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FIXED POINTS FOR MULTIVALUED MAPPINGS IN
G - METRIC SPACES

VALERIU POPA AND ALINA-MIHAELA PATRICIU

Abstract. In this paper a general fixed point theorem for multi-
valued mappings in G - metric spaces, which generalize Theorem 3.1
[38], is proved and we obtain other results similarly with the results
from metric spaces.

1. Introduction

In [6], [7], Dhage introduced a new class of generalized metric space,
named D - metric space. Mustafa and Sims [11], [12] proved that most
of the claims concerning the fundamental topological structures on D
- metric spaces are incorrect and introduced an appropriate notion of
generalized metric space, named G - metric space. In fact, Mustafa
and Sims and other authors studied many fixed point results for self
mappings in G - metric spaces under certain conditions [1], [2], [5],
[13], [14], [16], [36] and other papers.

In [18], [19] and other paper, the first author introduced the study
of fixed points for mappings satisfying implicit relations. Actually, the
method is used in the study of fixed points in metric spaces, symmetric
spaces, quasi - metric spaces, ultra - metric spaces, probabilistic metric
spaces, compact metric spaces, convex metric spaces,

————————————–
Keywords and phrases: fixed point, G - metric space, set - valued
mappings, implicit relation.
(2010) Mathematics Subject Classification: 54H25, 47H10.

83



84 VALERIU POPA AND ALINA-MIHAELA PATRICIU

in two or three metric spaces, for single valued mappings, hybrid pairs
of mappings and set valued mappings. Quite recently, the method is
used in the study of fixed points for mappings satisfying contractive
conditions of integral type, in fuzzy metric spaces and intuitionistic
metric spaces. There exists a vast literature in this topic which cannot
be completely cited here.

The method unified different types of contractive and extensive con-
ditions. With this method, the proofs of some fixed point theorems
are more simple. Also, this method allows the study of local and
global properties of fixed point structures. Quite recently, the present
authors initiated the study of fixed points in G - metric spaces using
implicit relations in [22] - [27].

The study of fixed points for multivalued mappings has been initi-
ated by Markin [10], Nadler [17], Rus [33], [34], [35], Reich [28], [29],
[30], Rhoades [31], Rhoades and Watson [32], Berinde and Berinde [4]
and other authors. Popa [20], [21] initiated the study of fixed points
for multivalued mappings satisfying implicit relations.

2. Preliminaries

Definition 2.1 ([12]). Let X be a nonempty set and G : X3 → R+

be a function satisfying the following properties:
(G1) : G(x, y, z) = 0 if x = y = z,
(G2) : 0 < G(x, x, y) for all x, y ∈ X with x ̸= y,
(G3) : G(x, y, y) ≤ G(x, y, z) for all x, y, z ∈ X with z ̸= y,
(G4) : G(x, y, z) = G(y, z, x) = G(z, x, y) = ... (symmetry in all

three variables),
(G5) : G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all x, y, z, a ∈ X (rec-

tangle inequality).
The function G is called a G - metric on X and the pair (X,G) is

called a G - metric space.

Note that if G(x, y, z) = 0, then x = y = z.

Definition 2.2 ([12]). Let (X,G) be a G - metric space. A sequence
(xn) in X is said to be

a) G - convergent, if for ε > 0, there exists an x ∈ X and k ∈ N
such that for all m,n ∈ N, m,n ≥ k, G(x, xn, xm) < ε.

b) G - Cauchy if for ε > 0, there exists k ∈ N such that for all
m,n, p ∈ N, n,m, p ≥ k, G(xn, xm, xp) < ε, that is G(xn, xm, xp) → 0
as n,m, p→∞.
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A G - metric space (X,G) is said to be G - complete if every G -
Cauchy sequence in X is G - convergent.

Lemma 2.3 ([12]). Let (X,G) be a G - metric space. The following
properties are equivalent:

1) (xn) is G - convergent to x;
2) G(xn, xn, x)→ 0 as n→∞;
3) G(xn, x, x)→ 0 as n→∞;
4) G(xm, xn, x)→ 0 as m,n→∞.

Lemma 2.4 ([12]). If (X,G) be a G - metric space, then the following
properties are equivalent:

1) (xn) is G - Cauchy;
2) for every ε > 0, there is k ∈ N such that G(xn, xm, xn) < ε for

all m,n ∈ N, m,n ≥ k.

Lemma 2.5 ([12]). Let (X,G) be a G - metric space. Then the func-
tion G(x, y, z) is jointly continuous in all three of its variables.

Note that each G - metric on X generates a topology τG on X [12],
whose base is a family of open G - balls {BG(x, ε) : x ∈ X, ε > 0},
where BG(x, y) = {y ∈ X : G(x, y, y) < ε}.

A nonempty set A ⊂ X is G - closed if A = A.

Lemma 2.6 ([9]). Let (X,G) be a G - metric space and A a subset of
X. A is G - closed if for any G - convergent sequence (xn) ∈ A with
limn→∞ xn = x, then x ∈ A
Lemma 2.7 ([8]). Every G - metric space (X,G) defines a metric
space (X, dG) by

dG(x, y) = G(x, y, y) +G(x, x, y),

for all x, y ∈ X.

Let (X,G) be a G - metric space and CB(X) be the family of all
nonempty closed subsets of X.

As in [8], [37], we denote by HG the Hausdorff G - distance on
CB(X), i.e.

HG(A,B,C) = max{sup
x∈A

G(x,B,C), sup
x∈B

G(x,C,A), sup
x∈C

G(x,A,B)},

where

G(x,B,C) = dG(x,B) + dG(B,C) + dG(x,C),

dG(x,B) = inf{dG(x, y), y ∈ B},
dG(A,B) = inf{dG(a, b), a ∈ A, b ∈ B}.
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Lemma 2.8 ([38]). Let (X,G) be a G - metric space and A,B ∈
CB(X). Then, for a ∈ A and h > 1, there exists b ∈ B such that

G(a, b, b) ≤ h ·HG(A,B,B).

Quite recently, Wats and Kumar [38] proved the following theorem:

Theorem 2.9 ([38]). Let (X,G) be a G - complete metric space, T :
X → CB(X) be a set valued map such that
(2.1)
HG(Tx, Ty, Ty) ≤ αG(x, y, z) + β[G(x, Tx, Tx) +G(y, Ty, Ty)+
+G(z, Tz, Tz)] + γ[G(x, Ty, Ty) +G(x, Tz, Tz) +G(y, Tx, Tx)+

+G(y, Tz, Tz) +G(z, Tx, Tx) +G(z, Ty, Ty)]

for all x, y, z ∈ X, where α, β, γ > 0 and α + 3β + 4γ < 1. Then T
has a fixed point.

The purpose of this paper is to prove a general theorem for mul-
tivalued mappings satisfying an implicit relation, which generalizes
Theorem 2.9 and obtain other new results similarly with known re-
sults from metric spaces.

3. Implicit relations

Definition 3.1 ([20]). Let FM be the set of all continuous functions
F (t1, ..., t6) : R6

+ → R satisfying the following conditions:
(F1) : F is increasing in variable t1 and nonincreasing in vari-

ables t3, t4, t5, t6.
(F2) : There exist k > 1 and h ∈ (0, 1) such that for u, v ≥ 0,

t > 0 and u ≤ kt, F (t, v, v, u, u+ v, 0) ≤ 0 implies u ≤ hv.

In the following examples, condition (F1) is obvious.

Example 3.2. F (t1, ..., t6) = t1− αt2− β(t3 + 2t4)− 2γ(t4 + t5 + t6},
where α, β, γ ≥ 0 and α + 3β + 6γ < 1.

(F2) : Let 1 < k <
1

α + 3β + 6γ
be such that u, v ≥ 0, t > 0 and

F (t, v, v, u, u+ v, 0) = t−αv− β(2v+ u)− 2γ(2u+ v) ≤ 0. If u ≤ kt,

then u ≤ hv, where 0 < h =
k(2α + β + 2γ)

1− k(2β + 4γ)
< 1.

Example 3.3. F (t1, ..., t6) = t1 − at2 − bt3 − ct4 − dt5 − et6, where
a, b, c, d, e ≥ 0 and 0 < a+ b+ c+ 2d < 1.

(F2) : Let 1 < k <
1

a+ b+ c+ 2d
be such that u, v ≥ 0, t > 0

and F (t, v, v, u, u+ v, 0) = t− av− bv− cu− d(u+ v) ≤ 0. If u ≤ kt,
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then u ≤ k(av + bv + cu + d(u + v)), which implies u ≤ hv, where

0 < h =
k(a+ b+ e)

1− k(c+ d)
< 1.

Example 3.4. F (t1, ..., t6) = t1 − amax{t2, t3, t4, t5, t6}, where a ∈(
0,

1

2

)
.

(F2) : Let 1 < k <
1

2a
be such that u, v ≥ 0, t > 0 and

F (t, v, v, u, u+ v, 0) = t−a(u+ v) ≤ 0. If u ≤ kt, then u ≤ ak(u+ v),

which implies u ≤ hv, where 0 < h =
ak

1− ak
.

Example 3.5. F (t1, ..., t6) = t1 − amax

{
t2, t3, t4,

t5 + t6
2

}
, where

a ∈ (0, 1).

(F2) : Let 1 < k <
1

a
be such that u, v ≥ 0, t > 0 and

F (t, v, v, u, u + v, 0) = t − amax

{
v, u,

u+ v

2
, 0

}
≤ 0. If u > v,

then u ≤ kt implies u ≤ aku < u, a contradiction. Hence u ≤ v,
which implies u ≤ hv, where 0 < h = ak < 1.

Example 3.6. F (t1, ..., t6) = t1 − amax

{
t2,

t3 + t4
2

,
t5 + t6

2

}
, where

a ∈ (0, 1).
The proof is similar as in Example 3.5.

Example 3.7. F (t1, ..., t6) = t21 − (at22 + bt23 + ct24) − dt5t6, where
a, b, c, d ≥ 0 and 0 < a+ b+ c < 1.

(F2) : Let 1 < k <
1√

a+ b+ c
be such that u, v ≥ 0, t > 0

and F (t, v, v, u, u + v, 0) = t2 − (av2 + bv2 + cu2) ≤ 0. If u ≤ kt,
then u2 ≤ k2(av2 + bv2 + cu2) ≤ 0, which implies u ≤ hv, where

0 < h = k

√
a+ b

1− k2c2
< 1.

Example 3.8. F (t1, ..., t6) = t1 − cmax{t2, t3,
√
t4t5,
√
t5t6}, where

c ∈ (0, 1).

(F2) : Let 1 < k <
1

c
be such that u, v ≥ 0, t > 0 and

F (t, v, v, u, u + v, 0) = t − cv ≤ 0. If u ≤ kt, then u ≤ hv, where
0 < h = ck < 1.
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Example 3.9. F (t1, ..., t6) = t1−at2− bt3− cmax{2t4, t5+ t6}, where
a > 0, b, c ≥ 0 and 0 < a+ b+ 2c < 1.

(F2) : Let 1 < k <
1

a+ b+ 2c
be such that u, v ≥ 0, t > 0 and

F (t, v, v, u, u + v, 0) = t − av − bv − cmax{2u, u + v} ≤ 0. If u > v,
then u ≤ k(a + b + 2c) < u , a contradiction. Hence u ≤ v, which
implies u ≤ hv, where 0 < h = k(a+ b+ 2c) < 1.

4. Main result

Theorem 4.1. Let (X,G) be a complete G - metric space and T :
(X,G)→ CB(X) be a self valued mapping such that

(4.1)
F (HG(Tx, Ty, Ty)), G(x, y, y), G(x, Tx, Tx),
G(y, Ty, Ty), G(x, Ty, Ty), G(y, Tx, Tx)) ≤ 0

for all x, y ∈ X, where F ∈ FM .
Then, T has a fixed point.

Proof. Let x0 ∈ X be, x1 ∈ Tx0 and k > 1. By Lemma 2.8 there
exists x2 ∈ Tx1 such that

(4.2) G(x1, x2, x2) ≤ kHG(Tx0, Tx1, Tx1).

Continuing this process, there exists xn+1 ∈ Txn, n = 0, 1, 2, ... such
that

(4.3) G(xn, xn+1, xn+1) ≤ kHG(Txn−1, Txn, Txn).

By (4.1) we have

F (HG(Txn−1, Txn, Txn)), G(xn−1, xn, xn), G(xn−1, Txn−1, Txn−1),
G(xn, Txn, Txn), G(xn−1, Txn, Txn), G(xn, Txn−1, Txn−1)) ≤ 0.

By xn ∈ Txn−1 and (F1), for n = 1, 2, ... we obtain

F (HG(Txn−1, Txn, Txn)), G(xn−1, xn, xn), G(xn−1, xn, xn),
G(xn, xn+1, xn+1), G(xn−1, xn+1, xn+1), 0) ≤ 0.

Using (F1) and (G5) we obtain
(4.4)

F (HG(Txn−1, Txn, Txn)), G(xn−1, xn, xn), G(xn−1, xn, xn),
G(xn, xn+1, xn+1), G(xn−1, xn, xn) +G(xn, xn+1, xn+1), 0) ≤ 0.

By (4.3) and (F2) we obtain

G(xn, xn+1, xn+1) ≤ hG(xn−1, xn, xn)

which implies

G(xn, xn+1, xn+1) ≤ hnG(x0, x1, x1).
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Using (G5) we obtain for m > n that

G(xn, xm, xm) ≤ G(xn, xn+1, xn+1) +G(xn+1, xn+2, xn+2) + ...+

+ G(xm−1, xm, xm)

≤ (hn + hn+1 + ...+ hm−1)G(x0, x1, x1)

≤ hn

1− h
G(x0, x1, x1).

By Lemma 2.4, (xn) is a G - Cauchy sequence. Since (X,G) is G -
complete, there exists x ∈ X such that limn→∞ xn = x.

By (4.1) we have

F (HG(Txn, Tx, Tx)), G(xn, x, x), G(xn, Txn, Txn),
G(x, Tx, Tx), G(xn, Tx, Tx), G(x, Txn, Txn)) ≤ 0.

Since G(xn+1, Tx, Tx) ≤ HG(Txn, Tx, Tx) and (F1) we obtain

F (G(xn+1, Tx, Tx)), G(xn, x, x), G(xn, xn+1, xn+1),
G(x, Tx, Tx), G(xn, Tx, Tx), G(x, xn+1, xn+1)) ≤ 0.

Letting n tends to infinity we obtain

F (G(x, Tx, Tx)), 0, 0, G(x, Tx, Tx), G(x, Tx, Tx), 0) ≤ 0.

Since G(x, Tx, Tx) ≤ kG(x, Tx, Tx), by (F2) we obtain

G(x, Tx, Tx) ≤ 0,

which implies x ∈ Tx, hence x is a fixed point of T . �
Corollary 4.2 (Corrected form of Theorem 2.9).

Proof. For z = y, by relation (2.1) we obtain

HG(Tx, Ty, Ty) ≤ αG(x, y, y) + β[G(x, Tx, Tx) + 2G(y, Ty, Ty)]

+2γ[G(x, Ty, Ty) +G(y, Tx, Tx) +G(y, Ty, Ty)].

By Example 3.2 and Theorem 4.1 for α + 3β + 6γ < 1, corrected
form of Theorem 2.9 follows. �
Remark 4.3. The condition α + 3β + 4γ < 1 in Theorem 2.9 is
not correct because there exists a written mistake in the proof of this
theorem ([38], page 65, line 7 from top).

Remark 4.4. 1) By Theorem 4.1 and Example 3.3 for b = c =
d = e = 0, we obtain a similar result with the theorem of Avramescu,
Markin, Nadler [3], [10], [17].

2) By Theorem 4.1 and Example 3.3 for d = e = 0, we obtain
G - metric space a similar result with the result for Reich type, see [28]
- [30] and [34], [35].
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3) By Theorem 4.1 and Examples 3.4 - 3.9 we obtain new par-
ticular results in G - metric spaces.
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