x_{n_k} = \alpha_1$, we have $\lim_{j\to\infty} x_{n_{k_j}} = \alpha_1$. Finally, we have

$$\alpha = \lim_{j \to \infty} (x_{n_{k_j}} + y_{n_{k_j}}) = \alpha_1 + \alpha_2.$$

3. Main results

Let Θ denote the family of all functions $\theta : [0,\infty)^2 \to [0,\infty)$ for which there exists

$$\lim_{\substack{t_1 \to r_1 \\ t_2 \to r_2}} \theta(t_1, t_2) > 0 \text{ for all } (r_1, r_2) \in [0, \infty)^2 \text{ with } r_1 + r_2 > 0$$

For example,

 $\theta(t_1, t_2) = k \max\{t_1, t_2\}, k > 0, \ \theta(t_1, t_2) = at_1^p + bt_2^q, a, b, p, q > 0 \text{ for all } (t_1, t_2) \in [0, \infty)^2 \text{ are in } \Theta.$

Now, we prove our main results.

Theorem 3.1. Let (X, \preceq) be a partially ordered set and suppose that there exists a *G*-metric *G* on *X* such that (X, G) is a complete *G*metric space. Let $F : X \times X \to X$ be a mapping having the mixed monotone property on *X*. Suppose that there exists $\theta \in \Theta$ such that

$$G(F(x,y), F(u,v), F(w,z)) + G(F(y,x), F(v,u), F(z,w))$$

(3.1)
$$\leq G(x,u,w) + G(y,v,z) - \theta \left(G(x,u,w), G(y,v,z) \right)$$

for all $x \succeq u \succeq w$ and $y \preceq v \preceq z$. Suppose that either (a) F is continuous or

(b) X has the following property:

(i) if a non-decreasing sequence $\{x_n\}$ is G-convergent to x, then $x_n \leq x$ for all n,

(ii) if a non-increasing sequence $\{y_n\}$ is G-convergent to y, then $y \leq y_n$ for all n.

If there exist $x_0, y_0 \in X$ such that $x_0 \preceq F(x_0, y_0)$ and $y_0 \succeq F(y_0, x_0)$, then F has a coupled fixed point in X.

Proof. Let $x_0, y_0 \in X$ be such that $x_0 \preceq F(x_0, y_0)$ and $y_0 \succeq F(y_0, x_0)$. We construct the sequences $\{x_n\}$ and $\{y_n\}$ in X as follows

(3.2)
$$x_{n+1} = F(x_n, y_n)$$
 and $y_{n+1} = F(y_n, x_n)$, for all $n \ge 0$

We shall show that

$$(3.3) x_n \preceq x_{n+1},$$

and

$$(3.4) y_n \succeq y_{n+1},$$

for all $n \ge 0$.

Since $x_0 \leq F(x_0, y_0)$ and $y_0 \succeq F(y_0, x_0)$ and as $x_1 = F(x_0, y_0)$ and $y_1 = f(y_0, x_0)$, we have $x_0 \leq x_1$ and $y_0 \succeq y_1$. Thus (3.3) and (3.4) hold for n = 0.

Suppose that (3.3) and (3.4) hold for some $n \ge 0$. Then, since $x_n \preceq x_{n+1}$ and $y_n \succeq y_{n+1}$ and by the mixed monotone property of F, we have

(3.5)
$$x_{n+2} = F(x_{n+1}, y_{n+1}) \succeq F(x_n, y_{n+1}) \succeq F(x_n, y_n)$$

and

(3.6)
$$y_{n+2} = F(y_{n+1}, x_{n+1}) \preceq F(y_n, x_{n+1}) \preceq F(y_n, x_n)$$

Now from (3.5) and (3.6), we obtain

$$x_{n+1} \leq x_{n+2}$$
 and $y_{n+1} \geq y_{n+2}$

Thus by mathematical induction we conclude that (3.3) and (3.4) hold for all $n \ge 0$. Let $n \ge 1$. Since $x_n \succeq x_{n-1}$ and $y_n \preceq y_{n-1}$, from (3.1) and (3.2), we have

$$G(x_{n+1}, x_{n+1}, x_n) + G(y_{n+1}, y_{n+1}, y_n)$$

$$= G(F(x_n, y_n), F(x_n, y_n), F(x_{n-1}, y_{n-1}))$$

$$+G(F(y_n, x_n), F(y_n, x_n), F(y_{n-1}, x_{n-1}))$$

$$\leq G(x_n, x_n, x_{n-1}) + G(y_n, y_n, y_{n-1})$$

$$-\theta \left(G(x_n, x_n, x_{n-1}), G(y_n, y_n, y_{n-1})\right)$$
(3.7)

As $\theta(t_1, t_2) \geq 0$, for all $(t_1, t_2) \in [0, \infty)^2$, we have (3.8) $G(x_{n+1}, x_{n+1}, x_n) + G(y_{n+1}, y_{n+1}, y_n) \leq G(x_n, x_n, x_{n-1}) + G(y_n, y_n, y_{n-1})$ Set $\delta_n = G(x_{n+1}, x_{n+1}, x_n) + G(y_{n+1}, y_{n+1}, y_n)$, then the sequence $\{\delta_n\}$ is decreasing. Therefore, there is some $\delta \geq 0$ such that

(3.9)
$$\lim_{n \to \infty} \delta_n = \delta$$

We shall show that $\delta = 0$. Suppose, on the contrary, that $\delta > 0$. By Lemma 2.15, the sequences $\{G(x_{n+1}, x_{n+1}, x_n)\}$ and $\{G(y_{n+1}, y_{n+1}, y_n)\}$ have convergent sequences that be still denoted $\{G(x_{n+1}, x_{n+1}, x_n)\}$ and $\{G(y_{n+1}, y_{n+1}, y_n)\}$, respectively. Assume that

 $\lim_{n \to \infty} G(x_{n+1}, x_{n+1}, x_n) = \delta_1 \text{ and } \lim_{n \to \infty} G(y_{n+1}, y_{n+1}, y_n) = \delta_2,$ then $\delta_1 + \delta_2 = \delta > 0.$

Then taking the limit as $n \to \infty$ of both sides of (3.8), we have

$$\delta = \lim_{n \to \infty} \delta_n$$

$$\leq \lim_{n \to \infty} \left[G(x_n, x_n, x_{n-1}) + G(y_n, y_n, y_{n-1}) \right]$$

$$- \lim_{n \to \infty} \theta \left(G(x_n, x_n, x_{n-1}), G(y_n, y_n, y_{n-1}) \right)$$

$$= \delta - \lim_{\substack{r_1 \to \delta_1 \\ r_2 \to \delta_2}} \theta \left(r_1, r_2 \right)$$

$$< \delta,$$

in which $r_1 = G(x_n, x_n, x_{n-1}), r_2 = G(y_n, y_n, y_{n-1})$. This is a contradiction. Thus $\delta = 0$, that is

(3.10)
$$\lim_{n \to \infty} \delta_n = \lim_{n \to \infty} [G(x_{n+1}, x_{n+1}, x_n) + G(y_{n+1}, y_{n+1}, y_n)] = 0$$

In what follows, we shall show that $\{x_n\}$ and $\{y_n\}$ are Cauchy sequences. Suppose, on the contrary, that at least one of the sequences $\{x_n\}$ or $\{y_n\}$ is not a Cauchy sequence. Then there exists

an $\varepsilon > 0$ for which we can find subsequences $\{x_{n(k)}\}, \{x_{m(k)}\}$ of $\{x_n\}$ and $\{y_{n(k)}\}, \{y_{m(k)}\}$ of $\{y_n\}$ with $n(k) > m(k) \ge k$ such that

(3.11)
$$G(x_{n(k)}, x_{n(k)}, x_{m(k)}) + G(y_{n(k)}, y_{n(k)}, y_{m(k)}) \ge \varepsilon$$

Further, corresponding to m(k), we can choose n(k) such that it is the smallest integer with $n(k) > m(k) \ge k$ and satisfies (3.11). Then

$$(3.12) \qquad G(x_{n(k)-1}, x_{n(k)-1}, x_{m(k)}) + G(y_{n(k)-1}, y_{n(k)-1}, y_{m(k)}) < \varepsilon$$

By rectangle inequality, Definition 2.1 (v), we have (3.13) $G(x_{n(k)}, x_{n(k)}, x_{m(k)}) \leq G(x_{n(k)}, x_{n(k)}, x_{n(k)-1}) + G(x_{n(k)-1}, x_{n(k)-1}, x_{m(k)})$

and
(3.14)
$$G(y_{n(k)}, y_{n(k)}, y_{m(k)}) \le G(y_{n(k)}, y_{n(k)}, y_{n(k)-1}) + G(y_{n(k)-1}, y_{n(k)-1}, y_{m(k)})$$

From (3.11) - (3.14), we obtain

$$\varepsilon \leq G(x_{n(k)}, x_{n(k)}, x_{m(k)}) + G(y_{n(k)}, y_{n(k)}, y_{m(k)}) < G(x_{n(k)}, x_{n(k)}, x_{n(k)-1}) + G(y_{n(k)}, y_{n(k)}, y_{n(k)-1}) + \varepsilon$$

Letting $k \to \infty$ and using (3.10), we have

(3.15)
$$\lim_{k \to \infty} [G(x_{n(k)}, x_{n(k)}, x_{m(k)}) + G(y_{n(k)}, y_{n(k)}, y_{m(k)})] = \varepsilon$$

By Lemma 2.7, we have

$$G(x_{n(k)}, x_{n(k)}, x_{m(k)}) \leq G(x_{n(k)}, x_{n(k)}, x_{n(k)+1}) +G(x_{n(k)+1}, x_{n(k)+1}, x_{m(k)}) \leq G(x_{n(k)}, x_{n(k)}, x_{n(k)+1}) +G(x_{n(k)+1}, x_{n(k)+1}, x_{m(k)+1}) +G(x_{m(k)+1}, x_{m(k)+1}, x_{m(k)})$$

On the other hand, $G(x_{n(k)}, x_{n(k)}, x_{n(k)+1}) \leq 2G(x_{n(k)+1}, x_{n(k)+1}, x_{n(k)})$, since by Definition 2.1, $G(x, x, y) \leq G(x, y, y) + G(y, x, y) = 2G(y, y, x)$. Thus,

$$G(x_{n(k)}, x_{n(k)}, x_{m(k)}) \leq 2G(x_{n(k)+1}, x_{n(k)+1}, x_{n(k)}) +G(x_{n(k)+1}, x_{n(k)+1}, x_{m(k)+1}) +G(x_{m(k)+1}, x_{m(k)+1}, x_{m(k)})$$
(3.16)

Similarly,

$$G(y_{n(k)}, y_{n(k)}, y_{m(k)}) \leq 2G(y_{n(k)+1}, y_{n(k)+1}, y_{n(k)}) +G(y_{n(k)+1}, y_{n(k)+1}, y_{m(k)+1}) +G(y_{m(k)+1}, y_{m(k)+1}, y_{m(k)})$$
(3.17)

From (3.16), (3.17), we have

(3.18)

$$G(x_{n(k)}, x_{n(k)}, x_{m(k)}) + G(y_{n(k)}, y_{n(k)}, y_{m(k)})$$

$$\leq 2\delta_{n(k)} + \delta_{m(k)} + G(x_{n(k)+1}, x_{n(k)+1}, x_{m(k)+1})$$

$$+ G(y_{n(k)+1}, y_{n(k)+1}, y_{m(k)+1})$$

Since n(k) > m(k), we have $x_{n(k)} \succeq x_{m(k)}$ and $y_{n(k)} \preceq y_{m(k)}$, hence from (3.1) and (3.2),

$$G(x_{n(k)+1}, x_{n(k)+1}, x_{m(k)+1}) + G(y_{n(k)+1}, y_{n(k)+1}, y_{m(k)+1}))$$

= $G(F(x_{n(k)}, y_{n(k)}), F(x_{n(k)}, y_{n(k)}), F(x_{m(k)}, y_{m(k)})))$
+ $G(F(y_{n(k)}, x_{n(k)}), F(y_{n(k)}, x_{n(k)}), F(y_{m(k)}, x_{m(k)})))$
 $\leq G(x_{n(k)}, x_{n(k)}, x_{m(k)}) + G(y_{n(k)}, y_{n(k)}, y_{m(k)}))$
(3.19) $-\theta \left(G(x_{n(k)}, x_{n(k)}, x_{m(k)}), G(y_{n(k)}, y_{n(k)}, y_{m(k)})\right)$

From (3.18) and (3.19), we have

$$(3.20) \quad \theta\left(G(x_{n(k)}, x_{n(k)}, x_{m(k)}), G(y_{n(k)}, y_{n(k)}, y_{m(k)})\right) \le 2\delta_{n(k)} + \delta_{m(k)}$$

By Lemma 2.15 and (3.15), the sequences $\{G(x_{n(k)}, x_{n(k)}, x_{m(k)})\}$ and $\{G(y_{n(k)}, y_{n(k)}, y_{m(k)})\}$ have subsequences converging to, say, ε_1 and ε_2 , respectively, and $\varepsilon_1 + \varepsilon_2 = \varepsilon > 0$. By passing to subsequences, we may assume that $\lim_{k\to\infty} G(x_{n(k)}, x_{n(k)}, x_{m(k)}) = \varepsilon_1$ and $\lim_{k\to\infty} G(y_{n(k)}, y_{n(k)}, y_{m(k)}) = \varepsilon_2$.

Taking $k \to \infty$ in (3.20) and using (3.10), we have

$$\begin{array}{lcl}
0 & = & \lim_{k \to \infty} [2\delta_{n(k)} + \delta_{m(k)}] \\
& \geq & \lim_{k \to \infty} \theta \left(G(x_{n(k)}, x_{n(k)}, x_{m(k)}), G(y_{n(k)}, y_{n(k)}, y_{m(k)}) \right) \\
& = & \lim_{\substack{r_1 \to \varepsilon_1 \\ r_2 \to \varepsilon_2}} \theta \left(r_1, r_2 \right).
\end{array}$$

in which $r_1 = G(x_{n(k)}, x_{n(k)}, x_{m(k)})$ and $r_2 = G(y_{n(k)}, y_{n(k)}, y_{m(k)})$. That is a contradiction. Thus, $\{x_n\}$ and $\{y_n\}$ are Cauchy sequences. Since (X, G) is a *G*-complete space, there exist $x, y \in X$ such that

(3.21)
$$\lim_{n \to \infty} x_n = x \text{ and } \lim_{n \to \infty} y_n = y$$

Thus

(3.22)
$$\lim_{n \to \infty} F(x_n, y_n) = \lim_{n \to \infty} x_n = x; \lim_{n \to \infty} F(y_n, x_n) = \lim_{n \to \infty} y_n = y$$

Now, suppose that assumption (a) holds. From (3.2), we have

$$x = \lim_{n \to \infty} x_n = \lim_{n \to \infty} F(x_n, y_n) = F(\lim_{n \to \infty} x_n, \lim_{n \to \infty} y_n) = F(x, y)$$

and

$$y = \lim_{n \to \infty} y_n = \lim_{n \to \infty} F(y_n, x_n) = F(\lim_{n \to \infty} y_n, \lim_{n \to \infty} x_n) = F(y, x)$$

Finally, suppose that (b) holds. Since $\{x_n\}$ is a non-decreasing sequence and $x_n \to x$ and as $\{y_n\}$ is a non-increasing sequence and $y_n \to y$, we have $x_n \preceq x$ and $y_n \succeq y$ for all n.

If $x_n = x$ and $y_n = y$ for some n, then, by our construction, $x_{n+1} = x$ and $y_{n+1} = y$ and (x, y) is a coupled fixed point of F. So we can assume either $x_n \neq x$ or $y_n \neq y$.

Then we have

$$\begin{aligned} &G(F(x,y),x,x) + G(F(y,x),y,y) \\ &\leq & G(F(x,y),F(x_n,y_n),F(x_n,y_n)) + G(F(x_n,y_n),x,x) \\ & + G(F(y,x),F(y_n,x_n),F(y_n,x_n)) + G(F(y_n,x_n),y,y) \\ &= & G(F(x_n,y_n),F(x_n,y_n),F(x,y)) + G(F(y_n,x_n),F(y_n,x_n),F(y,x)) \\ & + G(x_{n+1},x,x) + G(y_{n+1},y,y) \\ &\leq & G(x_n,x_n,x) + G(y_n,y_n,y) - \theta \left(G(x_n,x_n,x),G(y_n,y_n,y) \right) \\ & + G(x_{n+1},x,x) + G(y_{n+1},y,y) \end{aligned}$$

$$\leq G(x_n, x_n, x) + G(y_n, y_n, y) + G(x_{n+1}, x, x) + G(y_{n+1}, y, y)$$

Letting $n \to \infty$ in the inequality

$$G(F(x,y), x, x) + G(F(y, x), y, y)$$

$$\leq G(x_n, x_n, x) + G(y_n, y_n, y) + G(x_{n+1}, x, x) + G(y_{n+1}, y, y)$$

we obtain

$$G(F(x,y),x,x) + G(F(y,x),y,y) \le 0$$

which implies G(F(x, y), x, x) = 0 and G(F(y, x), y, y) = 0. That is, x = F(x, y) and y = F(y, x). The proof is complete. Let Φ denote the family of all functions $\psi : [0, \infty) \to [0, \infty)$ satisfying

$$\lim_{t \to r} \psi(t) > 0 \text{ for each } r > 0.$$

Corollary 3.2. Let (X, \preceq) be a partially ordered set and suppose that there exists a G-metric G on X such that (X, G) is a complete Gmetric space. Let $F : X \times X \to X$ be a mapping having the mixed monotone property on X. Suppose that there exists $\psi \in \Phi$ such that

$$G(F(x,y), F(u,v), F(w,z)) + G(F(y,x), F(v,u), F(z,w)) \leq G(x,u,w) + G(y,v,z) -\psi (\max\{G(x,u,w), G(y,v,z)\})$$
(3.23)

for all $x \succeq u \succeq w$ and $y \preceq v \preceq z$. Suppose that either

(a) F is continuous or

(b) X has the following property:

(i) if a non-decreasing sequence $\{x_n\}$ is G-convergent to x, then $x_n \leq x$ for all n,

(ii) if a non-increasing sequence $\{y_n\}$ is G-convergent to y, then $y \leq y_n$ for all n.

If there exist $x_0, y_0 \in X$ such that $x_0 \preceq F(x_0, y_0)$ and $y_0 \succeq F(y_0, x_0)$, then F has a coupled fixed point in X.

Proof. By taking $\theta(t_1, t_2) = \psi(\max\{t_1, t_2\})$ in Theorem 3.1 for all $(t_1, t_2) \in [0, \infty)^2$, we get Corollary 3.2, since $\psi \in \Phi$ implies $\theta \in \Theta$. \Box

Corollary 3.3. Let (X, \preceq) be a partially ordered set and suppose that there exists a G-metric G on X such that (X,G) is a complete Gmetric space. Let $F : X \times X \to X$ be a mapping having the mixed monotone property on X. Suppose that there exists $\psi \in \Phi$ such that

$$G(F(x, y), F(u, v), F(w, z)) + G(F(y, x), F(v, u), F(z, w))$$

(3.24)
$$\leq G(x, u, w) + G(y, v, z) - \psi \left(G(x, u, w) + G(y, v, z) \right)$$

for all $x \succeq u \succeq w$ and $y \preceq v \preceq z$. Suppose that either

(a) F is continuous or

(b) X has the following property:

(i) if a non-decreasing sequence $\{x_n\}$ is G-convergent to x, then $x_n \leq x$ for all n,

(ii) if a non-increasing sequence $\{y_n\}$ is G-convergent to y, then $y \leq y_n$ for all n.

If there exist $x_0, y_0 \in X$ such that $x_0 \preceq F(x_0, y_0)$ and $y_0 \succeq F(y_0, x_0)$, then F has a coupled fixed point in X. *Proof.* By taking $\theta(t_1, t_2) = \psi(t_1 + t_2)$ in Theorem 3.1 for all $(t_1, t_2) \in [0, \infty)^2$, we obtain Corollary 3.2.

Corollary 3.4. Let (X, \preceq) be a partially ordered set and suppose there exists a *G*-metric *G* on *X* such that (X, G) is a complete *G*-metric space. Let $F : X \times X \to X$ be a mapping having the mixed monotone property on *X*. Suppose that there exists $\theta \in \Theta$ with $\theta(t_1, t_2) = \theta(t_2, t_1)$ for all $(t_1, t_2) \in [0, \infty)^2$ such that

$$G(F(x,y), F(u,v), F(w,z)) \leq \frac{G(x,u,w) + G(y,v,z)}{2} -\theta (G(x,u,w), G(y,v,z))$$
(3.25)

for all $x \succeq u \succeq w$ and $y \preceq v \preceq z$. Suppose that either (a) F is continuous or

(b) X has the following property:

(i) if a non-decreasing sequence $\{x_n\}$ is G-convergent to x, then $x_n \leq x$ for all n,

(ii) if a non-increasing sequence $\{y_n\}$ is G-convergent to y, then $y \leq y_n$ for all n.

If there exist $x_0, y_0 \in X$ such that $x_0 \preceq F(x_0, y_0)$ and $y_0 \succeq F(y_0, x_0)$, then F has a coupled fixed point in X.

Proof. From (3.25), for all $x \succeq u \succeq w$ and $y \preceq v \preceq z$, we have

$$G(F(x,y), F(u,v), F(w,z)) \leq \frac{G(x,u,w) + G(y,v,z)}{2} - \theta \left(G(x,u,w), G(y,v,z)\right)$$

and

$$\begin{array}{lll} G(F(y,x),F(v,u),F(z,w)) & = & G(F(z,w),F(v,u),F(y,x)) \\ & \leq & \displaystyle \frac{G(z,v,y)+G(w,u,x)}{2} \\ & & -\theta\left(G(z,v,y),G(w,u,x)\right) \\ & = & \displaystyle \frac{G(x,u,w)+G(y,v,z)}{2} \\ & -\theta\left(G(x,u,w),G(y,v,z)\right) \end{array}$$

Therefore,

$$G(F(x, y), F(u, v), F(w, z)) + G(F(y, x), F(v, u), F(z, w))$$

$$\leq G(x, u, w) + G(y, v, z) - 2\theta (G(x, u, w), G(y, v, z))$$

$$\leq G(x, u, w) + G(y, v, z) - \theta_1 (G(x, u, w), G(y, v, z))$$

for all $x \succeq u \succeq w$ and $y \preceq v \preceq z$, where $\theta_1(t_1, t_2) = 2\theta(t_1, t_2)$ for all $(t_1, t_2) \in [0, \infty)^2$. Since $\theta_1 \in \Theta$, applying Theorem 3.1, we conclude that F has a coupled fixed point in X.

Remark 3.5. In Corollary 3.4, if we take $\theta(t_1, t_2) = \frac{(1-k)(t_1+t_2)}{2}$, we obtain Theorem 3.1 and 3.2 in [5].

Now we shall prove the uniqueness of the coupled fixed point. Note that if (X, \preceq) is a partially ordered set, then we endow the product $X \times X$ with the following partial order relation:

 $(x,y), (u,v) \in X \times X, \quad (x,y) \preceq (u,v) \Leftrightarrow x \preceq u, y \succeq v.$

Theorem 3.6. In addition to the hypotheses of Theorem 3.1, suppose that for every (x, y), $(z, t) \in X \times X$, there exists a pair $(u, v) \in X \times X$ such that (u, v) is comparable to (x, y) and (z, t). Then F has a unique coupled fixed point.

Proof. Suppose (x, y) and (z, t) are coupled fixed points of F, that is, x = F(x, y), y = F(y, x), z = F(z, t) and t = F(t, z). We shall show that x = z and y = t.

By the assumption, there exists $(u, v) \in X \times X$ that (u, v) is comparable to (x, y) and (z, t).

We define the sequences $\{u_n\}$ and $\{v_n\}$ as follows

$$u_0 = u, v_0 = v, u_{n+1} = F(u_n, v_n)$$
 and $v_{n+1} = F(v_n, u_n)$, for all n .

Since (u, v) is comparable with (x, y), we may assume that $(x, y) \succeq (u, v) = (u_0, v_0)$ (the other case being similar). By mathematical induction and the mixed monotone property of F, it is easy to prove that

$$(3.26) (x,y) \succeq (u_n, v_n), \text{ for all } n.$$

From (3.1) and (3.26), we have

$$G(x, x, u_{n}) + G(v_{n}, y, y) = G(F(x, y), F(x, y), F(u_{n-1}, v_{n-1})) + G(F(v_{n-1}, u_{n-1}), F(y, x), F(y, x))) \leq G(x, x, u_{n-1}) + G(v_{n-1}, y, y) (3.27) - \theta(G(x, x, u_{n-1}), G(v_{n-1}, y, y))$$

which implies

$$G(x, x, u_n) + G(v_n, y, y) \le G(x, x, u_{n-1}) + G(v_{n-1}, y, y)$$

that is, the sequence $\{G(x, x, u_n) + G(v_n, y, y)\}$ is decreasing. Therefore, there exists $\alpha \geq 0$ such that

$$\lim_{n \to \infty} G(x, x, u_n) + G(v_n, y, y) = \alpha$$

We shall show that $\alpha = 0$. Suppose, on the contrary, that $\alpha > 0$. Therefore, $\{G(x, x, u_n)\}$, $\{G(v_n, y, y)\}$ have subsequences converging to α_1 , α_2 , respectively, where $\alpha_1 + \alpha_2 = \alpha$. Taking the limit, up to subsequences, as $n \to \infty$ in (3.27), we have

$$\alpha \le \alpha - \lim_{n \to \infty} \theta(G(x, x, u_{n-1}), G(v_{n-1}, y, y)) < \alpha$$

which is a contradiction. Thus, $\alpha = 0$, that is,

$$\lim_{n \to \infty} [G(x, x, u_n) + G(v_n, y, y)] = 0$$

which implies

(3.28)
$$\lim_{n \to \infty} G(x, x, u_n) = \lim_{n \to \infty} G(v_n, y, y) = 0$$

Similarly, we can show that

(3.29)
$$\lim_{n \to \infty} G(z, z, u_n) = \lim_{n \to \infty} G(v_n, t, t) = 0$$

From (3.28) and (3.29), we get x = z and y = t, by the uniqueness of the limit of a G- convergent sequence.

Therefore, the coupled fixed point of F is unique.

Theorem 3.7. If in addition to the hypotheses of Theorem 3.1 x_0 and y_0 are comparable then F has a fixed point.

Proof. Following the proof of Theorem 3.1, F hax a coupled fixed point (x, y). We only have to show that x = y. Since x_0 and y_0 are comparable, we may assume that $x_0 \succeq y_0$ (the other case being similar). By using mathematical induction and the mixed monotone property of F, one can easily show that

$$(3.30) x_n \succeq y_n, \text{ for all } n \ge 0$$

where $x_{n+1} = F(x_n, y_n)$ and $y_{n+1} = F(y_n, x_n)$, n = 0, 1, 2, ...By Lemma 2.7, we have

$$\begin{array}{rcl}
G(x,x,y) &\leq & G(x,x,x_{n+1}) + G(x_{n+1},x_{n+1},y) \\
&\leq & G(x,x,x_{n+1}) + G(x_{n+1},x_{n+1},y_{n+1}) + G(y_{n+1},y_{n+1},y) \\
&= & G(x,x,x_{n+1}) + G(y_{n+1},y_{n+1},y) \\
&+ & G(F(x_n,y_n),F(x_n,y_n),F(y_n,x_n))
\end{array}$$

 \square

Similarly,

$$G(y, y, x) \leq G(y, y, y_{n+1}) + G(x_{n+1}, x_{n+1}, x) + G(F(y_n, x_n), F(y_n, x_n), F(x_n, y_n))$$

Therefore,

$$\begin{aligned}
G(x, x, y) + G(y, y, x) &\leq G(x, x_{n+1}, x_{n+1}) + G(y_{n+1}, y_{n+1}, y) \\
&+ G(y, y, y_{n+1}) + G(x_{n+1}, x_{n+1}, x) \\
&+ G(F(x_n, y_n), F(x_n, y_n), F(y_n, x_n)) \\
&+ G(F(y_n, x_n), F(y_n, x_n), F(x_n, y_n)) \\
&\leq G(x, x, x_{n+1}) + G(y_{n+1}, y_{n+1}, y) \\
&+ G(y, y, y_{n+1}) + G(x_{n+1}, x_{n+1}, x) \\
&+ G(x_n, x_n, y_n) + G(y_n, y_n, x_n) \\
&- \theta(G(x_n, x_n, y_n), G(y_n, y_n, x_n))
\end{aligned}$$

Suppose that $x \neq y$. Taking $n \to \infty$ in the last inequality, using (3.21) and the continuity of G, we have

 $G(x, x, y) + G(y, y, x) \le G(x, x, y) + G(y, y, x) - \lim_{n \to \infty} \theta(G(x_n, x_n, y), G(y, y_n, x_n))$

hence,

$$\lim_{n \to \infty} \theta(G(x_n, x_n, y), G(y, y_n, x_n)) \le 0,$$

which is false. Indeed, since $\lim_{n \to \infty} G(x_n, x_n, y) = G(x, x, y) > 0$ and $\lim_{n \to \infty} G(y, y_n, x_n) = G(y, y, x)$, we have $\lim_{n \to \infty} \theta(G(x_n, x_n, y), G(y, y_n, x_n)) = \lim_{\substack{r_1 \to G(x, x, y) \\ r_2 \to G(x, x, y)}} \theta(r_1, r_2) > 0.r_2 \to G(y, y, x)$

Therefore, x = y. In other words, we conclude that F has a fixed point in X.

References

- I. R.P. Agarwal, M.A. El-Gebeily, D. O'Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal. 87 (2008) 1-8.
- [2] I. Altun, H. Simsek, Some fixed point theorems on ordered metric spaces and application, Fixed Point Theory Appl. 2010 (2010) 17 pages. Article ID 621469.
- [3] H. Aydi, B. Damjanovic, B. Samet, W. Shatanawi, Coupled fixed point theorems for nonlinear contractions in partially ordered *G*-metric spaces, 54(2011) 2443-2450.
- [4] B. S. Choudhury, A. Kundu, A coupled coincidence point result in partially ordered metric spaces for compatible mappings, Nonlinear Analysis 73 (2010) 2524-2531.

68

- [5] B. S. Choudhury, P. Maity, Coupled fixed point results in generalized metric spaces, Math. Comput. Modelling, 54(2011) 73-79.
- [6] R. Chugh, T. Kadian, A. Rani and B.E.Rhoades, Property P in G-metric spaces, Fixed Point Theory Appl ,Vol.2010, Article ID 401684, 12 Pages.
- [7] L. Ciric, N. Cakic, M. Rajovic, J.S. Ume, Monotone generalized nonlinear contractions in partially ordered metric spaces, Fixed Point Theory Appl. 2008 (2008) 11 pages, Article ID 131294.
- [8] Lj.B. Ciric, D. Mihet and R. Saadati, Monotone generalized contractions in partially ordered probabilistic metric spaces, Topology Appl. 156 (17) (2009), pp. 2838-2844.
- [9] Erdal Karapinar, Coupled fixed point theorems for nonlinear contractions in cone metric spaces, Comput. Math. Appl. 59 (2010), pp. 3656-3668.
- [10] T. Gnana Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006) 1379-1393.
- [11] J. Harjani, K. Sadarangani, Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations, NonlinearAnal. 72 (2010) 1188-1197.
- [12] J. Harjani, B. Lopez, K. Sadarangani, Fixed point theorems for mixed monotone operators and applications to integral equations, Nonlinear Anal. doi:10.1016/j.na.2010.10.047.
- [13] V. Lakshmikantham, L. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009) 4341-4349.
- [14] N. V. Luong, N. X. Thuan, Coupled fixed points in partially ordered metric spaces and application, Nonlinear Anal. 74 (2011) 983-992.
- [15] N. V. Luong, N. X. Thuan, Coupled fixed point theorems in partially ordered metric spaces, Bull. Math. Anal. Appl. Vol 2 (4)(2010), 16-24.
- [16] N. V. Luong, N. X. Thuan, Coupled fixed point theorems in partially ordered G -metric spaces. Math. Comput. Modelling. 55 (2012),1601-1609.
- [17] Z.Mustafa and B.Sims , A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006),289-297.
- [18] Z.Mustafa, H. Obiedat and F. Awawdeh, Some fixed point theorem for mapping on complete *G*-metric spaces, Fixed Point Theory Appl,Vol.2008, Article ID 189870,12 Pages.
- [19] Z.Mustafa, W. Shatanawi and M. Bataineh, Existence of fixed point results in *G*-metric spaces, Internat. J. Math. Math. Sci, Vol. 2009, Article ID 283028, 10 pages.
- [20] Z.Mustafa and B. Sims, Fixed point theorems for contractive mappings in complete *G*-metric spaces, Fixed Point Theory Appl, Vol.2009, Article ID 917175, 10 Pages.
- [21] H. K. Nashine, B. Samet, Fixed point results for mappings satisfying (ψ, φ) -weakly contractive condition in partially ordered metric spaces, Nonlinear Anal, doi:10.1016/j.na.2010.11.024.

- [22] J.J. Nieto, R. Rodriguez-Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equation, Order 22 (2005) 223-239.
- [23] J.J. Nieto, R. Rodriguez-Lopez, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sinica, Engl. Ser. 23 (12) (2007) 2205-2212.
- [24] D. O'Regan, A. Petrusel, Fixed point theorems for generalized contractions in ordered metric spaces, J. Math. Anal. Appl. 341 (2008) 1241-1252.
- [25] A.C.M. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004) 1435-1443.
- [26] B. Samet, Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces, Nonlinear Anal 72 (2010) 4508-4517.
- [27] W. Shatanawi, Fixed point theory for contractive mappings satisfying φ -maps in *G*-metric spaces, Fixed Point Theory Appl, Vol.2010, Article ID 181650,9 Pages.

Nguyen Van Luong

Department of Natural Sciences, Hong Duc University, Thanh Hoa, VIETNAM, e-mail: luonghdu@gmail.com

Nguyen Xuan Thuan

Department of Natural Sciences, Hong Duc University, Thanh Hoa, VIETNAM, e-mail: thuannx7@gmail.com