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SOME PROPERTIES OF UPPER/LOWER
w-CONTINUOUS MULTIFUNCTIONS

C. CARPINTERO, N. RAJESH, E. ROSAS AND S. SARANYASRI

Abstract. The aim of this paper is to introduce and study up-
per and lower almost w-continuous multifunctions as a generalization
of upper and lower w-continuous multifunctions, respectively due to
Zorlutuna [21].

1. INTRODUCTION

It is well known that various types of functions play a significant
role in the theory of classical point set topology. A great number
of papers dealing with such functions have appeared, and a good
number of them have been extended to the setting of multifunctions
[1,6,13,14,16,17,19]. This implies that both, functions and multifunc-
tions are important tools for studying other properties of spaces and for
constructing new spaces from previously existing ones. Several char-
acterizations and properties of w-closed sets were provided in [7],[8]
and [1]. Recently, Zorlutuna [21] introduced and studied the concept
of w-continuous multifunctions in topological spaces. Also in [14], the
theory of almost continuity for multifunctions is unified using certain
minimal conditions. In this paper, we introduce and study upper
(lower) almost-w continuous multifunctions and obtain several char-
acterizations of upper (lower) almost w-continuous multifunctions and
basic properties of such functions.
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2. PRELIMINARIES

Throughout this paper, (X,7) and (Y, o) (or simply X and Y) al-
ways mean topological spaces in which no separation axioms are as-
sumed unless explicitly stated. Let A be a subset of a space X. For
a subset A of (X, 7), CI(A) and Int(A) denote the closure of A with
respect to 7 and the interior of A with respect to 7, respectively. Re-
cently, as generalization of closed sets, the notion of w-closed sets were
introduced and studied by Hdeib [8]. A point x € X is called a con-
densation (resp. 6-cluster) point of A, if U N A is uncountable (resp.
ClU)N A # ) for each U € 7 with € U. The set of all #-cluster
points of A is denoted by Cly(A). If A = Cly(A), then A is said to be
6-closed [20]. The complement of a f-closed set is said to be f-open. A
is said to be w-closed [8] if it contains all its condensation points. The
complement of an w-closed set is said to be an w-open set. It is well
known that a subset W of a space (X, 7) is w-open if and only if for each
x € W, there exists U € 7 such that € U and U\W is countable. The
family of all w-open subsets of a topological space (X, 7) forms a topol-
ogy on X finer than 7. The w-closure and the w-interior, that can be
defined in the same way as CI(A) and Int(A), respectively, will be de-
noted by w Cl(A) and w Int(A), respectively. The family of all w-open
subsets of a topological space (X, 7), denoted by 7,,. 7, forms a topol-
ogy on X finer than 7. We set wO(X,z) = {A: A€ 7, and x € A}.
A subset A is said to be regular open [19] (resp. semiopen [11], pre-
open [12], semi-preopen [3]) if A = Int(CI(A)) (resp. A C Cl(Int(A)),
A C Int(Cl(A)), A C Cl(Int(Cl(A)))). The complement of regu-
lar open (resp. semiopen, semi-preopen) set is called regular closed
(resp. semiclosed, a-closed, semi pre-closed) set. The intersection
(resp. union) of all semiclosed (resp. semiopen) set containing (resp.
contained in) A C X is called the semiclosure (resp. semiinterior) of
A and is denoted by sCIl(A) (resp. sInt(A)). The family of all reg-
ular open (resp. regular closed, semiopen, semiclosed, preopen, semi-
preopen, semi-preclosed) sets of (X, 7) is denoted by RO(X) (resp.
RC(X), SO(X), SC(X), PO(X), SPO(X), SPC(X)). By a mul-
tifunction F' : (X,7) — (Y,0), we shall denote the upper and lower
inverse of a set B of Y by F*(B) and F~(B), respectively, that is,
Ff(By={zre€X:F(z)CB}and F (B)={zr € X : F(x)NB # 0}.
In particular, F~(y) = {# € X : y € F(x)} for each point y € YV
and for each A C X, F(A) = U,c4 F(2). Then F is said to be sur-
jection if FI(X) =Y. A multifunction F' : (X,7) — (Y,0) is said to
be lower w-continuous [21] (resp. upper w-continuous) multifunction
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if F~(V) € wO(X, 1) (resp. FT(V) € wO(X,7)) for every V € 0. A
subset IV of a topological space (X, 7) is said to be w-neighborhood of
a point x € X, if there exists an w-open set V' such that x € V C N.

Lemma 2.1. The following statements are true:

(1) Let A be a subset of a space (X, 7). Then A € PO(X) if and
only if s C1(A) = Int(CI(A)) [9].

(2) A subset A of a space (X,T) is semi-preopen if and only if
CI(A) is regular closed [3].

Definition 2.2. [6] A multifunction F': (X, 7) — (Y, 0) is said to be:

(1) lower weakly w-continuous, if for each x € X and each open
set V' of Y such that z € F~(V), there exists U € wO(X, z)
such that U C F~(CL(V)),

(2) upper weakly w-continuous, if for each x € X and each open
set V of Y such that x € F*(V), there exists U € wO(X, x)
such that U C F*(ClI(V)),

(3) weakly w-continuous, if it is both upper weakly w-continuous
and lower weakly w-continuous.

3. ON UPPER AND LOWER ALMOST w-CONTINUOUS
MULTIFUNCTIONS

Definition 3.1. A multifunction F': (X,7) — (Y, 0) is said to be:

(1) lower almost w-continuous, if for each € X and each open
set V of Y such that x € F~(V), there exists U € wO(X, x)
such that U C F~(Int(CL(V))),

(2) upper almost w-continuous, if for each z € X and each open
set V of Y such that x € F*(V), there exists U € wO(X, x)
such that U C F*(Int(CL(V))),

(3) almost w-continuous, if it is both upper almost w-continuous
and lower almost w-continuous.

Remark 3.2. Observe that the above Definition is a particular case
of Definition 3.4 of [14].

It is clear that every upper (lower) w-continuous function is upper
(lower) almost w-continuous. But the converse is not true as shown
by the following example.

Example 3.3. Let X = R with topologies 7 = {0,R,R — Q} and
Y = {a,b} with topology o = {0,Y,{a}}. Define F: (R,7) = (Y,0)
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as follows:
_J{a}, fzeQ
F("””)_{ (b}, frcR—Q.
It is easy to see that F is upper almost w-continuous but is not upper
W-CcoNLINUOUS.

Theorem 3.4. (1) A multifunction F : (X, 1) — (Y,0) is upper
almost w-continuous if and only if F : (X, 1,) — (Y, 0) is upper
almost continuous.

(2) A maultifunction F : (X,7) — (Y,0) is lower almost w-
continuous if and only if F: (X, 71,) = (Y,0) is lower almost
continuous.

Proof. The proof is obvious from the definitions. O

Theorem 3.5. The following statements are equivalent for a multi-
function F : (X, 1) — (Y,0):

(1) F is upper almost w-continuous multifunction,

(2) for each x € X and for each open set V such that F(z) C V,
there exists U € wO(X,x) such that if y € U, then F(y) C
Int(Cl(V)) = s CI(V),

(3) for each x € X and for each reqular open set G of Y such that
F(x) C G, there exists U € wO(X,x) such that F(U) C G,

(4) for each x € X and for each closed set K such that x €
FH(Y\K), there exists an w-closed set H such that v € X\H
and F~(Cl(Int(K))) C H,

T(Int(CL(V))) € 7, for any open set V C Y,

“(Cl(Int(K))) € wC(X) for any closed set K C Y,

(G) € 1, for any regular open set G of Y,

~(K) € wC(X) for any regular closed set K of Y,

for each point x of X and each neighborhood V of F(x),

F(Int(CL(V))) is an w-neighborhood of x,

(10) for each point x of X and each neighborhood V' of F(z), there
exists an w-neighborhood U of x such that F(U) C Int(CL(V)).

Proof. (1)<(2): The proof follows from Definition 3.1 and lemma 2.1.
(2)=(3): Let z € X and G be a regular open set of Y such that
F(z) C G. By (2), there exists U € wO(X, x) such that if y € U, then
F(y) C Int(Cl(G)) = G. We obtain F(U) C G.

(3)=(2): Let z € X and V' be an open set of Y such that F'(z) C V.
Then, Int(C1(V)) € RO(Y). By (3), there exists U € wO(X,x) such
that F(U) C Int(CL(V)).

(5) F
(6) F
(7) F
(8) F
(9)
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(2)=(4): Let z € X and K be a closed set of Y such that
x € FH(Y\K). By (2), there exists U € wO(X,z) such that
F(U) ¢ Int(CL(Y\K)). We have Int(CI(Y\K)) = Y\ Cl(Int(K))
and U C FH(Y\Cl(Int(K))) = X\F (Cl(Int(K))). We obtain
F~(Cl(Int(K))) ¢ X\U. Take H = X\U. Then, x € X\H and
H is w-closed set.

(4)=(2): Let x € X and V be an open set of Y such that F(z) C
V. Then Y\V is closed in Y and z € F*(V) = FT(Y\(Y\V)).
By (4), there exists an w-closed set L such that x € X\L and
F~(Cl(Int(Y'\V))) € L. This implies that X\L C F*(Int(C1(V))).
Put U = X\L. Then U € 7, and if y € U, then F(y) C Int(Cl(V)).
(1)=(5): Let V be any open set of Y and x € F*(Int(Cl(V))). By
(1), there exists U, € wO(X,x) such that U, C F*(Int(Cl(V))).

Therefore, we obtain FT(Int(C1(V))) = U U,. Hence,
zeF+ (Int(CL(V)))

FH(Int(CL(V))) € 7.

(5)=(1): Let V be any open set of Y and = € F*(V). By (5),

Fr(Int(Cl(V))) € 7,. Take U = F*(Int(Cl(V))). Then F(U) C

Int(C1(V)). Hence, F' is upper almost w-continuous.

(5)=(6): Let K be any closed set of Y.  Then, Y\K is

an open set of Y. By (5), Fr(Int(Cl(Y\K))) € 7,  Since

Int(CI(Y'\K)) = Y\ Cl(Int(K)), it follows that F*(Int(CI(Y'\K))) =

FH(Y\Cl(Int(K))) = X\F(Cl(Int(K))). We obtain that

F~(Cl(Int(K))) is w-closed in X.

(6)=(5): It can be obtained similarly as (5)=-(6).

(5):>(7): Let G be any regular open set of Y. By (5),
FH(Int(Cl(G))) = F(G) € 7.

7)= (5): Let V be any open set of Y. Then, Int(Cl(V)) € RO(Y).

y (7), F(Int(CL(V))) € 7.

6) It can be obtained similarly as (5)=(7).

8)

(5)=

=(8):
=(6): It can be obtained similarly as (7)=-(5).

(9): Let x € X and V be a neighborhood of F(z). Then there
exists an open set G of Y such that F(z) C G C V. Then we have
x € FY(G) Cc FH(V). Since FT(Int(Cl(G))) € 7, FT(Int(CL(V))) is
an w-neighborhood of .

(9)=(10): Let € X and V be a neighborhood of F(z). By (9),
F*(Int(CL(V))) is an w-neighborhood of z. Take U = F*(Int(Cl(V))).
Then F(U) C Int(CL(V)).

(10)=(1): Let 2 € X and V be any open set of Y such that
F(z) ¢ V. Then V is a neighborhood of F(z). By (10), there
exists an w-neighborhood U of z such that F(U) C Int(CL(V)).

A/—\ Uj/—\
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Therefore, there exists G € 7, such that + € G C U and hence

F(G) c F(U) c Int(CL(V)). We obtain that F' is upper almost w-
continuous. 0J

Theorem 3.6. For a multifunction F : (X, 1) — (Y, 0), the following
statements are equivalent:

(1) F is lower almost w-continuous multifunction,

(2) for each x € X and for each open set V such that F(x) N
V. #£ 0, there exists U € wO(X,x) such that if y € U, then
Ply) N Int(CI(V)) # 0,

(3) for each x € X and for each reqular open set G of Y such that
F(x) NG # 0, there exists U € wO(X,x) such that if y € U,
then F(y) NG # 0,

(4) for each © € X and for each closed set K such that x €

F~(Y\K), there exists an w-closed set H such that v € X\H

and F*(Cl(Int(K))) C H,

F~(Int(CY(V))) € 7, for any open set V C Y,

FH(Cl(Int(K))) € wC(X) for any closed set K C Y,

F~(G) € 1, for any regular open set G of Y,

FH(K) € wC(X) for any regular closed set K of Y.

Proof. We Prove only (1)=(2), (2)=(3), (3)=(4). The other proofs
can be obtained similarly as Theorem 3.5.

(1)=(2): Let x € X and V be an open subset of Y such that
F(z) NV # (. Since F is lower almost w-continuous, there exists
U € wO(X,z) such that U C F~(Int(Cl(V))). This implies that if
y € U, then F(y) NInt(CL(V)) # 0.

(2)=(3): Let x € x and G be a regular open subset of Y such that
F(z)NG # 0. Then G = Int(CIl(G)) is open in Y. By (2), there exists
U € wO(X, ) such that if y € U, then F(y) NInt(Cl(G)) # 0. That
is, if y € U, then F(y) NG # 0.

(3)=(4): Let « € X and K be a closed subset of Y such that
x € F7(Y\K). Then Int(Cl(Y'\K)) is regular open in Y such that
x € F~(Int(CHY\K))). Thus F(z)NInt(CI(Y'\K)) # 0. By (3), there
exists U € wO(X, ) such that if y € U, then F(y)NInt(CL(Y'\K)) # 0.
Hence U C F~(Int(C(Y'\K))), and so U C X\F*(Cl(Int(K))).
Set L = X\U. Then L is a w-closed set such that z € X\L and
FH(Cl(Int(K))) C L.

(4)=(1): Let € z and V be an open subset of Y such that
x € F~(V). Then Y\V is closed in Y such that z € F~(Y\(Y'\V)).
By (4), there exists an w-closed set L such that x € X\L and
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FH(Cl(Int(Y\V))) € L. Set U = X\L. Thus U is w-open in X
such that x € U and U C F~(Int(Cl(V))). Therefore, F' is lower

almost w-continuous. O

Theorem 3.7. The following are equivalent for a multifunction F :
(X,7) = (Y,0):

(1) F is upper almost w-continuous;

(2) wCHF=(V)) C F~(CIV)) for every V € SPO(Y);

(3) wCl( —(V)) € F~(CIV)) for every V € SO(Y);

(4) FH(V) C wInt(F(Int(CL(V)))) for every V € PO(Y).

Proof. (1),(2),(3) follow from Theorem 3.7 (1),(2),(3) of [14], and (4)
follows from Theorem 5.1 (4) of [14]. O

1
2
3
4

Theorem 3.8. The following are equivalent for a multifunction F :
(X,7) = (Y,0):
(1) F is lower almost w-continuous;
(2) wCHEH(V)) C FH(CUV)) for every V € wO(Y);
(3) wCl(F*(V)) C FH(CYV)) for every V € SO(Y);
(4) F~(V) C wInt(F~(Int(CL(V)))) for every V € PO(Y').

Proof. (1),(2),(3) follow from Theorem 3.7 (1),(2),(3) of [14], and (4)
follows from Theorem 5.1 (4) of [14]. O

Definition 3.9. [21] Let (X, 7) be a topological space and let (z,) be
a net in X. It is said that the net (x,) w-converges to z, if for each
w-open set G containing x in X, there exists an index «ag € I such
that z, € G for each o > «y.

Theorem 3.10. If F' : (X,7) — (Y,0) is a lower (upper) almost
w-continuous multifunction, then for each x € X and for each net
(xq) which w-converges to x in X and for each open set V- C'Y such
that © € F~(V) (resp. x € FT(V)), the net (x4) is eventually in
F~(Int(CI(V))) (resp. FH(Int(CL(V)))).

Proof. Let (x,) be a net w-converges to z in X and let V be any open
set in Y such that x € F~(V). Since F is lower almost w-continuous
multifunction, there exists an w-open set U in X containing x such
that U C F~(Int(ClL(V))). Since (z,) w-converges to z, there exists
an index ag € J such that x, € U for all @« > «g9. So we obtain
that z, € U C F~(Int(Cl(V))) for all &« > «ap. Thus, the net (z,) is
eventually in F'~(Int(CL(V))).

The proof of the upper almost w-continuity of F' is similar to the
above. ([l
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Definition 3.11. Let (X, 7) be a topological space. The collection of
all regular open sets forms a base for a topology 7*. It is called the
semiregularization. In case when 7 = 7%, the space (X, 1) is called
semiregular [19].

Theorem 3.12. Let F : (X,7) — (Y,0) be a multifunction from a
topological space (X, T) to a semiregular topological space (Y, o). Then
F'is lower almost w-continuous multifunction if and only if F is lower
w-continuous.

Proof. Let z € X and let V be an open set such that x € F~ (V). Since

(Y, 0) is a semiregular space, there exist regular open sets U; for i € I

such that V = U U;. We have F~(V) = F_<‘U1 U) = ‘UIF_(Ui).
(1S 1S

By Theorem 3. 5 F (U;) € 7, for i € I. We obtain FF~(V) € 7.
Hence, by Theorem 2.3 in [21], F' is lower w-continuous. The converse
is obvious. O

Corollary 3.13. A multifunction F : (X, 7) — (Y, 0) is lower almost
w-continuous multifunction if and only if F': (X, 1) — (Y, 0%) is lower
w-continuous.

Suppose that (X,7), (Y,o) and (Z,n) are topological spaces. It
is known that if F : (X,7) — (Y,0) and F, : (Y,0) — (Z,n) are
multifunctions, then the composite multifunction F o Fy : (X, 7) —
(Z,n) is defined by (F» o Fy)(x) = Fy(Fi(x)) for each z € X.

Theorem 3.14. If F : (X,7) — (Y,0) is an upper (lower) semi-
continuous multifunction and G : (Y,0) — (Z,n) is an upper (lower)
semicontinuous multifunction, then GoF : (X, 1) — (Z,n) is an upper
(lower) almost w-continuous multifunction.

Proof. Let V' C Z be any regular open set. From the definition of
G o F, we have (G o F)T(V) = FT(GT(V)) (resp. (Go F)~ (V) =
F~(G=(V))). Since G is upper (lower) semicontinuous multifunction,
GH(V) (resp. G~(V)) is an open set. Since F' is upper (lower) w-
continuous multifunction, F*(GT(V)) (resp. F~(G~(V))) is an w-
open set. It shows that G o F' is an upper (resp. lower) almost w-
continuous multifunction. O

Theorem 3.15. A multifunction F : (X,7) — (Y, 0) is upper almost
w-continuous if and only if sC1F : (X,7) — (Y,0) is upper almost
w-continuous, where s Cl F(x) = s Cl(F(z)) for each point x € X.

Proof. Suppose that F' is upper almost w-continuous. Let V be any
open set of Y such that sClF(x) C V. Then F(z) C V and by
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Theorem 3.5, there exists U € wO(X, ) such that F'(U) C sClL(V).
For each w € U, F(U) C sCl(V) and hence (sClF)"(V) C
w Int(s CL F)* (s CI(V)). It follows from Theorem 3.5, that s Cl F'is up-
per almost w-continuous. Conversely, suppose that sClF : (X,7) —
(Y,0) is upper almost w-continuous. Let V' be any open set of YV
and x € F*(V). Then F(x) C V and sClF(x) C sCI(V). There
exists U € wO(X, ) such that sClF(U) C sCl(V). Therefore, we
have U C (sCIE)*(sCl(V)) € F*(sCl(V)) and hence x € U C
wInt(FH(sCl(V))). Thus, we obtain F*(V) C wlnt(F*(sCIl(V)))
and by Theorem 3.5, F' is upper almost w-continuous. O

Theorem 3.16. A multifunction F : (X, 1) — (Y, 0) is lower almost
w-continuous if and only if sCLF : (X,7) — (Y,0) is lower almost
w-continuous.

Proof. The proof follows from Theorem 3.10 of [14]. O

Definition 3.17. A subset A of a topological space (X, 7) is said to
be:

(1) a-regular [10], if for each a € A and any open set U containing
a, there exists an open set G of X such that a € G C Cl(G) C
U;

(2) a-paracompact [10], if every X-open cover A has an X-open
refinement which covers A and is locally finite for each point

of X.

Lemma 3.18. [10] If A is an a-paracompact and a-reqular set of a
topological space (X, T) and U an open neighborhood of A, then there
exists an open set G of X such that AC G C CI(G) C U.

Lemma 3.19. If F : (X,7) — (Y,0) is a multifunction such that
F(z) is a-paracompact and a-regular for each x € X, then we have
the following
(1) G*(V) = F*(V) for each open set V of Y,
(2) G- (V)= F~(V) for each closed set V of Y, where G denotes
ClF orwClF.

Proof. The proof follows from Lemma 3.6 of [14] and Lemma 3.18. [

Theorem 3.20. Let F' : (X,7) — (Y,0) be a multifunction such
that F(x) is a-paracompact and a-regular for each x € X. Then the
following statements are equivalent:

(1) F is upper almost w-continuous;
(2) wClF is upper almost w-continuous;
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(3) C1F is upper almost w-continuous.
Proof. The proof follows from Theorem 3.9 of [14]. O

Theorem 3.21. Let F : (X,7) — (Y,0) be a multifunction such
that F(x) is a-paracompact and a-regular for each x € X. Then the
following statements are equivalent:

(1) F is lower almost w-continuous;
(2) wClF is lower almost w-continuous;
(3) CLF is lower almost w-continuous.

Proof. The proof follows from Theorem 3.10 of [14]. O

Theorem 3.22. For a multifunction F' : (X,7) — (Y,0) such that
F(z) is an a-regular and a-paracompact set for each v € X, the fol-
lowing are equivalent:

(1) F is upper weakly w-continuous,
(2) F is upper almost w-continuous,
(3) F is upper w-continuous.

Proof. The proof follows from Theorem 7.1 of [15] and Lemma 3.18..
O

Corollary 3.23. Let F': (X,7) — (Y, 0) be a multifunction such that
F(z) is compact for each x € X andY is reqular. Then, the following
are equivalent:

(1) F is upper weakly w-continuous;
(2) F is upper almost w-continuous;
(3) F is upper w-continuous.

Proof. The proof follows from Corollary 7.1 of [15]. O

Lemma 3.24. [17] If A is an a-reqular set of X, then for every open
set G which intersects A, there exists an open set D such that AND # ()
and CI(D) C G.

Theorem 3.25. For a multifunction F : (X,7) — (Y,0) such that
F(z) is an a-regular set of Y for each x € X, the following are equiv-
alent:

(1) F is lower weakly w-continuous,

(2) F is lower almost w-continuous,
(3) F is lower w-continuous.

Proof. The proof follows from Theorem 7.2 of [15] and Lemma 3.24..
0J
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Theorem 3.26. Let F : (X, 7) — (Y,0) be a multifunction such that
F(x) is closed in'Y for each x € X and Y is normal. Then the
following are equivalent:

(1) F is upper weakly w-continuous,
(2) F is upper almost w-continuous,
(3) F is upper w-continuous.

Proof. The proof follows from Theorem 7.3 of [15]. O

Definition 3.27. A space (X, 7) is said to be rimcompact, if each
point of X has a base of neighborhoods with compact frontiers.

Theorem 3.28. If (Y,0) is a rimcompact space and F : (X,7) —
(Y,0) is a compact valued multifunction with the closed graph, then
the following are equivalent:

(1) F is upper weakly a-continuous;
(2) F is upper almost a-continuous;
(3) F is upper a-continuous.

Proof. Suppose that F' is upper weakly a-continuous. Let z € X and
V' be any open set of Y containing F'(x). Since Y is rimcompact, for
each z € F(x). Since Y is rimcompact, for each z € F(z) there exists
an open set W (z) such that z € W(z) C V and the frontier F'r(W(z))
is compact. The family {W(z) : z € F(x)} is a cover of F(z) by
open sets of Y. Since F'(z) is compact, there exists a finite number of
points, say, 21, 22, .., in F'(x) such that F'(z) C U{W(z;) : 1 <j <n}.
Let W = U{W(%;) : 1 < j < n}, then we have Fr(W) is compact,
Fz) c W cVand F(z)n Fr(W) = F(z) nCI(W) N CI(Y\W) C
Fx) N Y\W = (. For each y € Fr(W), (z,y) € X x Y\G(F).
Since G(F) is closed, there exist open sets U(y) C X and V(y) C Y
containing x and y, respectively, such that F(U(y)) NV (y) = (). The
family {V(y) : vy € Fr(W)} is a cover of Fr(W) by open sets of
Y. Since Fr(W) is compact, there exists a finite subset K of Fr(W)
such that Fr(W) Cc UW{V(y) : y € K}. Since F is upper weakly w-
continuous, there exists Uy € wO(X,x) such that F(Uy) C Cl(W).
Put U = UyN (M{U(y) : y € K}). Then we obtain U € wO(X,x),
F(U) c CI(W) and F(U)NFr(W) = (). Therefore, we obtain F(U) C
W C V. This shows that F' is upper w-continuous. O

Corollary 3.29. If (Y,0) is a rimcompact space and f : (X,7) —
(Y, o) is an almost w-continuous function with closed graph, then f is
w-continuous.
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Theorem 3.30. If (Y,0) is a rimcompact Hausdorff space, then for
a multifunction F : (X, 7) — (Y, 0) the following are equivalent:

(1) F is lower weakly w-continuous;

(2) F is lower almost w-continuous;

(3) F is lower w-continuous.

Proof. Suppose that F' is lower weakly w-continuous. It follows from
Theorem 3.4, that F' : (X,7,) — (Y,0) is lower weakly continuous.
Since (Y, 0) is a rimcompact, it is regular and hence by Theorem 2
of [18], that F' : (X,7,) — (Y,0) is lower continuous. Therefore,
F:(X,7) = (Y,0) is lower w-continuous by Theorem 3.4. O

For a multifunction F' : (X,7) — (Y,0), the graph multifunction
Grp: X = X xY is defined as follows: Gr(x) = {x} x F(x) for every
r e X.

Lemma 3.31. For a multifunction F : (X, 1) — (Y,0) , the following
hold:
(1) GL(Ax B) = An F*(B),
(2) GR(AXx B)=ANF(B)
for any subsets A C X and B C'Y [13].

Theorem 3.32. Let F': (X, 7) — (Y,0) be a multifunction such that
F(x) is compact for each x € X. Then F is upper almost w-continuous
if and only if Gp: X — X XY is upper almost w-continuous.

Proof. Suppose that Gg : X — X X Y is upper almost w-continuous.
Let € X and V be any open set of Y containing F'(z). Since X x V
is open in X XY and Gr(z) C X x V | there exists U € wO(X, x)
such that Gp(U) C Int(Cl(X x V)) = X x Int(Cl(V)). By Lemma
3.31, we have U C GL(X x Int(Cl(V))) = F™(Int(CL(V))) and
F(U) C Int(CL(V)). This shows that F' is upper almost w-continuous.
Conversely, suppose that F' : (X,7) — (Y,0) is upper almost w-
continuous. Let z € X and W be any open set of X x Y contain-
ing Gp(x). For each y € F(z), there exist open sets U(y) C X
and V(y) C Y such that (z,y) € U(y) x V(y) C W. The fam-
ily of {V(y) : y € F(x)} is an open cover of F(z). Since F(z) is
compact, it follows that there exists a finite number of points, say
Y1, Y2, Y3, -, Yn in F(x) such that F(z) C U{V(y;) : i = 1,2,...,n}.
Take U = ™{U(y;) : i = 1,2,....,n} and V = WV(y;) : i =
1,2,...,n}. Then U and V are open sets in X and Y, respectively,
and {z} x F(z) C UxV C W. Since F' is upper almost w-continuous,
there exists Uy € wO(X, x) such that F(Uy) C Int(Cl(V')). By Lemma
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3.31, we have UNUy C UN FT(Int(CL(V))) = GL(U x Int(C1(V))) C
GE(Int(Cl(U xV))) C Gf(Int(CI(W))). Therefore, we obtain UNU, €
wO(X,z) and Gr(UNUy) C Int(Cl(W)). This shows that G is upper
almost w-continuous. UJ

Theorem 3.33. A multifunction F : (X,7) — (Y, 0) is lower almost
w-continuous if and only if Gp : X — X XY s lower almost w-
continuous.

Proof. Suppose that F' is lower almost w-continuous. Let z € X and
W be any open set of X x Y such that € Gz(W). Since W N
({z} x F(x)) # 0, there exists y € F(x) such that (z,y) € W and
hence (z,y) € U x V. .C W for some open sets U and V' of X and Y,
respectively. Since F'(z) NV # (), there exists G € wO(X, x) such that
G C F~(Int(C1(V))). By Lemma 3.31, UNG C UNF~ (Int(CL(V))) =
Gr(UxInt(CLV))) C Gp(Int(CL(W))). Furthermore, x € UNG € 7,
and hence G is lower almost w-continuous. Conversely, suppose that
G is lower almost w-continuous. Let z € X and V' be any open set of
Y such that z € F~ (V). Then X x V is open in X x Y and Gg(x)N
(X xV)={a}x F(x))N(X xV) ={a} x (F(z)NV) # 0. Since Gp
is lower almost w-continuous, there exists an w-open set U containing
x such that U C GL(Int(CI(X x V))). Since Gr(Int(CI(X x V))) =
Gr(X x Int(ClV))), by Lemma 3.31, we have U C F~ (Int(CL(V))).
This shows that F'is lower almost w-continuous. 0

Corollary 3.34. [16] Let f : (X,7) — (Y,0) be a function and g :
X — X XY the graph function defined as follows: g(x) = (z, f(z))
for each x € X. Then f is almost w-continuous if and only if g is
almost w-continuous.

Definition 3.35. [21] Let F' : (X,7) — (Y,0) be a multifunction.
The multigraph G(F)) is said to be w-closed graph in X x Y, if for
each (z,y) € X x Y\G(F), there exist w-open set U and an open set
V' containing x and y, respectively, such that (U x V)N G(F) = 0.

Theorem 3.36. Let F : (X,7) — (Y,0) be an upper almost w-
continuous and punctually a-paracompact multifunction into a Haus-
dorff space (Y, o). Then the multigraph G(F) of F' is an w-closed graph
m X xY.

Proof. Suppose that (zg,yo) ¢ G(F). Then yo ¢ F'(z). Since (Y, 0) is
a Hausdorff space, then for each y € F(x() there exist open sets V' (y)
and W (y) containing y and yo respectively such that V (y)NW (y) = 0.
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The family {V(y) : y € F(z0)} is an open cover of F(xy) which is a-
paracompact. Thus, it has a locally finite open refinement ® = {Up :
f € I} which covers F'(zg). Let W, be an open neighborhood of y
such that Wy intersects only finitely many members Ug,, Us,, ..., Us,
of ®. Choose y1, ¥y, ...,Yn in F(xg) such that Ug, C V(y;) for each

i =1,2,..n and set W = Wy N (ﬁﬁl W(y;)). Then W is an open
neighborhood of y, with W N (5%1 Usz) = (), which implies that W N
Int(Cl(ﬂLGJI Us)) = 0. By the upper almost w continuity of F, there
exists U € wO(X,xy) such that F(U) C Int(Cl(ﬂLEJI Us)). It follows

that (U x W) N G(F) = ). Therefore, the graph G(F') is an w-closed
graph in X x Y. O

Let {X,:a €V} and {Y, : a € V} be any two families of topolog-
ical spaces with same index set V. For each aa € Vv, let I, : X, — Y,
be a multifunction. The product space II{X,, : @ € V} will be denoted
by 11X, and the product multifunction I1F, : 11X, — IIY,, defined
by F(z) = I{F,(z,) : @ € V} for each z = {z,} € 11X, is simply
denoted by F': [1X, — Y,.

Theorem 3.37. Let I, : (X,7) — (Y, 0)a be a multifunction for each
a € Vand F: X — 1Y, a multifunction defined by F(x) = II{F,(z) :
a € V} for each x € X. If F is upper almost w-continuous (resp.
lower almost w-continuous), then F, is upper almost w-continuous
(resp. lower almost w-continuous) for each o € V.

Proof. Let x € X, a € V and V,, any regular open set of Y, containing
F.(z). Then P;Y(V,) =V, xII{Yz : B € V and 8 # a} is a regular
open set of I1Y,, containing F'(z), where P, is the natural projection of
ITY,, onto Y,. Since F'is upper almost w-continuous, there exists U €
wO(X, z) such that F(U) C p,*(Va). Therefore, we obtain F,(U) C
P,(F(U)) € P.(P;*(V,)) = V,. This shows that F, : (X,7) —
(Y, 0), is upper almost w-continuous for each o« € V. The proof for
lower almost w-continuous is similar and is thus omitted. U

Theorem 3.38. If (Y,0) is a Hausdorff space and F,G : (X,7) —
(Y,0) are multifunctions such that

(1) F(x) and G(x) are compact for each x € X,
(2) G is upper weakly w-continuous,
(3) F is upper almost w-continuous,

then the set A={x € X : F(x) NG(z) # 0} is w-closed in X.
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Proof. The proof follows from Theorem 8.3 of [15]. O

Theorem 3.39. If ' : (X,7) — (Y,0) is an upper almost w-
continuous multifunction such that F(x) is a-nearly paracompact for
each x € X and 'Y is Hausdorff, then for each (z,y) € X x Y\G(F),
there exist U € wO(X,z) and an open set V' containing y such that

(U x CI(V)) N G(F) = 0.

Proof. Let (z,y) € X x Y\G(F), then y € Y\F(z). Since Y is
Hausdorff, for each a € F(X) there exist open sets V(a) and W (a)
containing a and y, respectively, such that V(a) N W (a) = 0, hence
Int(Cl(V (a)))NW (a) = (). The family V' = {Int(C1(V(a))) : a € F(x)}
is a cover of F'(z) by regular open sets of Y and F(x) is a-nearly para-
compact. There exists a locally finite open refinement H = {H, :
a € V} of V such that F(z) C U{H, : @ € V} . Since H is locally
finite, there exists an open neighborhood Wy of Y and a finite sub-
set Vo of V such that Wy N H, = 0 for every a € V\Vq. For each
a € Vy, there exists a(a) € F(z) such that H, C V(a(«)). Now, put
W =Wyn (N{W(a(a)) : « € Vo}) and H = U{H, : a« € V}. Then
W is an open neighborhood of y, H is open in Y and W N H = ().
Therefore, we obtain F(z) C H and CI(W) N H = { an hence
F(z) € Y\CI(W). Since W is open, Y\ Cl(W) is regular open in
Y. Since F is upper almost w-continuous, there exists U € wO(X, z)
such that F(U) C Y\ CI(W), hence F(U)NCLW) = (). Therefore, we
obtain (U x CI(V))NG(F) = 0. O
Corollary 3.40. If F : (X,7) — (Y,0) is an upper almost w-
continuous multifunction such that F(x) is compact for each x € X
and Y is Hausdorff, then for each (xz,y) € X x Y\G(F), there

erist U € wO(X,x) and an open set V containing y such that
(U x CUV)NG(F)=10.

Corollary 3.41. If f : (X,7) — (Y,0) is an w-continuous function
into a Hausdorff space Y, then G(f) is w-closed.

Theorem 3.42. Suppose that (X,7) and (X.,7.) are topological

spaces, where aw € J. Let F': X — TI X, be a multifunction from
acJ

X to the product space 11 X, and let P, : 11 X, — X, be the pro-
acJ acJ

jection for each o € J. If F is upper (lower) almost w-continuous
multifunction, then P, o F is upper (resp. lower) almost w-continuous
multifunction for each o € J.

Proof. Take any oy € J. Let V,, be an open set in
(Xag Tag)- Then (P, o F)*(Int(Cl(Vy,))) = FH( P (Int(Cl(Vy,)))) =
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FH(Int(Cl(Va,))) X 712[ X, (resp. (P, o F)~(Int(Cl(V,,))) =
aFag
F~(PL(Int(Cl(V,,)))) = F~(Int(Cl(Vi,)) x I X,)). Since F
aFag

is upper (resp. lower) almost w-continuous multifunction and
since Int(Cl(V,,)) x II X, is a regular open set, it follows that

aFag

Ft(Int(Cl(V,,)) x T Xa) (resp. F~(Int(Cl(V,,)) X I X,)) is w-
aFag aFag

open in (X, 7). It shows that P,, o F' is upper (lower) almost w-
continuous multifunction. Hence, we obtain that P, o F' is upper
(lower) almost w-continuous multifunction for each o € J. O

Theorem 3.43. Suppose that for each a € J, (Xa, 7o), (Ya,0a) are

topological spaces. Let F, : X, — Y, be a multifunction for each

acJandlet F: 11 X, — II Y, be defined by F((x4)) = 11 Fa(xa)
acJ

acJ acd

from the product space 11 X, to the product space 11 Y,. If F' is up-
aed acJ

per (lower) almost w-continuous multifunction, then each F, is upper
(resp. lower) almost w-continuous multifunction for each a € J.

Proof. Let V,, C Y, be an open set. Then Int(Cl(V,)) x II Yz is a
aF#p

regular open set. Since F' is upper (lower) almost w-continuous multi-
function, it follows that F'* (Int(Cl(V,)) x II Yz) = F.;F(Int(CL(V,))) %
a#p

I X5 (resp. F=(Int(CI(Va)) x IL Ys) = F (m(CI(Va)) x 1T X5)

is an w-open set. Consequently, we obtain that FJ (Int(CI(V4,))) (resp.
F (Int(C1(V,)))) is an w-open set. Thus, we show that F, is upper
(resp. lower) almost w-continuous multifunction. O

Theorem 3.44. Suppose that (X,7), (Y,0), (Z,n) are topological
spaces and Fy @ (X,7) = (Y,0), F» : (X,7) — (Z,n) are multi-
functions. Let Fy x Fy : (X, 7) = (Y,0) X Z be a multifunction which
is defined by (Fy x Fy)(z) = Fi(x) x Fy(x) for each x € X. If Fy x Fy
is upper (lower) almost w-continuous multifunction, then Fy and Fy
are upper (resp. lower) almost w-continuous multifunctions.

Proof. Let x € X and let K C Y, H C Z be open sets such that
r € Fi'(K) and x € F; (H). Then we obtain that Fj(zr) C K and
Fy(x) C H and so Fi(x) x Fy(x) = (F} x Fy)(z) C K x H. We have
x € (F1 X F3)T(K x H).Since Fy x Fy is upper almost w-continuous
multifunction, there exists an w-open set U containing x such that
U C (FixFy)T(Int(Cl(K x H))). We obtain that U C F; (Int(C1(K)))
and U C Fy (Int(CIl(H))). Thus, we obtain that F; and F, are upper
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almost w-continuous multifunctions. The proof of the lower almost w
continuity of F; and F5 is similar to the above. O

Lemma 3.45. [1] Let A and B be subsets of a topological space (X, T).
Then

(1) If A€ wO(X) and B € 7, then AN B € wO(B);
(2) If A€ wO(B) and B € 7, then A € 1,,.

Lemma 3.46. If F': (X, 7) — (Y, 0) is an upper almost w-continuous
(lower almost w-continuous) multifunction and U € 7, then F, :
(U,tv) = (Y,0) is upper almost w-continuous (lower almost w-
continuous).

Proof. Suppose that V is an open subset of Y. Let © € U and let
x € (Fjy)~ (V). Since F is lower almost w-continuous multifunction,
there exists an w-open set G such that z € G C F~(Int(Cl(V))).
By Lemma 3.45, we obtain that t € GNU € wO(U) and GNU C
(Fjr)~ (Int(C1(V))). Hence Fjy is lower almost w-continuous. The
proof of the upper almost w-continuity of Fjy is similar to the above.

0

Theorem 3.47. Let {U, : o € A} be an open cover of a space (X, T).
Then a multifunction F : (X, 1) — (Y, 0) is upper almost w-continuous
(resp. lower almost w-continuous) if and only if the restriction Fy, :
(Un, 7o) = (Y,0) is upper almost w-continuous (resp. lower almost
w-continuous) for each o € A.

Proof. We prove only the case for F' upper almost w-continuous,
the proof for F' lower almost w-continuous being analogous. Let
a € A and V be any open set of Y. Since F' is upper almost
w-continuous, FT(Int(C1(V))) is w-open in X. By Lemma 3.45,
(Fiu,)t(Int(CL(V))) = F*(Int(CL(V')))NU, is w-open in U, and hence
Fy, is upper almost w-continuous. Conversely, let V' be any open
set of Y. Since Fjy, is upper almost w-continuous for each a € A,
(Fiu,)t(Int(CL(V))) = F*(Int(CL(V))) N U, is w-open in Uy. By
Lemma 3.45, (Fjy,)*(Int(Cl(V))) is w-open in X for each a € A.
We obtain that F*(Int(Cl(V))) = agA(ﬂUa)+(Int(Cl(V))) is w-open

in X. Hence F' is upper almost w-continuous. [

Recall that a multifunction F: (X, 7) — (Y, 0) is said to be punc-
tually connected if for each z € X, F(x) is connected.

Definition 3.48. A topological space (X, 7) is called w-connected [2]
provided that X is not the union of two nonempty disjoint w-open
sets.
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Theorem 3.49. Let F' be a multifunction from an w-connected topo-
logical space (X, T) onto a topological space (Y, o) such that F is punc-
tually connected. If F' is an upper almost w-continuous multifunction,
then'Y 1is a connected space.

Proof. The proof follows from Theorem 9.1 of [15]. O

Recall that a multifunction F': (X, 7) — (Y, 0) is said to be punc-
tually closed if for each x € X, F(x) is closed.

Theorem 3.50. Let F' be an upper almost w-continuous punctually
closed multifunction and G be an upper almost continuous punctually
closed multifunction from a space (X,T) to a normal space (Y,o).
Then the set K = {x € X : F(x) NG(x) # 0} is w-closed in X.

Proof. Let x € X\K. Then F(z) N G(z) = 0. Since F and
G are punctually closed multifunctions and Y is a normal space,
there exists disjoint open sets U and V containing F'(z) and G(z),
respectively. Since F' and G are upper almost w-continuous and
upper almost continuous, respectively the sets F™(Int(Cl(U))) and
GH(Int(Cl(V))) are w-open and open sets, respectively containing x.
Let H = FH(Int(Cl(U))) N G (Int(C1(V))). Then H is an w-open set
containing x and H N K = (). Hence, K is w closed in X. O

Definition 3.51. A topological space (X, 7) is said to be w-Ty [2],
if for each pair of distinct points x and y in X, there exist disjoint
w-open sets U and V' in X such that x € U and y € V.

Theorem 3.52. Let F : (X,7) — (Y,0) be an upper almost w-
continuous multifunction and punctually closed from a topological
space (X, T) to a normal topological space (Y, o) and let F(z)NF(y) =
0 for each distinct pair x,y € X. Then X is an w-Ty space.

Proof. Let x and y be any two distinct points in X. Then we have
F(z) N F(y) = 0. Since (Y, 0) is a normal space, it follows that there
exist disjoints open sets U and V' containing F'(x) and F(y), respec-
tively. Thus F(Int(Cl(U))) and F*(Int(Cl(V))) are disjoint w-open
sets containing = and y, respectively. Thus, it is obtained that (X, 1)
is w—Tg. O

Definition 3.53. [2] The w-frontier of a subset A of a space (X, 7),
denoted by wFr(A), is defined by wFr(A) = wCl(A) Nw CI(X\A) =
w Cl(A)\w Int(A).

Theorem 3.54. The set all points of X at which a multifunction
F : (X,7) = (Y,0) is not upper almost w-continuous (lower almost



SOME PROPERTIES OF UPPER/LOWER w-CONTINUOUS ... 53

w-continuous) is identical with the union of the w-frontier of the upper
(lower) inverse images of reqular open sets containing (meeting) F(x).

Proof. The proof follows from Theorem 3.11 of [14].
In case F' is lower almost w-continuous, the proof is similar. 0J

In the following (D, >) is a directed set, (F)) is a net of multifunction
F\:(X,7) = (Y,0) for every A € D and F is a multifunction from X
into YV .

Definition 3.55. Let (F))xep be a net of multifunctions from X to
Y. A multifunction F* : (X, 7) — (Y, 0) is defined as follows: for each
x € X, F*(z) = {y € Y: for each open neighborhood V" of y and each
w € D, there exists A € D such that A > p and V N F)\(z) # 0} is
called the upper topological limit of the net (Fy)xep [4].

Definition 3.56. A net (F))\ep is said to be equally upper almost w-
continuous at xo € X, if for every open set V' containing F)\(zy), there
exists an w-open set U containing xy such that F)\(U) C Int(Cl(V)))
for all A € D.

Theorem 3.57. Let (F)\)aep be a net of multifunctions from a topo-
logical space (X, T) into a compact space (Y, o). If the following are
satisfied:
(1) UW{F,(x) : p > A} is closed in Y for each A € D and each
r e X;
(2) (F\)aep is equally upper almost w-continuous on X, then F*
18 upper almost w-continuous on X, then F* is upper almost
w-continuous on X.

Proof. We have F*(z) = N{(U{F,(x) : p > A}) : A € D}. Since
the net (U{F,(z) : p > A})rep is a family of closed sets having the
finite intersection property and Y is compact, F*(z) # 0 for each
x € X. Now, let o € X and let V be a proper open subset of
Y such that F*(zg) C V .Since F*(zo) N (Y\V) = 0, F*(x9) # 0
and Y\V # 0, n{(U{F,(z0) : p > A}) : A€ D} N (Y\V) = 0 and
hence N{(U{F,(zo) N (Y\V) : & > A}) : A € D} = (. Since Y is
compact and the family {(U{F,(xzo) " (Y\V):p>A}): A€ D}isa
family of closed sets with the empty intersection, there exists A € D
such that F,(zo) N (Y\V) = 0 for each ¢ € D with p > A. Since
the net (F)\)xep is equally upper almost w-continuous on X, there
exists an w-open set U containing x¢ such that F,(U) C Int(CL(V))
for each p > A, that is, F,,(z) N (Y\ Int(CL(V))) = 0 for each z € U.
Then we have U{F,(x) N (Y\Int(CL(V))) : u > A} = 0 and hence
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N{U{F,(z) : p > A} : A € D} N (Y\Int(CL(V))) = 0. This implies
that F*(U) C Int(Cl(V)). If V =Y, then it is clear that for each
w-open set U containing o we have F*(U) C Int(Cl(V)). Hence F*
is upper almost w-continuous at xy. Since z( is arbitrary, the proof
completes. U
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