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MEROMORPHIC FUNCTION WITH SOME POWER
SHARING A SMALL FUNCTION WITH THE

DIFFERENTIAL POLYNOMIAL GENERATED BY THE
FUNCTION

ABHIJIT BANERJEE AND SANTANU DHAR

Abstract. Taking Yu’s [19] result in background we investigate the
uniqueness of some power of meromorphic functions sharing a small
function with the differential polynomial generated by the function.
Our results will extend and improve a number of existing results in a
different direction.

1. Introduction Definitions and Results

Let f and g be two non-constant meromorphic functions defined in
the open complex plane C. If for some a ∈ C ∪ {∞}, f − a and g − a
have the same set of zeros with the same multiplicities, we say that f
and g share the value a CM (counting multiplicities), and if we do not
consider the multiplicities then f and g are said to share the value a
IM (ignoring multiplicities).
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Throughout the paper the standard notations from Nevanlinna’s
theory of value distribution of meromorphic functions is used, as in [9].
We recall that T (r, f) denotes the Nevanlinna characteristic function
of the non-constant meromorphic function and N(r, a; f) (N(r, a; f))
denotes the counting function (reduced counting function) of a-points
of meromorphic functions f .

A meromorphic function a is said to be a small function of f pro-
vided that T (r, a) = S(r, f), that is T (r, a) = o(T (r, f)) as r −→ ∞,
outside of a possible exceptional set of finite linear measure.

Also we use I to denote any set of infinite linear measure of 0 < r <
∞.
We also recall that if a ∈ C ∪ {∞}, the quantity

δ(a; f) = 1 − lim sup
r−→∞

N(r, a; f)

T (r, f)
= lim inf

r−→∞

m(r, a; f)

T (r, f)

is called Nevanlinna deficiency of the value a and by ramification index
iwe mean

Θ(a; f) = 1 − lim sup
r−→∞

N(r, a; f)

T (r, f)
.

We start the discussion on the result of R. Brück [4] who first con-
sidered the uniqueness problem of an entire function sharing one value
with its derivative. Below we are recalling R. Brück’s result.

Theorem A. [4] Let f be a non-constant entire function. If f and

f
′
share the value 1 CM and if N(r, 0; f

′
) = S(r, f) then f

′−1
f−1

is a
nonzero constant.

In fact, Brück obtained the above result to justify his famous con-
jecture, corresponding to the uniqueness for one CM shared value of
entire function with its first derivative [4]:
Conjecture: Let f be a non-constant entire function such that the
hyper order ρ2(f) of f is not a positive integer or infinite. If f and

f
′
share a finite value a CM, then f

′−a
f−a

= c, where c is a non zero
constant.

Later many researchers like Zhang [20], Yang [17], Gundersen-Yang
[8] et al. ponder over different aspect of the conjecture. Next we recall
the following definition known as weighted sharing of values which has
a remarkable influence on the subsequent results of Brück conjecture.

Definition 1.1. [10, 11] Let k be a nonnegative integer or infinity.
For a ∈ C ∪ {∞} we denote by Ek(a; f) the set of all a-points of f ,
where an a-point of multiplicity m is counted m times if m ≤ k and
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k + 1 times if m > k. If Ek(a; f) = Ek(a; g), we say that f, g share
the value a with weight k.

The definition implies that if f , g share a value a with weight k
then z0 is an a-point of f with multiplicity m (≤ k) if and only if it
is an a-point of g with multiplicity m (≤ k) and z0 is an a-point of
f with multiplicity m (> k) if and only if it is an a-point of g with
multiplicity n (> k), where m is not necessarily equal to n.

We write f , g share (a, k) to mean that f , g share the value a with
weight k. Clearly if f , g share (a, k), then f , g share (a, p) for any
integer p, 0 ≤ p < k. Also we note that f , g share a value a IM or
CM if and only if f , g share (a, 0) or (a,∞) respectively.

If a is a small function we define that f and g share a IM or a CM
or with weight l according as f − a and g− a share (0, 0) or (0,∞) or
(0, l) respectively.

Though we use the standard notations and definitions of the value
distribution theory available in [9], we explain some definitions and
notations which are used in the paper.

Definition 1.2. [14]Let p be a positive integer and a ∈ C ∪ {∞}.
(i) N(r, a; f |≥ p) (N(r, a; f |≥ p))denotes the counting function

(reduced counting function) of those a-points of f whose mul-
tiplicities are not less than p.

(ii) N(r, a; f |≤ p) (N(r, a; f |≤ p))denotes the counting function
(reduced counting function) of those a-points of f whose mul-
tiplicities are not greater than p.

Definition 1.3. [18] For a ∈ C∪{∞} and a positive integer p we de-
note by Np(r, a; f) the sum N(r, a; f)+N(r, a; f |≥ 2)+. . . N(r, a; f |≥
p). Clearly N1(r, a; f) = N(r, a; f).

Definition 1.4. [21] For a positive integer p and a ∈ C∪{∞} we put

δp(a; f) = 1 − lim sup
r−→∞

Np(r, a; f)

T (r, f)

Clearly 0 ≤ δ(a; f) ≤ δp(a; f) ≤ δp−1(a; f) . . . ≤ δ2(a; f) ≤ δ1(a; f) =
Θ(a; f)

Definition 1.5. [1] Let f and g be two non-constant meromorphic
functions such that f and g share the value a IM. Let z0 be a a-
point of f with multiplicity p, a a-point of g with multiplicity q. We
denote by NL(r, a; f) the counting function of those a-points of f and

g where p > q, by N
1)
E (r, a; f) the counting function of those a-points
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of f and g where p = q = 1 and by N
(2

E (r, a; f) the counting function
of those a-points of f and g where p = q ≥ 2, each point in these
counting functions is counted only once. In the same way we can

define NL(r, a; g), N
1)
E (r, a; g), N

(2

E (r, a; g).

Definition 1.6. [10, 11] Let f , g share a value a IM. We denote
by N∗(r, a; f, g) the reduced counting function of those a-points of f
whose multiplicities differ from the multiplicities of the corresponding
a-points of g.

Clearly N∗(r, a; f, g) ≡ N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f)
+NL(r, a; g).

In 2003 Yu [19] tackle the conjecture in a different way than that was
done previously. Actually Yu [19] stressed to the fact of getting spe-
cific relationship between a function and its derivative imposing some
restrictions on the deficient values of the functions. He considered the
uniqueness problem of an entire or meromorphic functions with its
derivative sharing a small function a and obtained the following two
theorems.

Theorem B. [19] Let f be a non-constant entire function, a ∈ S(f)
and a ̸≡ 0,∞. If f − a and f (k) − a share 0 CM and δ(0; f) > 3

4
then

f ≡ f (k).

Theorem C. [19] Let f be a non-constant non-entire meromorphic
function, a ∈ S(f) and a ̸≡ 0,∞. If

i) f and a have no common poles.
ii) f − a and f (k) − a share the value 0 CM.

iii) 4δ(0; f) + 2(8 + k)Θ(∞; f) > 19 + 2k

then f ≡ f (k) where k is a positive integer.

In the same paper Yu [19] posed the following open questions.

(i) Can a CM shared be replaced by an IM shared value in Theo-
rem B ?

(ii) Can the condition δ(0; f) > 3
4

of Theorem B be further relaxed
?

(iii) Can the condition (iii) in Theorem C be further relaxed ?
(iv) Can in general the condition (i) of Theorem C be dropped ?

Lahiri-Sarkar [14] subtly used weighted sharing of values to improve
the results of Yu [19]. In 2005, Zhang [21] further extended the result
of Lahiri-Sarkar to a small function and proved the following.
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Theorem D. [21] Let f be a non-constant meromorphic function and
k(≥ 1), l(≥ 0) be integers. Also let a ≡ a(z) (̸≡ 0,∞) be a meromor-
phic small function. Suppose that f − a and f (k) − a share (0, l). If
l(≥ 2) and

(1.1) (3 + k) Θ(∞, f) + 2 δ2+k(0; f) > 4 + k

or l=1 and

(1.2) (4 + k) Θ(∞, f) + 3 δ2+k(0; f) > 6 + k

or l = 0 and

(1.3) (6 + 2k) Θ(∞, f) + 5 δ2+k(0; f) > 10 + 2k

then f ≡ f (k).

Recently in connection with the Yu’s [19] result Zhang and Lü [22]
considered the uniqueness of the n-th power of a meromorphic func-
tion sharing a small function with its k-th derivative and proved the
following theorem.

Theorem E. [19] Let k(≥ 1), n(≥ 1) be integers and f be a non-
constant meromorphic function. Also let a(z)(̸≡ 0,∞) be a small
function with respect to f . Suppose fn − a and f (k) − a share (0, l). If
l = ∞ and

(1.4) (3 + k) Θ(∞; f) + 2 Θ(0; f) + δ2+k(0; f) > 6 + k − n

or l = 0 and

(1.5) (6 + 2k) Θ(∞; f) + 4 Θ(0; f) + 2δ2+k(0; f) > 12 + 2k − n

then fn ≡ f (k)

At the end of [22] the following question was raised by Zhang and
Lü [22].
What will happen if fn and [f (k)]m share a small function ?

In 2010, Chen and Zhang [5] answered the above question. But un-
fortunately there were some errors in their results. Banerjee-Majumder
[3] first pointed out the errors, rectified them and obtained the correct
form of the same as follows.

Theorem F. [3] Let k(≥ 1), n(≥ 1) be integers and f be a non-
constant meromorphic function. Also let a(z)(̸≡ 0,∞) be a small
function with respect to f . Suppose fn − a and f (k) − a share (0, l). If
l = 2 and

(1.6) (3 + k) Θ(∞; f) + 2 Θ(0; f) + δ2+k(0; f) > 6 + k − n
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or l = 1 and

(1.7)

(
7

2
+ k

)
Θ(∞; f) +

5

2
Θ(0; f) + δ2+k(0; f) > 7 + k − n

or l = 0 and

(1.8) (6+2k) Θ(∞; f)+4 Θ(0; f)+δ1+k(0; f)+δ2+k(0; f) > 12+2k−n

then fn ≡ f (k)

Theorem G. [3] Let k(≥ 1), n(≥ 1), m(≥ 2) be integers and f be a
non-constant meromorphic function. Also let a(z)( ̸≡ 0,∞) be a small
function with respect to f . Suppose fn− a and [f (k)]m− a share (0, l).
If l = 2 and

(1.9) (3 + 2k) Θ(∞; f) + 2 Θ(0; f) + 2δ1+k(0; f) > 7 + 2k − n

or l = 1 and

(1.10)

(
7

2
+ 2k

)
Θ(∞; f) +

5

2
Θ(0; f) + 2δ1+k(0; f) > 8 + 2k − n

or l = 0 and

(1.11) (6 + 3k) Θ(∞; f) + 4 Θ(0; f) + 3δ1+k(0; f) > 13 + 3k − n

then fn ≡ [f (k)]m.

Next we give the following definition.

Definition 1.7. Let n0j, n1j, . . . , nkj be non negative integers.
The expression Mj[f ] = (f)n0j(f (1))n1j . . . (f (k))nkj is called a differ-

ential monomial generated by f of degree d(Mj) =
k∑

i=0

nij and weight

ΓMj
=

k∑
i=0

(i+ 1)nij.

The sum P [f ] =
t∑

j=1

bjMj[f ] is called a differential polynomial gen-

erated by f of degree d(P ) = max{d(Mj) : 1 ≤ j ≤ t} and weight ΓP =
max{ΓMj

: 1 ≤ j ≤ t}, where T (r, bj) = S(r, f) for j = 1, 2, . . . , t.
The numbers d(P ) = min{d(Mj) : 1 ≤ j ≤ t} and k(the highest

order of the derivative of f in P [f ] are called respectively the lower
degree and order of P [f ].
P [f ] is said to be homogeneous if d(P )=d(P ).
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P [f ] is called a Linear Differential Polynomial generated by f if
d(P ) = 1. Otherwise P [f ] is called Non-linear Differential Poly-
nomial. We denote by Q = max {ΓMj

− d(Mj) : 1 ≤ j ≤ t} =
max {n1j + 2n2j + . . .+ knkj : 1 ≤ j ≤ t}.

We note that (f (k))m is a special differential monomial generated by
f . So it will be interesting to investigate whether Theorems D-G can
be extended up to differential polynomial generated by f . This is one
of the motivations of writing the paper. We also inspect that the right
hand side of all the inequalities (1.4)- (1.11) in Theorems E-G involves
both k and n. As a result the lower bound of the inequalities depend
both on k and n. So for meromorphic functions with relatively large
number of poles the inequalities will be stronger. This observation is
sufficient enough to explore the situation for fixed lower bounds in the
above inequalities. This is another motivation of the paper.

We define for any two positive integers n and m ≤ 3,

µm = min{n,m} and µ∗
m = (m+ 1) − µm.

Following theorem is the main result of the paper which improve all
the previous results.

Theorem 1.1. Let f be a non-constant meromorphic function, and
n(≥ 1), l(≥ 0) be integers. Let a ≡ a(z) (̸≡ 0,∞) be a small meromor-
phic function. Suppose further that P [f ] be a differential polynomial
generated by f such that P [f ] contains at least one derivative and
fn − a and P [f ] − a share (0, l). If l = ∞ and

(1.12) 3Θ(∞; f) + d(P )δ(0; f) + µ2δµ∗
2
(0, f) > µ2 + 3

or 2 ≤ l <∞ and

(1.13) 3Θ(∞; f) + d(P )δ(0; f) + µ3δµ∗
3
(0, f) > µ3 + 3

or l = 1 and

4Θ(∞; f) + d(P )δ(0; f) + Θ(0; f) + µ2δµ∗
2
(0, f) > µ2 + 5(1.14)

or l = 0 and

(2Q+ 6)Θ(∞; f) + 3d(P )δ(0; f) + Θ(0; f) + µ2δµ∗
2
(0; f)(1.15)

> 2Q+ 2d(P ) + µ2 + 7,

then fn = P [f ].
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2. Lemmas

In this section we present some lemmas which will be needed in
the sequel. Let F , G be two non-constant meromorphic functions.
Henceforth we shall denote by H the following function.

(2.1) H =

(
F

′′

F ′ − 2F
′

F − 1

)
−
(

G
′′

G′ − 2G
′

G− 1

)
.

Lemma 2.1. [21] Let f be a non-constant meromorphic function and
k be a positive integer, then

Np(r, 0; f (k)) ≤ Np+k(r, 0; f) + kN(r,∞; f) + S(r, f).

Lemma 2.2. [13] If N(r, 0; f (k) | f ̸= 0) denotes the counting function
of those zeros of f (k) which are not the zeros of f , where a zero of f (k)

is counted according to its multiplicity then

N(r, 0; f (k) | f ̸= 0) ≤ kN(r,∞; f) +N(r, 0; f |< k) + kN(r, 0; f |≥ k)

+S(r, f).

Lemma 2.3. [15] Let f be a non-constant meromorphic function and
let

R(f) =

n∑
k=0

akf
k

m∑
j=0

bjf j

be an irreducible rational function in f with constant coefficients {ak}
and {bj} where an ̸= 0 and bm ̸= 0. Then

T (r, R(f)) = dT (r, f) + S(r, f),

where d = max{n,m}.

Lemma 2.4. [6] Let f be a meromorphic function and P [f ] be a dif-
ferential polynomial. Then

m

(
r,
P [f ]

fd(P )

)
≤ (d(P ) − d(P ))m

(
r,

1

f

)
+ S(r, f).

Lemma 2.5. Let f be a non-constant meromorphic function and P [f ]
be a differential polynomial. Then

N(r, 0;P [f ]) ≤ T (r, P [f ]) − d(P )T (r, f) + d(P )N(r, 0; f) + S(r, f).
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Proof. For a fixed value of r, let E1 = {θ ∈ [0, 2π] :
∣∣f(reiθ)

∣∣ ≤ 1} and
E2 be its complement. Since by definition

k∑
i=0

nij ≥ d(P ),

for every j = 1, 2, . . . , t, it follows that on E1∣∣∣∣ P [f ]

fd(P )

∣∣∣∣ ≤ t∑
j=1

|cj(z)|
k∏

i=1

∣∣∣∣f (i)

f

∣∣∣∣nij

|f |
k∑

i=0
nij−d(P )

≤
t∑

j=1

|cj(z)|
k∏

i=1

∣∣∣∣f (i)

f

∣∣∣∣nij

.

Also we note that
1

fd(P )
=
P [f ]

fd(P )

1

P [f ]
.

Since on E2,
1

|f(z)| < 1, we have

d(P )m

(
r,

1

f

)
=

1

2π

∫
E1

log+ 1

|f(reiθ)|d(P )
dθ +

1

2π

∫
E2

log+ 1

|f(reiθ)|d(P )
dθ

≤ 1

2π

l∑
j=1

∫
E1

log+ |cj(z)| dθ +
k∑

i=1

∫
E1

log+

∣∣∣∣f (i)

f

∣∣∣∣nij

dθ


+

1

2π

∫
E1

log+

∣∣∣∣ 1

P [f(reiθ)]

∣∣∣∣ dθ
≤ 1

2π

2π∫
0

log+

∣∣∣∣ 1

P [f(reiθ)]

∣∣∣∣ dθ + S(r, f) = m

(
r,

1

P [f ]

)
+ S(r, f).

So using Lemmas 2.4, 2.5 and the first fundamental theorem we get

N(r, 0;P [f ])

≤ T (r, P [f ]) −m

(
r,

1

P [f ]

)
+ S(r, f)

≤ T (r, P [f ]) − d(P )m

(
r,

1

f

)
+ S(r, f)

≤ T (r, P [f ]) − d(P )T (r, f) + d(P )N(r, 0; f) + S(r, f).
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Lemma 2.6. [7] Let P [f ] be a differential polynomial generated by f .
Then

m(r, P [f ]) ≤ d(P )m(r, f) + S(r, f).

Lemma 2.7. Let f be a non-constant meromorphic function and P [f ]
be a differential polynomial. Then S(r, P [f ]) can be replaced by S(r, f).

Proof. From Lemma 2.6 it is clear that T (r, P [f ]) = O(T (r, f)) and
so the lemma follows.

Lemma 2.8. Let P [f ] be a differential polynomial generated by f .
Then

T (r, P [f ]) ≤ d(P )T (r, f) +QN(r,∞; f) + S(r, f).

Proof. Let z0 be a pole of f of order r, such that bj(z0) ̸= 0,∞; 1 ≤ j ≤
t. Then it would be a pole of P [f ] of order at most max1≤j≤t{r.n0j +

(r + 1)n1j + . . . + (r + k)nkj} ≤ r.d(P ) + Q. So from Lemma 2.6 we

get T (r, P [f ]) ≤ d(P )T (r, f) +QN(r,∞; f) + S(r, f).

3. Proof of the theorem

Proof of Theorem 1.1. Let F = fn

a
and G = P [f ]

a
. Then F − 1 = fn−a

a

G− 1 = P [f ]−a
a

. Since fn − a and P [f ] − a share (0, l) it follows that
F , G share (1, l) except the zeros and poles of a(z). Now we consider
the following cases.
Case 1 Let H ̸≡ 0.
From (2.1) we get

N(r,∞;H)(3.1)

≤ N(r,∞;F ) +N∗(r, 1;F,G) +N(r, 0;F |≥ 2) +N(r, 0;G |≥ 2)

+N0(r, 0;F
′
) +N0(r, 0;G

′
) +N(r, 0; a) +N(r,∞; a)

+
t∑

j=1

N(r, 0; bj) +
t∑

j=1

N(r,∞; bj),

where N0(r, 0;F
′
) is the reduced counting function of those zeros of

F
′

which are not the zeros of F (F − 1) and N0(r, 0;G
′
) is similarly

defined. Let z0 be a simple zero of F−1. Then by a simple calculation
we see that z0 is a zero of H and hence
(3.2)

N
1)
E (r, 1;F ) = N(r, 1;F |= 1) ≤ N(r, 0;H) ≤ N(r,∞;H) + S(r, F )
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By the second fundamental theorem, Lemma 2.7, (3.1) and noting
that N(r,∞;F ) = N(r,∞;G) + S(r, f), we get

T (r,G)(3.3)

≤ N(r,∞;G) +N(r, 0;G) +N(r, 1;G) −N0(r, 0;G
′
) + S(r,G)

≤ 2N(r,∞;F ) +N(r, 0;G) +N(r, 0;G |≥ 2) +N(r, 0;F |≥ 2)

+N∗(r, 1;F,G) +N(r, 1;F |≥ 2) +N0(r, 0;F
′
) + S(r, f).

While l = ∞, N∗(r, 1;F,G) = 0. So

N(r, 0;F |≥ 2) +N∗(r, 1;F,G) +N(r, 1;F |≥ 2) +N0(r, 0;F
′
)(3.4)

≤ N(r, 0;F
′
).

So

T (r,G) ≤ 2 N(r,∞;F ) +N2(r, 0;G) +N(r, 0;F
′
) + S(r, f).

Using Lemmas 2.5 and 2.1 we get

T (r, P [f ])

≤ 2N(r,∞; f) +N2(r, 0;P [f ]) +N
(
r, 0; (fn/a)

′
)

+ S(r, f)

≤ 3N(r,∞; f) + T (r, P [f ]) − d(P )T (r, f) + d(P )N(r, 0; f)

+N2(r, 0; fn) + S(r, f)

i.e.,

d(P )T (r, f) ≤ 3N(r,∞; f) + d(P )N(r, 0; f) + µ2Nµ∗
2
(r, 0; f) + S(r, f),

i.e.,

3Θ(∞; f) + d(P )δ(0; f) + µ2δµ∗
2
(0, f) ≤ 3 + µ2,

which contradicts (1.12)
While l ≥ 2, (3.4) becomes

N(r, 0;F |≥ 2) +N∗(r, 1;F,G) +N(r, 1;F |≥ 2) +N0(r, 0;F
′
)(3.5)

≤ N(r, 0;F |≥ 2) +N(r, 1;F |≥ l + 1) +N(r, 1;F |≥ 2)

+N0(r, 0;F
′
) ≤ N2(r, 0;F

′
).

Hence

T (r,G) ≤ 2 N(r,∞;F ) +N2(r, 0;G) +N2(r, 0;F
′
) + S(r, f)

Again using Lemmas 2.5 and 2.1 as above we get that

T (r, P [f ]) ≤ 3N(r,∞; f) + T (r, P [f ]) − d(P )T (r, f) + d(P )N(r, 0; f)

+N3(r, 0; fn) + S(r, f).
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i.e.,

d(P )T (r, f) ≤ 3N(r,∞; f) + d(P )N(r, 0; f) + µ3Nµ∗
3
(r, 0; f) + S(r, f),

i.e.,

3Θ(∞; f) + d(P )δ(0; f) + µ3δµ∗
3
(0, f) ≤ 3 + µ3,

which contradicts (1.13).
While l = 1 (3.4) changes to

N(r, 0;F |≥ 2) + 2 N(r, 1;F |≥ 2) +N0(r, 0;F
′
)

≤ N(r, 0;F
′
) +N(r, 0;F

′ | F ̸= 0).

Similarly as above using Lemmas 2.5, 2.1 and 2.2 we have

T (r, P [f ]) ≤ 2 N(r,∞; f) +N2 (r, 0;P [f ]) +N
(
r, 0; (fn/a)

′
)

+N
(
r, 0; (fn/a)

′ | (fn/a) ̸= 0
)

+ S(r, f)

≤ 4N(r,∞; f) + T (r, P [f ]) − d(P )T (r, f) + d(P )N(r, 0; f)

+N2 (r, 0; (fn/a)) +N (r, 0; fn/a) + S(r, f)

≤ 4N(r,∞; f) + T (r, P [f ]) − d(P )T (r, f) + d(P )N(r, 0; f)

+N(r, 0; f) + µ2Nµ∗
2
(r, 0; f) + S(r, f)

i.e.,

4Θ(∞; f) + d(P )δ(0; f) + Θ(0; f) + µ2δµ∗
2
(0, f) ≤ 5 + µ2,

which contradicts (1.14).
Subcase 1.2 l = 0.
In this case F and G share (1, 0) except the zeros and poles of a(z).
Also we have

N(r,∞;H)(3.6)

≤ N(r,∞;F ) +N(r, 0;F |≥ 2) +N(r, 0;G |≥ 2) +NL(r, 1;F )

+NL(r, 1;G) +N0(r, 0;F
′
) +N0(r, 0;G

′
) + S(r, f).

Let z0 be a zero of F − 1 with multiplicity p and a zero of G− 1 with
multiplicity q. It is easy to see that

N
1)
E (r, 1;F ) = N

1)
E (r, 1;G) + S(r, f)

N
(2

E (r, 1;F ) = N
(2

E (r, 1;G) + S(r, f)

and

(3.7) N
1)
E (r, 1;F ) ≤ N(r,∞;H) + S(r, f)
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By the second fundamental theorem we get using (3.6) and (3.7) that

T (r,G)

≤ N(r, 0;G) +N(r,∞;G) +N
1)
E (r, 1;F ) +NL(r, 1;F ) +N

(2

E (r, 1;F )

+NL(r, 1;G) −N0(r, 0;F
′
) + S(r, f)

≤ 2 N(r,∞;F ) +N(r, 0;G) +N(r, 0;F |≥ 2) +NL(r, 1;F )

+N(r, 0;G |≥ 2) +NL(r, 1;G) +N0(r, 0;G
′
) +NL(r, 1;F )

+NL(r, 1;G) + S(r, f)

≤ 2 N(r,∞;F ) +N(r, 0;G) +N(r, 0;G |≥ 2) + 2N(r, 1;G |≥ 2)

+N0(r, 0;G
′
) +N(r, 0;F |≥ 2) + 2N(r, 1;F |≥ 2) + S(r, f)

≤ 2 N(r,∞;F ) +N(r, 0;G) +N(r, 0;G
′
) +N(r, 0;G

′ | G ̸= 0)

+N(r, 0;F
′
) +N(r, 0;F

′ | F ̸= 0) + S(r, f)

From Lemma 2.1 for p = 1, k = 1 and Lemma 2.2 we get

T (r,G) ≤ 2N(r, 0;G) +N2(r, 0;G) +N(r, 0;F
′
)

+N(r, 0;F
′ | F ̸= 0) + 4N(r,∞;F ) + S(r, f),

that is,

T (r, P [f ])

≤ 4N(r,∞; f) + 2N (r, 0;P [f ]) +N2 (r, 0;P [f ]) +N
(
r, 0; (fn/a)

′
)

+N
(
r, 0; (fn/a)

′ | (fn/a) ̸= 0
)

+ S(r, f).

So as above using Lemmas 2.1, 2.2, 2.5 and 2.8 we get

{3d(P ) − 2d(P )}T (r, f) ≤ (2Q+ 6)N(r,∞; f) + 3d(P )N(r, 0; f)

+N(r, 0; f) + µ2Nµ∗
2
(r, 0; f) + S(r, f).

i.e.,

(2Q+ 6)Θ(∞; f) + 3d(P )δ(0; f) + Θ(0; f) + µ2δµ∗
2
(0; f)

≤ 2Q+ 2d(P ) + µ2 + 7.

This contradicts (1.15).
Case 2. Let H ≡ 0.
On integration we get from (2.1)

(3.8)
1

F − 1
≡ C

G− 1
+D,

where C, D are constants and C ̸= 0. We first show that D = 0.
Suppose that there exist a pole z0 of f with multiplicity p which is not
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a pole or a zero of a(z). Then z0 is the pole of F with multiplicity np
and the pole of G with multiplicity r (say). We assume that np ̸= r,
since otherwise we know from (3.8) that D = 0 and we are done.
Subcase 2.1. Suppose D ̸= 0.
Since np ̸= r, we get a contradiction from (3.8). So,

N(r,∞; f) ≤ N(r, 0; a) +N(r,∞; a) = S(r, f),

and hence Θ(∞; f) = 1. Also it is clear thatN(r,∞;F ) = N(r,∞;G) =
S(r, f).
From (1.12)-(1.15) we know respectively

(3.9) d(P )δ(0; f) + µ2δµ∗
2
(0, f) > µ2,

(3.10) d(P )δ(0; f) + µ2δµ∗
3
(0, f) > µ3,

(3.11) Θ(0; f) + d(P )δ(0; f) + µ2δµ∗
2
(0, f) > µ2 + 1

and

(3.12) Θ(0; f) + 3d(P )δ(0; f) + µ2δµ∗
2
(0, f) > 2d(P ) + µ2 + 1

Since D ̸= 0, from (3.8) we get

−
D
(
F − 1 − 1

D

)
F − 1

≡ C
1

G− 1
.

So

N

(
r, 1 +

1

D
;F

)
= N(r,∞;G) = S(r, f).

Subcase 2.1.1. D ̸= −1.
Using the second fundamental theorem for F we get

T (r, F ) ≤ N(r,∞;F ) +N(r, 0;F ) +N(r, 1 +
1

D
;F )

≤ N(r, 0;F ) + S(r, f).

that is
nT (r, f) ≤ N(r, 0; f) + S(r, f).

If n > 1 we have a contradiction from above. For n = 1 we have
Θ(0; f) = δ2(0; f) = . . . = δ(0; f) = 0, which contradicts (3.9)-(3.12).
Subcase 2.1.2. D = −1.
Then

(3.13)
F

F − 1
≡ C

1

G− 1
.

Clearly we know from above N(r, 0;F ) = N(r,∞;G) = S(r, f) and
hence N(r, 0; f) = S(r, f). If C ̸= −1 we know from (3.13) that
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N(r, 1 + C;G) = N(r,∞;F ) = S(r, f). So from Lemmas 2.1, 2.5 and
the second fundamental theorem we get

d(P )T (r, f)

≤ N(r,∞;G) + d(P )N(r, 0; f) +N(r, 1 + C;G) + S(r, f)

≤ S(r, f),

which is absurd.
So C = −1 and we get from (3.13) that FG ≡ 1, which ultimately

yields fnP [f ] ≡ a2.
From above we have N(r, 0; f) = S(r, f) and N(r,∞; f) = S(r, f).

In view of the first fundamental theorem Lemma 2.4 we get from above

(n+ d(P ))T (r, f)

= T

(
r,

a2

f (n+d(P ))

)
+ S(r, f)

≤ T

(
r,
P [f ]

fd(P )

)
+ S(r, f)

= m

(
r,
P [f ]

fd(P )

)
+N

(
r,∞;

P [f ]

fd(P )

)
+ S(r, f)

≤ (d(P ) − d(P ))m

(
r,

1

f

)
+N (r,∞;P [f ]) + d(P )N(r, 0; f)

+S(r, f)

= (d(P ) − d(P ))(T (r, f) −N(r, 0; f)) + S(r, f),

i.e., (n+ d(P ))T (r, f) ≤ S(r, f) which is impossible.
Subcase 2.2. D = 0 and so from (3.8) we get

G− 1 ≡ C (F − 1).

If C ̸= 1, then

F ≡ G− 1 + C

C

and

N(r, 0;F ) = N(r, 1 − C;G)
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By the second fundamental theorem and using Lemmas 2.1, 2.5 and
2.7 we have

T (r,G)

≤ N(r,∞;G) +N(r, 0;G) +N(r, 1 − C;G) + S(r,G)

≤ N(r,∞; f) +N(r, 0;F ) + T (r, P [f ]) − d(P )T (r, f)

+d(P )N(r, 0; f) + S(r, f).

i.e.,

d(P )T (r, f) ≤ N(r,∞; f) + d(P )N(r, 0; f) +N(r, 0; f) + S(r, f),

which implies

Θ(∞; f) + d(P )δ(0; f) + Θ(0; f) ≤ 2.

In view of Definition 1.4 and noting that µi ≥ 1 for i = 1, 2, 3 we get
from above

2(1 + Θ(∞; f)) ≥ 3Θ(∞; f) + d(P )δ(0; f) + Θ(0; f)

≥ 3Θ(∞; f) + d(P )δ(0; f) + µ2δµ∗
2
(0, f)

> µ2 + 3,

which contradicts (1.12). In a similar manner we can show that

2(1 + Θ(∞; f)) ≥ 3Θ(∞; f) + d(P )δ(0; f) + µ3δµ∗
3
(0, f) > µ3 + 3,

2 + 3Θ(∞; f) + µ2δµ∗
2
(0, f) ≥ 4Θ(∞; f) + d(P )δ(0; f) + Θ(0; f)

+µ2δµ∗
2
(0, f) > µ2 + 5

and

2 + (2Q+ 5)Θ(∞; f) + 2d(P )δ(0; f) + µ2δµ∗
2
(0, f)

≥ (2Q+ 6)Θ(∞; f) + 3d(P )δ(0; f) + Θ(0; f) + µ2δµ∗
2
(0, f)

> 2Q+ 2d(P ) + µ2 + 7

which contradicts respectively (1.13)-(1.15). Hence C = 1 and so
F ≡ G, that is fn ≡ P [f ]. This completes the proof of the theorem.
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