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COMMON FIXED POINTS FOR TWO PAIRS OF
WEAKLY COMPATIBLE MAPPINGS IN G - METRIC

SPACES

VALERIU POPA

Abstract. In this paper a general fixed point theorem for two
pairs of weakly compatible mappings satisfying implicit relations in G
- metric spaces, theorem which generalize and improve main results
from [11] is proved.

1. Introduction

Let (X, d) be a metric space and S, T : (X, d) → (X, d) be two
mappings. In 1994, Pant [23] introduced the notion of pointwise R -
weakly commuting mappings. It is proved in [24] that pointwise R -
weakly commutativity is equivalent to commutativity in coincidence
points.

Jungck [10] defined S and T to be weakly compatible if Sx = Tx
implies STx = TSx. Thus, S and T are weakly compatible if and
only if S and T are pointwise R - weakly commuting.

In [7] and [8], Dhage introduced a new class of generalized metric
space, named D - metric spaces. Mustafa and Sims [15], [16] proved
that most of the claims concerning the fundamental topological
structures on D - metric spaces are incorrect and introduced an
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appropriate notion of generalized metric space, named G - metric
space. In fact, Mustafa, Sims and other authors studied many fixed
point results for self mappings in G - metric spaces under certain con-
ditions [17], [18], [19], [20], [21], [22], [33] and other papers. Quite
recently, new results are obtained in [3], [4], [5], [6], [9], [13], [31], [32].

Several classical fixed point theorems and common fixed point the-
orems have been recently unified by considering a general condition
by an implicit relation in [25], [26] and other papers. Actually, the
method is used in the study of fixed points in metric spaces, symmet-
ric spaces, quasi - metric spaces, ultra - metric spaces, convex metric
spaces, reflexive spaces, compact metric spaces, paracompact metric
spaces, in two or three metric spaces, for single valued mappings,
hybrid pairs of mappings and set valued mappings.

Quite recently, this method is used in the study of fixed points
for mappings satisfying an contractive condition of integral type, in
fuzzy metric spaces, probabilistic metric spaces and intuitionistic met-
ric spaces.

The study of fixed points satisfying implicit relation in G - metric
spaces is initiated in [27], [28], [29], [30] and in other papers.

2. Preliminaries

Definition 2.1 ([16]). Let X be a nonempty set and G : X3 → R+

be a function satisfying the following properties:
(G1) : G(x, y, z) = 0 if x = y = z,
(G2) : 0 < G(x, x, y) for all x, y ∈ X with x ̸= y,
(G3) : G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z ̸= y,
(G4) : G(x, y, z) = G(y, z, x) = ... (symmetry in all three variables),
(G5) : G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all x, y, z, a ∈ X (rec-

tangle inequality).
The function G is called a G - metric on X and the pair (X,G) is

called a G - metric space.

Note that if G(x, y, z) = 0 then x = y = z.

Definition 2.2 ([16]). Let (X,G) be a G - metric space. A sequence
(xn) in (X,G) is said to be:

a) G - convergent if for ε > 0, there is an x ∈ X and k ∈ N such
that for all n,m ∈ N, n,m ≥ k, G(x, xn, xm) < ε.

b) G - Cauchy if for ε > 0, there is k ∈ N such that for all n,m, p ∈
N, with n,m, p ≥ k, G(xn, xm, xp) < ε, that is G(xn, xm, xp) → 0 as
n,m, p→∞.
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A G - metric space (X,G) is said to be G - complete if every G -
Cauchy sequence is G - convergent.

Lemma 2.3 ([16]). Let (X,G) be a G - metric space. Then, the
following properties are equivalent:

1) (xn) is G - convergent to x;
2) G(xn, xn, x)→ 0 as n→∞;
3) G(xn, x, x)→ 0 as n→∞;
4) G(xn, xm, x)→ 0 as n,m→∞.

Lemma 2.4 ([16]). If (X,G) is a G - metric space, the following
properties are equivalent:

1) (xn) is G - Cauchy;
2) For ε > 0, there exists k ∈ N such that G(xn, xm, xm) < ε for all

m,n ≥ k, m,n ∈ N.
Lemma 2.5 ([16]). Let (X,G) be a G - metric space. Then, the
function G(x, y, z) is jointly continuous in all three of its variables.

Note that each G - metric generates a topology τG on X [16] whose
base is a family of open G - balls BG(x, ε) = {G(x, ε) : x ∈ X, ε > 0},
where BG(x, ε) = {y ∈ X : G(x, y, y) < ε} for all x, y ∈ X and ε > 0.

A nonempty set A ⊂ X is G - closed if A = A.

Lemma 2.6 ([12]). Let (X,G) be a G - metric space and A a subset
of X. A is G - closed if for any G - convergent sequence in A with
limn→∞ xn = x, then x ∈ A.

In [1], [14], [28], [29] and other papers some fixed point theorems
for weakly compatible mappings in G - metric spaces are proved.

Quite recently, in [11] a common fixed point theorem for two pairs
of weakly compatible mappings in G - metric spaces is proved.

Theorem 2.7 ([11]). Let (X,G) be a G - complete metric space. Sup-
pose that {f, S} and {g, T} are weakly compatible pairs of self - map-
pings on X satisfying

(2.1)
G(fx, fx, gy) ≤ hmax{G(Sx, Sx, Ty), G(fx, fx, Sx),
G(gy, gy, Ty), 1

2
[G(fx, fx, Ty) +G(gy, gy, Sx)]}

and

(2.2)
G(fx, gy, gy) ≤ hmax{G(Sx, Ty, Ty), G(fx, Sx, Sx),
G(gy, Ty, Ty), 1

2
[G(fx, Ty, Ty) +G(gy, Sx, Sx)]}

for all x, y ∈ X, where h ∈
[
0, 1

2

)
. Suppose f(X) ⊂ T (X) and g(X) ⊂

S(X). If one of T (X) or S(X) is a G - closed subspace of X, then
f, g, S and T have an unique common fixed point.
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The purpose of this paper is to prove a general fixed point theorem
for two pairs of weakly compatible mappings satisfying implicit rela-
tions in G - metric spaces which generalizes and improves Theorem
2.7.

3. Implicit relations

The following class of implicit relations is introduced in [29].

Definition 3.1. Let FG be the set of all continuous function
F (t1, ..., t6) : R6

+ → R such that
(F1) : F is nonincreasing in variable t5,
(F2) : there exists h ∈ [0, 1) such that for all u, v ≥ 0 with
F (u, v, v, u, u+ v, 0) ≤ 0 we have u ≤ hv,
(F3) : there exists k ∈ [0, 1) such that for all t, t′ > 0, F (t, t, 0, 0, t, t′) ≤
0 we have t ≤ kt′.

The examples 3.2 - 3.9 are presented in [29]. Examples 3.10, 3.11
are new examples.

Example 3.2. F (t1, ..., t6) = t1 − kmax

{
t2, t3, t4,

t5 + t6
2

}
, where

k ∈ [0, 1).

Example 3.3. F (t1, ..., t6) = t1 − at2 − bt3 − ct4 − dt5 − et6, where
a, b, c, d, e ≥ 0 and 0 < a+ b+ c+ 2d+ e < 1.

Example 3.4. F (t1, ..., t6) = t1 − kmax {t2, t3, t4, t5, t6}, where k ∈[
0, 1

2

)
.

Example 3.5. F (t1, ..., t6) = t1 − kmax

{
t2,

t3 + t4
2

,
t5 + t6

2

}
, where

k ∈ [0, 1).

Example 3.6. F (t1, ..., t6) = t21 − t1(at2 + bt3 + ct4) − dt5t6, where
a, b, c, d ≥ 0 and 0 < a+ b+ c+ d < 1.

Example 3.7. F (t1, ..., t6) = t21 − at22 − b
t5t6

1 + t3 + t4
, where a, b ≥ 0

and 0 < a+ b < 1.

Example 3.8. F (t1, ..., t6) = t1−at2− bt3− cmax{2t4, t5+ t6}, where
a, b, c ≥ 0 and 0 < a+ b+ 2c < 1.

Example 3.9. F (t1, ..., t6) = t1 −

kmax

{
t2, t3, t4,

2t4 + t6
3

,
2t4 + t3

3
,
t5 + t6

3

}
, where k ∈ [0, 1).
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Example 3.10. F (t1, ..., t6) = t1−αmax {t2, t3, t4}−(1−α)(at5+bt6),
where 0 ≤ α < 1, 0 ≤ a < 1

2
, 0 ≤ b < 1

2
.

Example 3.11. F (t1, ..., t6) = t1−max{at2, b(t3+2t4), b(t4+t5+t6)},
where a ∈ (0, 1) and k ∈

[
0, 1

3

)
.

4. Main results

Theorem 4.1. Let (X,G) be a G - complete metric space. Suppose
that {f, S} and {g, T} are weakly compatible pairs of self mappings of
X satisfying

(4.1)
ϕ1(G(Sx, Ty, Ty), G(fx, gy, gy), G(fx, Sx, Sx),
G(gy, Ty, Ty), G(fx, Ty, Ty), G(gy, Sx, Sx)) ≤ 0,

(4.2)
ϕ2(G(Tx, Sy, Sy), G(gx, fy, fy), G(gx, Tx, Tx),
G(fy, Sy, Sy), G(gx, Sy, Sy), G(fy, Tx, Tx)) ≤ 0,

for all x, y ∈ X, where ϕ1, ϕ2 ∈ FG.
Suppose that S(X) ⊂ g(X) and T (X) ⊂ f(X). If one of g(X) or

f(X) is a G - closed subspace of X, then f, g, S and T have an unique
common fixed point.

Proof. Let x0 ∈ X be an arbitrary point of X. Since S(X) ⊂ g(X)
and T (X) ⊂ f(X), there exists x1, x2 ∈ X such that Sx0 = gx1 and
Tx1 = fx2. Again, there exists x3, x4 ∈ X such that Sx2 = gx3
and Tx3 = fx4. Iteratively, for each n = 0, 1, 2, ... we can choose
xn ∈ X, yn ∈ X such that

y2n = Sx2n = gx2n+1, y2n+1 = Tx2n+1 = fx2n+2.

By (4.1) n = 1, 2, ... we have successively

ϕ1(G(Sx2n, Tx2n+1, Tx2n+1), G(fx2n, gx2n+1, gx2n+1),
G(fx2n, Sx2n, Sx2n), G(gx2n+1, Tx2n+1, Tx2n+1),

G(fx2n, Tx2n+1, Tx2n+1), G(gx2n+1, Sx2n, Sx2n)) ≤ 0,

ϕ1(G(y2n, y2n+1, y2n+1), G(y2n−1, y2n, y2n), G(y2n−1, y2n, y2n),
G(y2n, y2n+1, y2n+1), G(y2n−1, y2n+1, y2n+1), 0) ≤ 0.

By (F1) and (G5) we have that

ϕ1(G(y2n, y2n+1, y2n+1), G(y2n−1, y2n, y2n),
G(y2n−1, y2n, y2n), G(y2n, y2n+1, y2n+1),

G(y2n−1, y2n, y2n) +G(y2n, y2n+1, y2n+1), 0) ≤ 0.

By (F2) we have

G(y2n, y2n+1, y2n+1) ≤ hG(y2n−1, y2n, y2n),
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where h = max{h1, h2}.
Again, by (4.2) we have successively

ϕ2(G(Tx2n+1, Sx2n+2, Sx2n+2), G(gx2n+1, fx2n+2, fx2n+2),
G(gx2n+1, Tx2n+1, Tx2n+1), G(fx2n+1, Sx2n+2, Sx2n+2),

G(gx2n+1, Sx2n+2, Sx2n+2), G(fx2n+2, Tx2n+1, Tx2n+1)) ≤ 0,

ϕ2(G(y2n+1, y2n+2, y2n+2), G(y2n, y2n+1, y2n+1), G(y2n, y2n+1, y2n+1),
G(y2n+1, y2n+2, y2n+2), G(y2n, y2n+2, y2n+2), 0) ≤ 0.

By (F1) and (G5) we have that

ϕ2(G(y2n+1, y2n+2, y2n+2), G(y2n, y2n+1, y2n+1),
G(y2n, y2n+1, y2n+1), G(y2n+1, y2n+2, y2n+2),

G(y2n, y2n+1, y2n+1) +G(y2n+1, y2n+2, y2n+2), 0) ≤ 0.

By (F2) we have

G(y2n+1, y2n+2, y2n+2) ≤ hG(y2n, y2n+1, y2n+1),

which implies

G(yn, yn+1, yn+1) ≤ hG(yn−1, yn, yn), n = 1, 2, ...

Then

G(yn, yn+1, yn+1) ≤ hnG(y0, y1, y1).

We will prove that {yn} is aG - Cauchy sequence inX. For n,m ∈ N
with m > n we have repeating (G5) that

G(yn, ym, ym) ≤ G(yn, yn+1, yn+1) +G(yn+1, yn+2, yn+2) +

+ ...+G(ym−1, ym, ym)

≤ [hn + hn+1 + ...+ hm−n]G(y0, y1, y1)

≤ hn

1− h
G(y0, y1, y1).

Letting n tends to infinity we obtain G(yn, ym, ym) → 0 as n,m →
∞. This implies that {yn} is aG - Cauchy sequence inX. Since (X,G)
is G - complete, there exists z ∈ X such that yn → z as n→∞. This
implies that limn→∞ y2n = limn→∞ y2n+1 = z.

Suppose that g(X) is G - closed. It follows that z = gu for some
u ∈ X. Using (4.1) we have successively

ϕ1(G(Sx2n, Tu, Tu), G(fx2n, gu, gu), G(fx2n, Sx2n, Sx2n),
G(gu, Tu, Tu), G(fx2n, Tu, Tu), G(gu, Sx2n, Sx2n)) ≤ 0,

ϕ1(G(y2n, Tu, Tu), G(y2n−1, gu, gu), G(y2n−1, y2n, y2n),
G(gu, Tu, Tu), G(y2n−1, Tu, Tu), G(gu, y2n, y2n)) ≤ 0.
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Letting n tends to infinity we obtain

ϕ1(G(z, Tu, Tu), 0, 0, G(z, Tu, Tu), G(z, Tu, Tu), 0) ≤ 0,

which implies by (F2) that G(z, Tu, Tu) = 0, i.e. z = Tu = gu.
Since {g, T} is weakly compatible, we have gz = gTu = Tgu = Tz.
Next we prove that z = gz = Tz.
By (4.1) we have successively

ϕ1(G(Sx2n, T z, Tz), G(fx2n, gz, gz), G(fx2n, Sx2n, Sx2n),
G(gz, Tz, Tz), G(fx2n, T z, Tz), G(gz, Sx2n, Sx2n)) ≤ 0,

ϕ1(G(y2n, T z, Tz), G(y2n−1, gz, gz), G(y2n−1, y2n, y2n),
G(z, Tz, Tz), G(y2n−1, T z, Tz), G(gz, y2n, y2n)) ≤ 0.

Letting n tend to infinity we obtain

ϕ1(G(z, gz, gz), G(z, gz, gz), 0, 0, G(z, gz, gz), G(gz, z, z)) ≤ 0.

If z ̸= gz we obtain by (F3) that

G(z, gz, gz) ≤ kG(z, z, gz),

where k = max{k1, k2}.
By (4.2) we have successively

ϕ2(G(Tz, Sx2n, Sx2n), G(gz, fx2n, fx2n), G(gz, Tz, Tz),
G(fx2n, Sx2n, Sx2n), G(gz, Sx2n, Sx2n), G(fx2n, T z, Tz)) ≤ 0,

ϕ2(G(gz, y2n, y2n), G(gz, y2n−1, y2n−1), 0,
0, G(gz, y2n, y2n), G(y2n−1, gz, gz)) ≤ 0.

Letting n tend to infinity we obtain

ϕ2(G(gz, z, z), G(gz, z, z), 0, 0, G(gz, z, z), G(z, gz, gz)) ≤ 0.

By (F3) we have

G(gz, z, z) ≤ kG(z, gz, gz).

Hence
G(z, gz, gz) ≤ kG(z, z, gz) ≤ k2G(z, gz, gz)

which implies G(z, gz, gz)(1 − k2) ≤ 0. Hence G(z, gz, gz) = 0, i.e.
z = gz = Tz. Therefore, z is a common fixed point of g and T .

Since T (X) ⊂ f(X), there exists v ∈ X such that gz = z = Tz =
fv. Then, by (4.2) we have successively

ϕ2(G(Tz, Sv, Sv), G(gz, fv, fv), G(gz, Tz, Tz),
G(fv, Sv, Sv), G(gz, Sv, Sv), G(fv, Tz, Tz)) ≤ 0,

ϕ2(G(z, Sv, Sv), 0, 0, G(z, Sv, Sv), G(z, Sv, Sv), 0) ≤ 0,

which implies by (F2) that G(z, Sv, Sv) = 0, i.e. z = Sv = fv.
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Since Sv = fv and {f, S} is weakly compatible we obtain Sz =
Sfv = fSv = fz. Hence, fz = Sz.

By (4.1) we have successively

ϕ1(G(Sz, Tz, Tz), G(fz, gz, gz), G(fz, Sz, Sz),
G(gz, Tz, Tz), G(fz, Tz, Tz), G(gz, Sz, Sz)) ≤ 0,

ϕ1(G(fz, z, z), G(fz, z, z), 0, 0, G(fz, z, z), G(z, fz, fz)) ≤ 0,

which implies by (F3) that

G(fz, z, z) ≤ kG(z, fz, fz).

By (4.2) we have successively

ϕ2(G(Tz, Sz, Sz), G(gz, fz, fz), G(gz, Tz, Tz),
G(fz, Sz, Sz), G(gz, Sz, Sz), G(fz, Tz, Tz)) ≤ 0,

ϕ2(G(z, fz, fz), G(z, fz, fz), 0, 0, G(z, fz, fz), G(fz, z, z)) ≤ 0,

which implies by (F3) that

G(z, fz, fz) ≤ kG(fz, z, z) ≤ k2G(z, fz, fz).

Hence G(z, fz, fz)(1 − k2) ≤ 0 which implies G(z, fz, fz) = 0, i.e.
z = fz = Sz. Hence, z is a common fixed point of f, g, S and T .

Suppose that w is another common fixed point of f, g, S and T .
Then by (4.1) we have successively

ϕ1(G(z, Tw, Tw), G(fz, gw, gw), G(fz, Sz, Sz),
G(gw, Tw, Tw), G(fz, Tw, Tw), G(gw, Sz, Sz)) ≤ 0,

ϕ1(G(z, w, w), G(z, w, w), 0, 0, G(z, w, w), G(w, z, z)) ≤ 0,

which implies

G(z, w, w) ≤ kG(w, z, z).

Similarly, we have

G(w, z, z) ≤ kG(z, w, w),

which implies

G(z, w, w)(1− k2) ≤ 0,

a contradiction. Hence z = w.
In the case T (X) is a G - closed set of f(X), the proof is similarly.

�
Remark 4.2. A similar theorem with Theorem 4.1 is obtained if one
of g(X) and f(X) is a G - complete subspace of X instead of one of
g(X) and f(X) is G - closed.
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Corollary 4.3. Let (X,G) be a G - complete metric space. Suppose
that {f, S} and {g, T} are weakly compatible pairs of self mappings of
X satisfying

(4.3)
G(Sx, Ty, Ty) ≤ hmax{G(fx, gy, gy), G(fx, Sx, Sx),
G(gy, Ty, Ty), 1

2
[G(fx, Ty, Ty) +G(gy, Sx, Sx)]},

(4.4)
G(Tx, Sy, Sy) ≤ hmax{G(gx, fy, fy), G(gx, Tx, Tx),
G(fy, Sy, Sy), 1

2
[G(gx, Sy, Sy) +G(fy, Tx, Tx)]} ≤ 0,

for all x, y ∈ X and h ∈ [0, 1). Suppose that S(X) ⊂ g(X) and
T (X) ⊂ f(X). If one of g(X) or f(X) is a G - closed subspace of X,
then f, g, S and T have an unique common fixed point.

Proof. The proof it follows from Theorem 4.1 and Example 3.2 with
h1 = h2 = h. �
Remark 4.4. 1. In the proof of Theorem 2.1 [2], page 4, lines 10
- 1 from the bottom, there exists some written mistakes and hence the
proof of the fact that the sequence {yn} is a G - Cauchy sequence is
not correct. Similarly, in the proof of Theorems 2.1 and 2.4 [11]. For
a correct form of Theorem 2.1 [11], I suggest the inequality

G(fx, gy, gy) ≤ hmax{G(Sx, Ty, Ty), G(Sx, fx, fx),

G(Ty, gy, gy),
1

2
[G(Sx, gy, gy) +G(Ty, fx, fx)]}

instead inequality (2) [2], [11].
2. Corollary 4.3 is a generalization of correct form of Theorem

2.1 [10] because h ∈ [0, 1) instead h ∈
[
0, 1

2

)
and the fact that the

sequence {yn} is a Cauchy sequence is correct.
3. By Examples 3.3 - 3.11 we obtain new particular results.
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