"Vasile Alecsandri" University of Bacău
Faculty of Sciences
Scientific Studies and Research
Series Mathematics and Informatics
Vol. 23 (2013), No. 2, 5-12

A GENERAL COMMON FIXED POINT THEOREM FOR WEAKLY COMMUTING PAIRS OF TYPE (KB)

ABDELKRIM ALIOUCHE AND VALERIU POPA

Abstract. We prove a general coincidence and a common fixed point theorem for two pairs of hybrid mappings satisfying an implicit relation using the concept of weak commutativity of type (KB) which generalizes theorem 2 of [14], theorem 3 of [6] and a theorem of [1].

1. Introduction and preliminaries

Fixed point theorems for single-valued and set-valued mappings have several applications in mathematical sciences and engineering, see [7] and [13] .

Let (X, d) a metric space and $B(X)$ the set of all nonempty bounded subsets of X. As in [2] and [3], we define the functions $\delta(A, B)$ and $D(A, B)$ by
$\delta(A, B)=\sup \{d(a, b): a \in A, b \in B\}$,
$D(A, B)=\inf \{d(a, b): a \in A, b \in B\}$ for all $A, B \in B(X)$.
If A consists of a single point a, we write $\delta(A, B)=\delta(a, B)$. If B consists also of a single point b, we write $\delta(A, B)=d(a, b)$.

It follows immediately from the definition of δ that

$$
\begin{aligned}
& \delta(A, B)=\delta(B, A) \geq 0, \\
& \delta(A, B) \leq \delta(A, C)+\delta(C, B), \\
& \delta(A, B)=0 \text { iff } A=B=\{a\}, \\
& \delta(A, A)=\operatorname{diam} A \text { for all } A, B, C \in B(X) .
\end{aligned}
$$

Definition 1.1. A sequence $\left\{A_{n}\right\}, n=1,2 \ldots$ of sets in $B(X)$ is said to be convergent to the closed set A in $B(X)$ if

Keywords and phrases: Coincidence point; common fixed point; commutativity of type (KB); implicit relation.
(2010) Mathematics Subject Classification: 47H10, 54H25.
(i) each point $a \in A$ is the limit of some convergent sequence $\left\{a_{n}\right\}$, where $a_{n} \in A_{n}$ and
(ii) for arbitrary $\epsilon>0$, there exists an integer N such that $A_{n} \subset A_{\epsilon}$ for $n>N$, where A_{ϵ} is the union of all open spheres with centres in A and radius ϵ. The set A is then said to be the limit of the sequence $\left\{A_{n}\right\}$.
Lemma 1.2. Let $\left\{A_{n}\right\}$ a sequence in $B(X)$ and $y \in X$ such that $\delta\left(A_{n}, y\right) \rightarrow 0$. Then, the sequence $\left\{A_{n}\right\}$ converges to $\{y\}$ in $B(X)$.
Definition 1.3. Let F be a mapping of X into $B(X)$. We say that the mapping F is continuous at a point x if whenever $\left\{\mathrm{x}_{n}\right\}$ is a sequence of points in X converging to x, the sequence $\left\{F x_{n}\right\}$ in $B(X)$ converges to $F x$ in $B(X)$.

We say that F is a continuous mapping of X into $B(X)$ if F is continuous at each point x in X.

Definition 1.4. Let $f: X \rightarrow X$ and $F: X \rightarrow B(X)$.
i) A point $x \in X$ is a coincidence point of f and F if $f x \in F x$. We denote by $C(f, F)$ the set of all coincidence points of f and F.
ii) A point $x \in X$ is a strict coincidence point of f and F if $\{f x\}=$ $F x$.
iii) A point $x \in X$ is a fixed point of F if $x \in F x$.
iv) A point $x \in X$ is a strict fixed point of F if $F x=\{x\}$.

Definition 1.5. The mappings $f: X \rightarrow X$ and $F: X \rightarrow B(X)$ are weakly commuting if $f F x \in B(X)$ and for all $x \in X$

$$
\delta(F f x, f F x) \leq \max \{\delta(f x, F x), \operatorname{diam}(f F x)\} .
$$

Remark 1.6. i) Two commuting mappings f and F are weakly commuting, but the converse is not true as it is shown in [2].
ii) If F is also a single-valued mapping, then we obtain the definition of weakly commuting, see [12]
Definition 1.7. The mappings $f: X \rightarrow X$ and $F: X \rightarrow B(X)$ are δ-compatible if $\lim _{n \rightarrow \infty} \delta\left(F f x_{n}, f F x_{n}\right)=0$, whenever $\left\{x_{n}\right\}$ is a sequence in X such that $f F x_{n} \in B(X), f x_{n} \rightarrow t$ and $F x_{n} \rightarrow\{t\}$ as $n \rightarrow \infty$ for some $t \in X$.

If F is a single-valued self-mapping on X, then this definition reduces to that of [4].
Definition 1.8. The mappings $f, g: X \rightarrow X$ are called R-weakly commuting of type A_{g} if for all $x \in X$, there exists some $R>0$ such that

$$
d(f f x, g f x) \leq R d(f x, g x)
$$

It was shown in [8] that compatible mappings are the R-weakly commuting mappings of type A_{g}, but the converse is not true in general.

Definition 1.9. The mappings $f: X \rightarrow X$ and $F: X \rightarrow B(X)$ are said to be weakly commuting of type (KB) [6] at $x \in X$ if there exists some $R>0$ such that

$$
\delta(f f x, F f x) \leq R \delta(f x, F x) .
$$

f and F are weakly commuting of type (KB) on X if the above inequality holds for all $x \in X$.

If f and F are δ-compatible then they are weakly commuting of type (KB), but the converse is not true in general, see [6].

If F is a single-valued self-mapping on X, then this definition reduces to that of [8].

The following theorem was proved by [14].
Theorem 1.10. Let (X, d) be a metric space. Let I, J be mappings of X into itself and F, G of X into $B(X)$ satisfying the following conditions:

$$
\begin{gathered}
\cup F(X) \subset J(X), \cup G(X) \subset I(X), \\
\delta(F x, G y) \leq \quad \alpha \max \{d(I x, J y), \delta(I x, F x), \delta(J y, G y), \\
\quad+(1-\alpha)[a D(I x, G y)+b D(J y, F x)]\}
\end{gathered}
$$

for all $x, y \in X$, where $0 \leq \alpha<1, a, b \geq 0, a+b<1$ and $\frac{\alpha}{a-b}<1-$ $a-b$. Suppose that one of $I(X)$ or $J(X)$ is complete. If both the pairs (F, I) and (G, J) are weakly commuting of type (KB) at coincidence points in X, then there exists a unique fixed point $z \in X$ such that $\{z\}=\{I z\}=\{J z\}=F z=G z$. .

The following theorem was proved by [6].
Theorem 1.11. Let (X, d) be a metric space. Let I, J be mappings of X into itself and F, G of X into $B(X)$ satisfying the following conditions:

$$
\begin{aligned}
& \cup F(X) \subset J(X), \cup G(X) \subset I(X), \\
& \delta(F x, G y) \leq \max \{c d(I x, J y), c \delta(I x, F x), c \delta(J y, G y), \\
&a D(I x, G y)+b D(J y, F x)\}
\end{aligned}
$$

for all $x, y \in X$, where $0 \leq c<1, a, b \geq 0, a+b<1$ and $c \max \left\{\frac{a}{1-a}, \frac{b}{1-b}\right\}<1$. Suppose that one of $I(X)$ or $J(X)$ is complete. If both the pairs (F, I) and (G, J) are weakly commuting of type
$(K B)$ at coincidence points in X, then there exists a unique fixed point $z \in X$ such that $\{z\}=\{I z\}=\{J z\}=F z=G z$..

In [9] and [10], the study of fixed points for mappings satisfying implicit relations was introduced and the study of a pair of hybrid mappings satisfying implicit relations was initiated in [11].

It is our purpose in this paper is to prove a general coincidence and a common fixed point theorem for two pairs of hybrid mappings satisfying an implicit relation using the concept of weak commutativity of type (KB) which generalizes theorem 2 of [14], theorem 3 of [6] and a theorem of [1].

2. Implicit relation

Let Φ_{6} the family of all real continuous mappings $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right): \mathbb{R}_{+}^{6} \rightarrow \mathbb{R}$ satisfying the following conditions:
$\left(\phi_{1}\right): \phi$ is decreasing in variables $t_{2}, t_{3}, t_{4}, t_{5}$ and t_{6}.
(ϕ_{2}): there exists $h_{1}, h_{2} \geq 0$ with $h_{1} h_{2}<1$ such that
$\left(\phi_{2 a}\right): \phi(u, v, v, u, u+v, 0) \leq 0$ implies $u \leq h_{1} v$.
$\left(\phi_{2 b}\right): \phi(u, v, u, v, 0, u+v) \leq 0$ implies $u \leq h_{2} v$.
$\left(\phi_{u}\right): \phi(u, u, 0,0, u, u)>0$ for all $u>0$.
Example 2.1. $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-a \max \left\{t_{2}, t_{3}, t_{4}, \frac{t_{5}+t_{6}}{2}\right\}, 0<$ $a<1$.
Example 2.2. $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}^{2}-a t_{2}^{2}-b \frac{t_{5} t_{6}}{1+t_{3}^{2}+t_{4}^{2}}, a>0$, $b \geq 0$ and $a+b<1$.
Example 2.3. $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}^{2}-a \max \left\{t_{2}^{2}, t_{3}^{2}, t_{4}^{2}\right\}-$ $c_{2} \max \left\{t_{3} t_{5}, t_{4} t_{6}\right\}-c_{3} t_{5} t_{6}, c_{1}>0, c_{2}, c_{3} \geq 0, c_{1}+2 c_{2}<1$ and $c_{1}+c_{3}<1$.
Example 2.4. $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}+\frac{1}{1+t_{2}}-\frac{a t_{5}+b t_{6}}{1+t_{3}+t_{4}}, a, b>0$ and $a+b<1$.
Example 2.5. $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}^{2}+\frac{1}{1+t_{2}^{2}}-\frac{\left(a t_{5}+b t_{6}\right)^{2}}{1+t_{3}+t_{4}}, a, b>0$ and $a+b<1$.
Example 2.6. $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-a t_{2}-b \min \left\{t_{3}, t_{4}\right\}-$ $c \min \left\{t_{5}, t_{6}\right\}, a, b, c>0, a+b<1$ and $a+c<1$.
Example 2.7. $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-\alpha \underset{\alpha}{\max \left\{t_{2}, t_{3}, t_{4}\right\}-(1-}$ $\alpha)\left(a t_{5}+b t_{6}\right), 0 \leq \alpha<1, a, b \geq 0, a+b<1$ and $\frac{\alpha}{a-b}<1-a-b$.

Example 2.8. $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-\max \left\{c t_{2}, c t_{3}, c t_{4}, a t_{5}+b t_{6}\right\}$, $0 \leq c<1, a, b \geq 0, a+b<1$ and $c \max \left\{\frac{a}{1-a}, \frac{b}{1-b}\right\}<1$.

3. Main results

Theorem 3.1. Let (X, d) be a metric space, $f, g: X \rightarrow X$ and F, G : $X \rightarrow B(X)$ be mapping satisfying the following conditions:

$$
\begin{gather*}
\cup F(X) \subset g(X), \cup G(X) \subset f(X), \tag{3.1}\\
\phi(\delta(F x, G y), d(f x, g y), \delta(f x, F x), \tag{3.2}\\
\delta(g y, G y), D(f x, G y), D(g y, F x) \leq 0
\end{gather*}
$$

for all $x, y \in X$ and $\phi \in \Phi_{6}$. Suppose that one of $f(X)$ or $g(X)$ is complete. Then F and f have a strict coincidence point and G and g have a strict coincidence point.

If the pairs (F, f) and (G, g) are weakly commuting of type (KB) at coincidence points in X, then there exists a unique fixed point $z \in X$ such that $\{z\}=\{f z\}=\{g z\}=F z=G z$..

Proof. Let x_{0} be an arbitrary point in X. By (3.1), we can define a sequence $\left\{x_{n}\right\}$ in X such that

$$
g x_{2 n+1} \in F x_{2 n}=Z_{2 n}, f x_{2 n+2} \in G x_{2 n+1}=Z_{2 n+1}, n=0,1,2, \ldots .
$$

Using (3.2) and $\left(\phi_{1}\right)$, we have

$$
\begin{aligned}
0 \geq & \phi\left(\delta\left(F x_{2 n}, G x_{2 n+1}\right), d\left(f x_{2 n}, g x_{2 n+1}\right), \delta\left(f x_{2 n}, F x_{2 n}\right),\right. \\
& \left.\delta\left(g x_{2 n+1}, G x_{2 n+1}\right), D\left(f x_{2 n}, G x_{2 n+1}\right), D\left(F x_{2 n}, g x_{2 n+1}\right)\right) \\
\geq & \phi\left(\delta\left(Z_{2 n}, Z_{2 n+1}\right), \delta\left(Z_{2 n-1}, Z_{2 n}\right), \delta\left(Z_{2 n-1}, Z_{2 n}\right),\right. \\
& \left.\delta\left(Z_{2 n}, Z_{2 n+1}\right), D\left(Z_{2 n-1}, Z_{2 n+1}\right), 0\right) \\
\geq & \phi\left(\delta\left(Z_{2 n}, Z_{2 n+1}\right), \delta\left(Z_{2 n-1}, Z_{2 n}\right), \delta\left(Z_{2 n-1}, Z_{2 n}\right),\right. \\
& \left.\delta\left(Z_{2 n}, Z_{2 n+1}\right), \delta\left(Z_{2 n-1}, Z_{2 n}\right)+\delta\left(Z_{2 n}, Z_{2 n+1}\right), 0\right)
\end{aligned}
$$

By ($\phi_{2 a}$), we obtain

$$
\delta\left(Z_{2 n}, Z_{2 n+1}\right) \leq h_{1} \delta\left(Z_{2 n-1}, Z_{2 n}\right) .
$$

In the same manner, applying (3.2) we get

$$
\begin{aligned}
0 \geq & \phi\left(\delta\left(F x_{2 n+2}, G x_{2 n+1}\right), d\left(f x_{2 n+2}, g x_{2 n+1}\right), \delta\left(f x_{2 n+2}, F x_{2 n+2}\right),\right. \\
& \left.D\left(g x_{2 n+1}, G x_{2 n+1}\right), D\left(f x_{2 n+2}, G x_{2 n+1}\right), D\left(F x_{2 n+2}, g x_{2 n+1}\right)\right) \\
\geq & \phi\left(\delta\left(Z_{2 n+2}, Z_{2 n+1}\right), \delta\left(Z_{2 n+1}, Z_{2 n}\right), \delta\left(Z_{2 n+1}, Z_{2 n+2}\right),\right. \\
& \left.\delta\left(Z_{2 n}, Z_{2 n+1}\right), 0, \delta\left(Z_{2 n}, Z_{2 n+1}\right)+\delta\left(Z_{2 n+1}, Z_{2 n+2}\right)\right) .
\end{aligned}
$$

By $\left(\phi_{2 b}\right)$, we obtain

$$
\delta\left(Z_{2 n+1}, Z_{2 n+2}\right) \leq h_{2} \delta\left(Z_{2 n}, Z_{2 n+1}\right)
$$

Let $c=h_{1} h_{2}$. Then we get

$$
\begin{aligned}
\delta\left(Z_{2 n}, Z_{2 n+1}\right) & \leq c^{n} \delta\left(F x_{0}, G x_{1}\right) . \\
\delta\left(Z_{2 n+1}, Z_{2 n+2}\right) & \leq c^{n} \delta\left(G x_{1}, F x_{2}\right) .
\end{aligned}
$$

Put $M=\max \left\{\delta\left(F x_{0}, G x_{1}\right), \delta\left(G x_{1}, F x_{2}\right)\right\}$. It follows from the above inequality that if z_{n} is an arbitrary point in the set Z_{n} we obtain

$$
\begin{aligned}
d\left(z_{n}, z_{n+1}\right) \leq & \delta\left(Z_{n}, Z_{n+1}\right) \\
& \leq c^{n} M .
\end{aligned}
$$

Therefore, $\left\{z_{n}\right\}$ is a Cauchy sequence in X. As $g x_{2 n+1} \in F x_{2 n}=Z_{2 n}$, hence

$$
d\left(g x_{2 n+1}, g x_{2 m+1}\right) \leq \delta\left(Z_{2 n}, Z_{2 m}\right)<\epsilon,
$$

i.e., $\left\{g x_{2 n+1}\right\}$ is a Cauchy sequence in $g(X)$. Assume that $g(X)$ is complete. Then, it converges to $z \in g(X)$ and so there exists $v \in X$ such that $z=g v$. Since $f x_{2 n} \in G x_{2 n-1}=Z_{2 n-1}$ we have

$$
d\left(f x_{2 n}, g x_{2 n+1}\right) \leq \delta\left(Z_{2 n-1}, Z_{2 n}\right)
$$

Therefore, the sequence $\left\{f x_{2 n}\right\}$ converges to z.. As

$$
\begin{aligned}
\delta\left(F x_{2 n}, z\right) & \leq \delta\left(F x_{2 n}, f x_{2 n}\right)+d\left(f x_{2 n}, z\right) \\
& \leq \delta\left(Z_{2 n}, Z_{2 n-1}\right)+d\left(f x_{2 n}, z\right) .
\end{aligned}
$$

and so $\lim _{n \rightarrow \infty} \delta\left(F x_{2 n}, z\right)=0$. In the same manner, we obtain $\lim _{n \rightarrow \infty} \delta\left(G x_{2 n-1}, z\right)=0$.

Using (3.2) and (ϕ_{1}) we have

$$
\begin{aligned}
& \phi\left(\delta\left(F x_{2 n}, G v\right), d\left(f x_{2 n}, g v\right), \delta\left(f x_{2 n}, F x_{2 n}\right),\right. \\
& \left.\delta(g v, G v), D\left(f x_{2 n}, G v\right), D\left(F x_{2 n}, g v\right)\right) \leq 0
\end{aligned}
$$

Letting $n \rightarrow \infty$, we get

$$
\phi(\delta(z, G v), 0,0, \delta(z, G v), \delta(z, G v), 0) \leq 0
$$

By $\left(\phi_{2 a}\right)$ we obtain $\delta(z, G v)=0$ and hence $G v=\{g v\}=\{z\}$.
Since $\cup G(X) \subset f(X)$, there exists $u \in X$ such that $\{f u\}=G v=$ $\{g v\}=\{z\}$.

If $F u \neq\{z\}$, applying (3.2) we have

$$
\begin{aligned}
0 & \geq \phi(\delta(F u, G v), d(f u, g v), \delta(f u, F u), \delta(g v, G v), D(f u, G v), D(F u, g v)) \\
& \geq \phi(\delta(F u, z), 0, \delta(F u, z), 0,0, \delta(F u, z))
\end{aligned}
$$

By $\left(\phi_{2 b}\right)$ we get $\delta(F u, z)=0$ and so $F u=\{f u\}=G v=\{g v\}=$ $\{z\}$.

Since $F u=\{f u\}$ and the pair (F, f) is weakly commuting of type (KB) at coincidence points in X, we obtain $\delta(f f u, F f u) \leq R \delta(I u, F u)$ which gives $F z=\{f z\}$.

Again since $G v=\{g v\}$ and the pair (G, g) is weakly commuting of type (KB) at coincidence points in X , we get $\delta(g g v, G g v) \leq R \delta(g v, G v)$ which gives $G z=\{g z\}$.

If $F z \neq\{z\}$, using (3.2) we have

$$
\begin{aligned}
0 & \geq \phi(\delta(F z, G v), d(f z, g v), \delta(f z, F z), \delta(g v, G v), D(f z, G v), D(F z, g v)) \\
& \geq \phi(\delta(F z, z), \delta(F z, z), 0,0, \delta(F z, z), \delta(F z, z))
\end{aligned}
$$

which is a contradiction of $\left(\phi_{u}\right)$ and so $F z=\{f z\}=\{z\}$. Similarly, $G z=\{g z\}=\{z\}$. Therefore, we have $F z=\{f z\}=G z=\{g z\}=$ $\{z\}$.

Theorem 4 generalizes a theorem of [1].
Corollary 3.2. Theorem 2.
Proof. It suffices to take example 7 .
Corollary 3.3. Theorem 3.
Proof. It suffices to take example 8.

4. Conclusion

We proved a general common fixed point theorem for two pairs of hybrid mappings satisfying an implicit relation using the weak commutativity of type (KB). Our theorem generalizes theorem 2 of [14], theorem 3 of [6] and a theorem of [1].

References

[1] M. A. Ahmed, Common fixed point theorems for set valued and single valued mappings, Demonstr. Math. 36(2)(2003), 471-481.
[2] B. Fisher, Common fixed points of mappings and set valued mappings on a metric space, Rostocker Math. Kolloq. 18 (1981), 69-77.
[3] B. Fisher and S. Sessa, Two common fixed point theorems for weakly commuting mappings, Period. Math. Hung. 20(3)(1989), 207-218.
[4] G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci. 9 (1986), 771-779.
[5] G. Jungck and B. E. Rhoades, Some fixed point theorems for compatible maps, Int. J. Math. Math. Sci. 16(3)(1993), 417-428.
[6] I. Kubiaczyk and D. Bhavana, Noncompatibility, Discontinuity in Consideration of Common Fixed Point of Set and Single Valued Maps, Southeast Asian Bull. Math. 32 (2008), 467-474.
[7] S. Kyzyska and I. Kubiaczyk, Fixed point theorems for upper semicontinuous and weakly upper semicontiuous multivalued mappings, Math. Jap. 47(2)(1998), 237-240.
[8] H. K. Pathak, Y. J. Cho and M.S. Kang, Remarks on R-weakly commuting mappings and common fixed point theorems, Bull. Korean Math. Soc. 34(1997), 247-257.
[9] V. Popa, Fixed point theorems for implicit contractive mappings, Stud. Cercet. Ştiinţ., Ser. Mat., Univ. Bacu 7(1997), 127-133.
[10] V. Popa, Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstr. Math. 32(1)(1999), 157-163.
[11] V. Popa, A general coincidence theorem for compatible multi-valued mappings satisfying an implicit relation, Demonstr. Math. 33(1)(2000), 159-164.
[12] S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math., Nouv. Sr. 32(46)(1982), 149-153.
[13] S. Sessa and M. S. Khan, Some remarks in best approximation theory, Math. J. Toyama Univ. 17(1994), 151-165.
[14] S. Sharma and D. Bhavana, Common fixed point theorem for hybrid pairs of mappings with some weak conditions, Fasc. Math. 39(2008), 81-86.

A. Aliouche

Department of Mathematics, University of Larbi Ben M' Hidi, Oum-El-Bouaghi 04000, ALGERIA, e-mail: alioumath@yahoo.fr

V. Popa
"Vasile Alecsandri" University of Bacău, Calea Mărăşeşti 157, Bacău 600115, ROMANIA, e-mail: vpopa@ub.ro

