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HYPERSURFACE FAMILY WITH A COMMON
ISOGEODESIC

ERGIN BAYRAM AND EMIN KASAP

Abstract. In this paper, we study the problem of finding a hyper-
surface family from a given spatial geodesic curve in R4. We obtain
the parametric representation for a hypersurface family whose mem-
bers have the same curve as a given geodesic curve. Using the Frenet
frame of the given geodesic curve, we present the hypersurface as a lin-
ear combination of this frame and analyze the necessary and sufficient
conditions for that curve to be geodesic. We illustrate this method by
presenting some examples.

1. Introduction

Geodesic is a well-known notion in differential geometry. A geodesic
on a surface can be defined in many equivalent ways. Geometrically,
the shortest path joining any two points of a surface is a geodesic.
Geodesics are curves in surfaces that play a role analogous that of
straight lines in the plane. A straight line doesn’t bend to left or right
as we travel along it [6].
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In recent years, there have been various researches on geodesics.
Kumar et al. [20] presented a study on geodesic curves computed
directly on NURBS surfaces and discrete geodesics computed on the
equivalent tessellated surfaces. Wang et al. [26] studied the prob-
lem of constructing a family of surfaces from a given spatial geodesic
curve and derived a parametric representation for a surface pencil
whose members share the same geodesic curve as an isoparametric
curve. Sanchez and Dorado [21] presented a practical method to con-
struct polynomial surfaces from a polynomial geodesic or a family of
geodesics, by prescribing tangent ribbons. Sprynski et al. [22] dealt
with reconstruction of numerical or real surfaces based on the knowl-
edge of some geodesic curves on the surface. Paluszny [19] considered
patches that contain any given 3D polynomial curve as a pregeodesic
(i.e. geodesic up to reparametrization). Given two pairs of regular
space curves r1 (u), r3 (u) and r2 (v), r4 (v) that define a curvilinear
rectangle, Farouki et al. [10] handled the problem of constructing a
C2 surface patch R (u, v) for which these four boundary curves corre-
spond to geodesics of the surface. Farouki et al. [11] considered the
problem of constructing polynomial or rational tensor-product Bézier
patches bounded by given four polynomial or rational Bézier curves
defining a curvilinear rectangle, such that they are geodesics of the
constructed surface.

On the other hand, Wang et al. [26] tackled the problem of finding
surfaces passing through a given geodesic. In 2011, the given curve
was changed to a line of curvature and Li et al. [18] constructed
a surface family from a given line of curvature. Bayram et al. [5]
gave the necessary and sufficient conditions for a given curve to be an
asymptotic on a surface.

However, while differential geometry of a parametric surface in R3

can be found in textbooks such as in Struik [24], Willmore [28], Stoker
[23], do Carmo [7], differential geometry of a parametric surface in Rn

can be found in textbook such as in the contemporary literature on
Geometric Modeling [9, 16]. Also, there is little literature on differen-
tial geometry of parametric surface family in R3 [2, 8, 17, 26], but not
in R4. Besides, there is an ascending interest on fourth dimension [1,
2, 8].

Furthermore, various visualization techniques about objects in Eu-
clidean n-space (n ≥ 4) are presented [3, 4, 14]. The fundamental
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step to visualize a 4D object is projecting first into the 3-space and
then into the plane. In many real world applications, the problem
of visualizing three-dimensional data, commonly referred to as scalar
fields arouses. The graph of a function f (x, y, z) : U ⊂ R3 → R,
where U is open, is a special type of parametric hypersurface with the
parametrization (x, y, z, f (x, y, z)) in 4-space. There exists a method
for rendering such a 3-surface based on known methods for visualizing
functions of two variables [13].

In this paper, we consider the four dimensional analogue problem
of constructing a parametric representation of a surface family from a
given spatial geodesic as in Wang et al. [26], who derived the necessary
and sufficient conditions on the marching-scale functions for which the
curve C is an isogeodesic, i.e., both a geodesic and a parameter curve,
on a given surface. We express the hypersurface pencil parametrically
with the help of the Frenet frame {T,N,B1,B2} of the given curve.
We find the necessary and sufficient constraints on the marching-scale
functions, namely, coefficients of Frenet vectors, so that both the geo-
desic and parametric requirements met. Finally, as an application of
our method one example for each type of marching-scale functions is
given.

2. Preliminaries

Let us first introduce some notations and definitions. Bold letters
such as a, R will be used for vectors and vector functions. We assume
that they are smooth enough so that all the (partial) derivatives given
in the paper are meaningful. Let α : I ⊂ R → R4 be an arc-length
curve. If {T,N,B1,B2} is the moving Frenet frame along α, then the
Frenet formulas are given by

(1)


T′ = κ1N,

N′ = −κ1T+κ2B1,
B′

1 = −κ2N+κ3B2,
B′

2 = −κ3B1,

where T,N,B1 and B2 denote the tangent, principal normal, first bi-
normal and second binormal vector fields, respectively, κi (i = 1, 2, 3) the
i-th curvature functions of the curve α [14].
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From elementary differential geometry we have

(2)

 α′ (s) = T (s) ,
α′′ (s) = κ1 (s)N (s) ,
κ1 (s) = ∥α′′ (s)∥ .

Using Frenet formulas one can obtain the followings

(3)

 α′′′ (s) = −κ2
1T (s) + κ′

1N (s) + κ1κ2B1 (s) ,
α(iv) (s) = −3κ1κ

′
1T (s) + (−κ3

1 + κ′′
1 − κ1κ

2
2)N (s)

+ (2κ′
1κ2 + κ1κ

′
2)B1 (s) + κ1κ2κ3B2 (s) .

The unit vectors B2 and B1 are given by

(4)

{
B2 (s) =

α′(s)⊗α′′(s)⊗α′′′(s)
∥α′(s)⊗α′′(s)⊗α′′′(s)∥ ,

B1 (s) = B2 (s)⊗T (s)⊗N (s) ,

where ⊗ is the vector product of vectors in R4.
Since the vectors T, N, B1, B2 are orthonormal, the second cur-

vature κ2 and the third curvature κ3 can be obtained from (3) as

(5)

{
κ2 (s) =

B1(s)•α′′′(s)
κ1(s)

,

κ3 (s) =
B2(s)•α(iv)(s)

κ1(s)κ2(s)
,

where ‘•’ denotes the standard inner product.
Let {e1, e2, e3, e4} be the standard basis for four-dimensional Eu-

clidean space R4. The vector product of the vectors
u =

∑4
i=1 uiei, v =

∑4
i=1 viei, w =

∑4
i=1wiei is defined by

u⊗ v ⊗w =

∣∣∣∣∣∣∣∣
e1 e2 e3 e4
u1 u2 u3 u4

v1 v2 v3 v4
w1 w2 w3 w4

∣∣∣∣∣∣∣∣
[15, 27].
If u,v and w are linearly independent then u⊗ v ⊗w is orthogonal

to each of these vectors.

3. Hypersurface family with a common isogeodesic

A curve r (s) on a hypersurface P = P (s, t, q) ⊂ R4 is called an
isoparametric curve if it is a parameter curve, that is, there exists a
pair of parameters t0 and q0 such that r (s) = P (s, t0, q0). Given a
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parametric curve r (s), it is called an isogeodesic of a hypersurface P
if it is both a geodesic and an isoparametric curve on P.

Let C : r = r (s) , L1 ≤ s ≤ L2, be a C3 curve, where s is the arc-
length. To have a well-defined principal normal, assume that r′′ (s) ̸=
0, L1 ≤ s ≤ L2.

Let T (s) ,N (s) ,B1 (s) ,B2 (s) be the tangent, principal normal,
first binormal, second binormal, respectively; and let κ1 (s) , κ2 (s) and
κ3 (s) be the first, the second and the third curvature, respectively.
Since {T (s) ,N (s) ,B1 (s) ,B2 (s)} is an orthogonal coordinate frame
on r (s) the parametric hypersurface P (s, t, q) : [L1, L2] × [T1, T2] ×
[Q1, Q2] → R4 passing through r (s) can be defined as follows:
(6)

P (s, t, q) = r (s)+(u (s, t, q) ,v (s, t, q) ,w (s, t, q) ,x (s, t, q))


T (s)
N (s)
B1 (s)
B2 (s)

 ,

L1 ≤ s ≤ L2, T1 ≤ s ≤ T2, Q1 ≤ s ≤ Q2,

where u (s, t, q) ,v (s, t, q) ,w (s, t, q) and x (s, t, q) are all C4 functions.
These functions are called the marching scale functions.

We try to find out the necessary and sufficient conditions for which
a hypersurface P = P (s, t, q) has the curve C as an isogeodesic.

First, to satisfy the isoparametricity condition there should exist
t0 ∈ [T1, T2] and q0 ∈ [Q1, Q2] such that P (s, t0, q0) = r (s), L1 ≤ s ≤
L2 , that is,

(7)

{
u (s, t0, q0) = v (s, t0, q0) = w (s, t0, q0) = x (s, t0, q0) ≡ 0,

t0 ∈ [T1, T2] , q0 ∈ [Q1, Q2] , L1 ≤ s ≤ L2.

Secondly, the curve C is a geodesic on the hypersurface P (s, t, q)
if and only if the principal normal N (s) of the curve and the normal
∧
n (s, t0, q0) of the hypersurface P (s, t, q) are linearly dependent, that

is, parallel along the curve C [25]. The normal
∧
n (s, t0, q0) of the

hypersurface can be obtained by calculating the vector product of the
partial derivatives and using the Frenet formula as follows

∂P(s,t,q)
∂s

=
(
1 + ∂u(s,t,q)

∂s
− v (s, t, q)κ1 (s)

)
T (s)

+
(
u (s, t, q)κ1 (s) +

∂v(s,t,q)
∂s

−w (s, t, q)κ2 (s)
)
N (s)

+
(
v (s, t, q)κ2 (s) +

∂w(s,t,q)
∂s

− x (s, t, q)κ3 (s)
)
B1 (s)
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+
(
w (s, t, q)κ3 (s) +

∂x(s,t,q)
∂s

)
B2 (s) ,

∂P(s,t,q)
∂t

= ∂u(s,t,q)
∂t

T (s)+ ∂v(s,t,q)
∂t

N (s)+ ∂w(s,t,q)
∂t

B1 (s)+
∂x(s,t,q)

∂t
B2 (s) ,

and

∂P(s,t,q)
∂q

= ∂u(s,t,q)
∂q

T (s)+ ∂v(s,t,q)
∂q

N (s)+ ∂w(s,t,q)
∂q

B1 (s)+
∂x(s,t,q)

∂q
B2 (s) .

Remark 1. Because,

{
u (s, t0, q0) = v (s, t0, q0) = w (s, t0, q0) = x (s, t0, q0) ≡ 0,

t0 ∈ [T1, T2] , q0 ∈ [Q1, Q2] , L1 ≤ s ≤ L2.

along the curve C, by the definition of partial differentiation we have{
∂u(s,t0,q0)

∂s
= ∂v(s,t0,q0)

∂s
= ∂w(s,t0,q0)

∂s
= ∂x(s,t0,q0)

∂s
≡ 0,

t0 ∈ [T1, T2] , q0 ∈ [Q1, Q2] , L1 ≤ s ≤ L2.

Using (7) we have
∧
n (s, t0, q0) =

∂P(s,t0,q0)
∂s

⊗ ∂P(s,t0,q0)
∂t

⊗ ∂P(s,t0,q0)
∂q

= ϕ1 (s, t0, q0)T (s)− ϕ2 (s, t0, q0)N (s)
+ϕ3 (s, t0, q0)B1 (s)− ϕ4 (s, t0, q0)B2 (s) ,

where

ϕ1 (s, t0, q0) =

∣∣∣∣∣∣∣
∂v(s,t0,q0)

∂s
∂w(s,t0,q0)

∂s
∂x(s,t0,q0)

∂s
∂v(s,t0,q0)

∂t
∂w(s,t0,q0)

∂t
∂x(s,t0,q0)

∂t
∂v(s,t0,q0)

∂q
∂w(s,t0,q0)

∂q
∂x(s,t0,q0)

∂q

∣∣∣∣∣∣∣ = 0,

ϕ2 (s, t0, q0) =

∣∣∣∣∣∣∣
1 + ∂u(s,t0,q0)

∂s
∂w(s,t0,q0)

∂s
∂x(s,t0,q0)

∂s
∂u(s,t0,q0)

∂t
∂w(s,t0,q0)

∂t
∂x(s,t0,q0)

∂t
∂u(s,t0,q0)

∂q
∂w(s,t0,q0)

∂q
∂x(s,t0,q0)

∂q

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 0 0

∂u(s,t0,q0)
∂t

∂w(s,t0,q0)
∂t

∂x(s,t0,q0)
∂t

∂u(s,t0,q0)
∂q

∂w(s,t0,q0)
∂q

∂x(s,t0,q0)
∂q

∣∣∣∣∣∣
= ∂w(s,t0,q0)

∂t
∂x(s,t0,q0)

∂q
− ∂w(s,t0,q0)

∂q
∂x(s,t0,q0)

∂t
,

ϕ3 (s, t0, q0) =

∣∣∣∣∣∣∣
1 + ∂u(s,t0,q0)

∂s
∂v(s,t0,q0)

∂s
∂x(s,t0,q0)

∂s
∂u(s,t0,q0)

∂t
∂v(s,t0,q0)

∂t
∂x(s,t0,q0)

∂t
∂u(s,t0,q0)

∂q
∂v(s,t0,q0)

∂q
∂x(s,t0,q0)

∂q

∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣
1 0 0
∂u(s,t0,q0)

∂t
∂v(s,t0,q0)

∂t
∂x(s,t0,q0)

∂t
∂u(s,t0,q0)

∂q
∂v(s,t0,q0)

∂q
∂x(s,t0,q0)

∂q

∣∣∣∣∣∣
= ∂v(s,t0,q0)

∂t
∂x(s,t0,q0)

∂q
− ∂v(s,t0,q0)

∂q
∂x(s,t0,q0)

∂t
,

ϕ4 (s, t0, q0) =

∣∣∣∣∣∣∣
1 + ∂u(s,t0,q0)

∂s
∂v(s,t0,q0)

∂s
∂w(s,t0,q0)

∂s
∂u(s,t0,q0)

∂t
∂v(s,t0,q0)

∂t
∂w(s,t0,q0)

∂t
∂u(s,t0,q0)

∂q
∂v(s,t0,q0)

∂q
∂w(s,t0,q0)

∂q

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 0 0

∂u(s,t0,q0)
∂t

∂v(s,t0,q0)
∂t

∂w(s,t0,q0)
∂t

∂u(s,t0,q0)
∂q

∂v(s,t0,q0)
∂q

∂w(s,t0,q0)
∂q

∣∣∣∣∣∣
= ∂v(s,t0,q0)

∂t
∂w(s,t0,q0)

∂q
− ∂v(s,t0,q0)

∂q
∂w(s,t0,q0)

∂t
.

So,
∧
n (s, t0, q0) || N (s) if and only if

ϕ3 (s, t0, q0) = ϕ4 (s, t0, q0) ≡ 0, ϕ2 (s, t0, q0) ̸= 0,(8)

t0 ∈ [T1, T2] , q0 ∈ [Q1, Q2] , L1 ≤ s ≤ L2.

Thus, any hypersurface defined by (6) has the curve C as an iso-
geodesic if and only if

(9)

{
u (s, t0, q0) = v (s, t0, q0) = w (s, t0, q0) = x (s, t0, q0) ≡ 0,

ϕ3 (s, t0, q0) = ϕ4 (s, t0, q0) ≡ 0, ϕ2 (s, t0, q0) ̸= 0,

t0 ∈ [T1, T2] , q0 ∈ [Q1, Q2] , L1 ≤ s ≤ L2.

is satisfied. We call the set of hypersurfaces defined by (6) and
satisfying (9) an isogeodesic hypersurface family.

To develop the method further, and for simplification purposes, we
analyze some types of marching-scale functions.

4. Marching-scale functions of type I

Let marching-scale functions be
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u (s, t, q) = l (s)U (t, q) ,
v (s, t, q) = m (s)V (t, q) ,
w (s, t, q) = n (s)W (t, q) ,
x (s, t, q) = p (s)X (t, q) ,

, L1 ≤ s ≤ L2, T1 ≤ t ≤ T2, Q1 ≤ q ≤ Q2,

where l (s) ,m (s) ,n (s) ,p (s) ,U (t, q) ,V (t, q) ,W (t, q) ,X (t, q) ∈ C1

and l (s) ̸= 0 ̸= m (s) ,n (s) ̸= 0 ̸= p (s) , ∀s ∈ [L1, L2] . Using (9), the
necessary and sufficient conditions for which the curve C is an iso-
geodesic on the hypersurface P (s, t, q) can be given as

(10)


U (t0, q0)=V (t0, q0)= W (t0, q0) = X (t0, q0) = 0,

∂V(t0,q0)
∂t

∂X(t0,q0)
∂q

− ∂V(t0,q0)
∂q

∂X(t0,q0)
∂t

= 0,
∂V(t0,q0)

∂t
∂W(t0,q0)

∂q
− ∂V(t0,q0)

∂q
∂W(t0,q0)

∂t
= 0,

∂W(t0,q0)
∂t

∂X(t0,q0)
∂q

− ∂W(t0,q0)
∂q

∂X(t0,q0)
∂t

̸= 0

t0 ∈ [T1, T2] , q0 ∈ [Q1, Q2] .

With a closer investigation of (10), we should have ∂V(t0,q0)
∂t

= 0 and
∂V(t0,q0)

∂q
= 0.

So, (10) can be simplified to

(11)


U (t0, q0)=V (t0, q0)= W (t0, q0) = X (t0, q0) = 0,

∂V(t0,q0)
∂t

= ∂V(t0,q0)
∂q

= 0,
∂W(t0,q0)

∂t
∂X(t0,q0)

∂q
− ∂W(t0,q0)

∂q
∂X(t0,q0)

∂t
̸= 0

t0 ∈ [T1, T2] , q0 ∈ [Q1, Q2] .

5. Marching-scale functions of type II

Let marching-scale functions be
u (s, t, q) = l (s, t)U (q) ,
v (s, t, q) = m (s, t)V (q) ,
w (s, t, q) = n (s, t)W (q) ,
x (s, t, q) = p (s, t)X (q) ,

L1 ≤ s ≤ L2, T1 ≤ t ≤ T2, Q1 ≤ q ≤ Q2,

where l (s, t) ,m (s, t) ,n (s, t) ,p (s, t) ,U (q) ,V (q) ,W (q) ,X (q) ∈ C1.

Also let us choose V (q0) =
dV(q0)

dq
= U (q0) =

dU(q0)
dq

= 0. Using (9),
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the curve C is an isogeodesic on the hypersurface P (s, t, q) if and only
if the followings are satisfied
(12){

n (s, t0)W (q0) = p (s, t0)X (q0) ≡ 0,
∂n(s,t0)

∂t
W (q0)p (s, t0)

dX(q0)
dq

− n (s, t0)
dW(q0)

dq
∂p(s,t0)

∂t
X (q0) ̸= 0,

t0 ∈ [T1, T2] , q0 ∈ [Q1, Q2] , L1 ≤ s ≤ L2.

6. Marching-scale functions of type III

Let marching-scale functions be


u (s, t, q) = l (s, q)U (t) ,
v (s, t, q) = m (s, q)V (t) ,
w (s, t, q) = n (s, q)W (t) ,
x (s, t, q) = p (s, q)X (t) ,

L1 ≤ s ≤ L2, T1 ≤ t ≤ T2, Q1 ≤ q ≤ Q2,

where l (s, q) ,m (s, q) ,n (s, q) ,p (s, q) ,U (t) ,V (t) ,W (t) ,X (t) ∈ C1.

Also let us choose V (t0) =
dV(t0)

dt
= U (t0) =

dU(t0)
dt

= 0. Using (9)
we derive the necessary and sufficient conditions for which the curve
C is an isogeodesic on the hypersurface P (s, t, q) as
(13){

n (s, q0)W (t0) = p (s, q0)X (t0) ≡ 0,

n (s, q0)
dW(t0)

dt
∂p(s,q0)

∂q
X (t0)− ∂n(s,q0)

∂q
W (t0)p (s, q0)

dX(t0)
dt

̸= 0,

t0 ∈ [T1, T2] , q0 ∈ [Q1, Q2] , L1 ≤ s ≤ L2.
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7. Examples

Example 1. Let r (s) =
(

1
2
cos (s) , 1

2
sin (s) , 1

2
s,

√
2
2
s
)
, 0 ≤ s ≤ 2π, be

a curve parametrized by arc-length. For this curve,

T (s) = r′ (s) =

(
−1

2
sin (s) ,

1

2
cos (s) ,

1

2
,

√
2

2

)
,

N (s) = (− cos (s) ,− sin (s) , 0, 0) ,

B2 (s) =
r′ (s)⊗ r′′ (s)⊗ r′′′ (s)

∥r′ (s)⊗ r′′ (s)⊗ r′′′ (s)∥
=

(
0, 0,

√
6

3
,−

√
3

3

)
,

B1 (s) = B2 ⊗T⊗N =

(
−
√
3

2
sin (s) ,

√
3

2
cos (s) ,−

√
3

6
,−

√
6

6

)
.

Let us choose the marching-scale functions of type I, where

l (s) = m (s) = n (s) = p (s) ≡ 1

and

U (t, q) = (t− t0) (q − q0) ,V (t, q) ≡ 0,W (t, q) = t− t0,X (t, q) = q − q0,

t0 ∈ [0, 1] , q0 ∈ [0, 1] , 0 ≤ s ≤ 2π.

So, we have

u (s, t, q) = (t− t0) (q − q0) ,

v (s, t, q) ≡ 0,

w (s, t, q) = t− t0,

x (s, t, q) = q − q0.
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The hypersurface

P (s, t, q) = r (s) + u (s, t, q)T (s) + v (s, t, q)N (s) +

+w (s, t, q)B1 (s) + x (s, t, q)B2 (s)

=

(
1

2
cos (s)− 1

2
(t− t0) (q − q0) sin (s)−

√
3

2
(t− t0) sin (s) ,

1

2
sin (s) +

1

2
(t− t0) (q − q0) cos (s) +

√
3

2
(t− t0) cos (s) ,

1

2
s+

1

2
(t− t0) (q − q0)−

√
3

6
(t− t0) +

√
6

3
(q − q0) ,

√
2

2
s+

√
2

2
(t− t0) (q − q0)−

√
6

6
(t− t0)−

√
3

3
(q − q0)

)
,

0 ≤ s ≤ 2π, 0 ≤ t ≤ 1, 0 ≤ q ≤ 1, t0 ∈ [0, 1] , q0 ∈ [0, 1] , is a member
of the isogeodesic hypersurface family, since it satisfies (11).
By changing the parameters t0 and q0 we can adjust the position of the
curve r (s) on the hypersurface. Let us choose t0 =

1
2
and q0 = 0. Now

the curve r (s) is again an isogeodesic on the hypersurface P (s, t, q)
and the equation of the hypersurface is

P (s, t, q) =

(
1

2
cos (s)− 1

2

(
t− 1

2

)(
q +

√
3
)
sin (s) ,

1

2
sin (s) +

1

2

(
t− 1

2

)(
q +

√
3
)
cos (s) ,

1

2
s+

1

2

(
t− 1

2

)
q −

√
3

6

(
t− 1

2

)
+

√
6

3
q,

√
2

2
s+

√
2

2

(
t− 1

2

)
q −

√
6

6

(
t− 1

2

)
−

√
3

3
q

)
.

The projection of a hypersurface into 3-space generally yields a three-
dimensional volume. If we fix each of the three parameters, one at
a time, we obtain three distinct families of 2-spaces in 4-space. The
projections of these 2-surfaces into 3-space are surfaces in 3-space.
Thus, they can be displayed by 3D rendering methods.
So, if we (parallel) project the hypersurface P (s, t, q) into the w = 0
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subspace and fix q = 1
8
we obtain the surface

Pw

(
s, t,

1

8

)
=

(
1

2
cos (s)− 1 + 8

√
3

16

(
t− 1

2

)
sin (s) ,

1

2
sin (s) +

1 + 8
√
3

8

(
t− 1

2

)
cos (s) ,

1

2
s+

1

16

(
t− 1

2

)
−

√
3

6

(
t− 1

2

)
+

√
6

24

)
,

0 ≤ s ≤ 2π, 0 ≤ t ≤ 1 in 3-space illustrated in Fig. 1.

Example 2. Given the curve parameterized by arc-length r (s) =(
1
2
sin (s) , 1

2
cos (s) , 0,

√
3
2
s
)
, 0 ≤ s ≤ 2π, it is easy to show that

T (s) = r′ (s) =

(
1

2
cos (s) ,−1

2
sin (s) , 0,

√
3

2

)
,

N (s) = (− sin (s) ,− cos (s) , 0, 0) ,

B2 (s) =
r′ (s)⊗ r′′ (s)⊗ r′′′ (s)

∥r′ (s)⊗ r′′ (s)⊗ r′′′ (s)∥
= (0, 0,−1, 0) ,

B1 (s) = B2 ⊗T⊗N =

(√
3

2
cos (s) ,−

√
3

2
sin (s) , 0,−1

2

)
.

Let us choose the marching-scale functions of type II, where

n (s, t) = s+ t+ 1,p (s, t) = (s+ 1) (t− t0) ,

and

U (q) = V (q) ≡ 0,W (q) = q − q0,X (q) ≡ 1.

So, we get

u (s, t, q) ≡ 0,

v (s, t, q) ≡ 0,

w (s, t, q) = (s+ t+ 1) (q − q0) ,

x (s, t, q) = (s+ 1) (t− t0) .
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From (12), the hypersurface

P (s, t, q) = r (s) + u (s, t, q)T (s) + v (s, t, q)N (s) +

+w (s, t, q)B1 (s) + x (s, t, q)B2 (s)

=

(
1

2
sin (s) +

√
3

2
(s+ t+ 1) (q − q0) cos (s) ,

1

2
cos (s)−

√
3

2
(s+ t+ 1) (q − q0) sin (s) ,

− (s+ 1) (t− t0) ,
√
3

2
s− 1

2
(s+ t+ 1) (q − q0)

)
,

0 ≤ s ≤ 2π, 0 ≤ t ≤ 1, 0 ≤ q ≤ 1, is a member of the hypersurface
family having the curve r (s) as an isogeodesic.

Setting t0 =
1
2
and q0 = 0 yields the hypersurface

P (s, t, q) =

(
1

2
sin (s) +

√
3

2
(s+ t+ 1) q cos (s) ,

1

2
cos (s)−

√
3

2
(s+ t+ 1) q sin (s) ,

− (s+ 1)

(
t− 1

2

)
,

√
3

2
s− 1

2
(s+ t+ 1) q

)
.

By (parallel) projecting the hypersurface P (s, t, q) into the subspace
w = 0 and fixing q = 1

500
we get the surface

Pw

(
s, t,

1

500

)
=

(
1

2
sin (s) +

√
3

1000
(s+ t+ 1) cos (s) ,

1

2
cos (s)−

√
3

1000
(s+ t+ 1) sin (s) ,

− (s+ 1)

(
t− 1

2

))
,
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where, 0 ≤ s ≤ 2π, 0 ≤ t ≤ 1 in 3-space, illustrated in Fig. 2.

Example 3. Let r (s) =
(

1
2
sin (s) , 1

2
cos (s) , 0,

√
3
2
s
)
, π ≤ s ≤ 3π, be

an arc-length curve. One can easily show that, for this curve:

T (s) = r′ (s) =

(
1

2
cos (s) ,−1

2
sin (s) , 0,

√
3

2

)
,

N (s) = (− sin (s) ,− cos (s) , 0, 0) ,

B2 (s) =
r′ (s)⊗ r′′ (s)⊗ r′′′ (s)

∥r′ (s)⊗ r′′ (s)⊗ r′′′ (s)∥
= (0, 0,−1, 0) ,

B1 (s) = B2 ⊗T⊗N =

(√
3

2
cos (s) ,−

√
3

2
sin (s) , 0,−1

2

)
.

If we choose the marching-scale functions of type III, where

n (s, q) = sin (s (q − q0)) ,p (s, q) = sq2,

and
U (t) = V (t) ≡ 0,W (t) ≡ 1,X (q) = t− t0

then

u (s, t, q) ≡ 0,

v (s, t, q) ≡ 0,

w (s, t, q) = sin (s (q − q0)) ,

x (s, t, q) = sq2 (t− t0) .

Thus, from (13) if we take q0 ̸= 0 then the curve r (s) is an isogeodesic
on the hypersurface

P (s, t, q) = r (s) + u (s, t, q)T (s) + v (s, t, q)N (s) +

+ w (s, t, q)B1 (s) + x (s, t, q)B2 (s)

=

(
1

2
sin (s) +

√
3

2
cos (s) sin (s (q − q0)) ,

1

2
cos (s)−

√
3

2
sin (s) sin (s (q − q0)) ,

−sq2 (t− t0) ,
√
3

2
s− 1

2
sin (s (q − q0))

)
,
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where π ≤ s ≤ 3π, 0 ≤ t ≤ 1, 0 ≤ q ≤ 1.

By taking t0 = 1 and q0 = 1 we have the following hypersurface:

P (s, t, q) =

(
1

2
sin (s) +

√
3

2
cos (s) sin (s (q − 1)) ,

1

2
cos (s)−

√
3

2
sin (s) sin (s (q − 1)) ,

−sq2 (t− 1) ,
√
3

2
s− 1

2
sin (s (q − 1))

)
.

Hence, if we (parallel) project the hypersurface P (s, t, q) into the z = 0
subspace we get the surface

Pz (s, q) =

(
1

2
sin (s) +

√
3

2
cos (s) sin (s (q − 1)) ,

1

2
cos (s)−

√
3

2
sin (s) sin (s (q − 1)) ,

√
3

2
s− 1

2
sin (s (q − 1))

)
,

where π ≤ s ≤ 3π, 0 ≤ q ≤ 1, in 3-space shown in Fig. 3.

8. Conclusion

We have introduced a method for finding a hypersurface family pass-
ing through the same given geodesic as an isoparametric curve. The
members of the hypersurface family are obtained by choosing suitable
marching-scale functions. For a better analysis of the method we in-
vestigate three types of marching-scale functions. Also, by giving an
example for each type, the method is verified. Furthermore, with the
help of the projecting methods, a member of the family is visualized
in 3-space with its isogeodesic.

However, there is still much work in this area. For 3-space, one pos-
sible alternative is to consider the realm of implicit surfaces F (x, y, z, t) =
0 and try to find out the constraints for which a given curve r (s) is
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an isogeodesic on F (x, y, z, t) = 0. Also, the analogue of the prob-
lem dealt in this paper may be considered for 2-surfaces in 4-space or
another types of marching-scale functions may be investigated.
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10. Figures

Figure 1. Projection of a member of the hypersurface
family with marching-scale functions of type I and its
isogeodesic.

Figure 2. Projection of a member of the hypersurface
family with marching-scale functions of type II and its
isogeodesic.
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Figure 3. Projection of a member of the hypersurface
family with marching-scale functions of type III and its
isogeodesic.
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with Bézier curves as geodesic boundaries, Comput. Aided Geom.
Des.41,(2009b),772-781.

[12] H.Gluck, Higher curvatures of curves in Euclidean space, Amer. Math.
Month.73,(1966),699–704.



22 E. BAYRAM AND E. KASAP

[13] B.Hamann, Visualization and modeling contours of trivariate func-
tions, Ph.D. thesis, Arizona State University, 1991.

[14] A.J.Hanson, P.A.Heng, Visualizing the fourth dimension using geom-
etry and light, In: Proceedings of the 2nd Conference on Visualization ’91,
IEEE Computer Society Press, Los Alamitos, CA, USA, pp. 321–328, 1991.

[15] S.R.Hollasch, Four-space visualization of 4D objects, Master thesis, Ari-
zona State University, 1991.

[16] J.Hoschek, D.Lasser, Fundamentals of computer aided geometric de-
sign, A.K. Peters, Wellesley, MA, 1993.

[17] E.Kasap, F.T.Akyildiz, K.Orbay, A generalization of surfaces family
with common spatial geodesic, Appl. Math. Comput.201,(2008),781-789.

[18] C.Y.Li, R.H.Wang, C.G.Zhu, Parametric representation of a sur-
face pencil with a common line of curvature, Comput. Aided
Des.43,(2011),1110-1117.

[19] M.Paluszny, Cubic polynomial patches through geodesics, Comput.
Aided Des.40,(2008),56-61.

[20] G.V.V.Ravi Kumar, P.Srinivasan, V.D.Holla, K.G.Shastry, B.G.Prakash,
Geodesic curve computations on surfaces, Comput. Aided Geom.
Des.20,(2003),119-133.

[21] J.Sánchez-Reyes, R.Dorado, Constrained design of polynomial surfaces
from geodesic curves, Comput. Aided Des.40,(2008),49-55.

[22] N.Sprynski, N.Szafran, B.Lacolle, L.Biard, Surface reconstruction via ge-
odesic interpolation, Comput. Aided Des.40,(2008),480-492.

[23] J.J.Stoker, Differential geometry, Wiley, New York, 1969.
[24] D.J.Struik, Lectures on classical differential geometry, Addison–Wesley,

Reading, MA, 1950.
[25] J.A.Thorpe, Elementary topics in differential geometry, Springer-

Verlag, New York, Heidelberg-Berlin, 1979.
[26] G.J.Wang, K.Tang, C.L.Tai, Parametric representation of a sur-

face pencil with a common spatial geodesic, Comput. Aided
Des.36,(2004),447-459.

[27] M.Z.Williams, F.M.Stein, A triple product of vectors in four-space,
Math. Mag.37,(1964),230–235.

[28] T.J.Willmore, An introduction to differential geometry, Clarendon
Press, Oxford, 1959.

Ondokuz Mayıs University
Faculty of Arts and Sciences
Mathematics Department



HYPERSURFACE FAMILY WITH A COMMON ISOGEODESIC 23

Address: Ondokuz Mayıs University, Faculty of Arts and Sciences,
Mathematics Department, Atakum, Samsun, 55139, Turkey

Email: erginbayram@yahoo.com (Ergin Bayram), kasape@omu.edu.tr
(Emin Kasap)


