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Abstract. In this article we will highlight the relation between
attack graphs, cross associations and biclique partitions. The attack
graphs are used to evaluate network security risk. Also, we will give an
efficient recognition algorithm for a maximal subclass of cographs (P4-
free graphs), we will give the necessary and sufficient conditions for
the existence of a biclique partition and we will determine some com-
binatorial optimzation numbers for some classes of graphs (maximum
subclasses for P4-free) in efficient time. Also, we will determine max-
imum bicliques for a maximal subclass of cographs and we give some
applications of minimal unbreakable graphs in optimization problems
and in chemistry. Bicliques (complete bipartite graphs) of graphs have
been studied extensively, partially motivated by the large number of
applications.
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1. Introduction.

The maximum biclique problem is NP-hard for general graphs [25]
and problem of finding a maximum biclique in a bipartite graphs is
solvabil in polynomial tyme [25]. The applications of bicliques there
is in automata and language theory, graph compression, artificial in-
telligence and biology [1]. In [3] we present a novel technique of block
cipher cryptanalysis with bicliques.

In [13], Phillips and Swiler proposed a method that used attack
graph to evaluate network security risk. There are two approaches of
building attack graph: graph-theory-based attack graph assessment
and model-based attack graph assessment. Model checking was firstly
used to analyze whether a given goal state is reachable from the initial
state [1,15,16,17,18,19]. A more compact representation of the attack
graph was proposed based on the graph theory [10]. One other ap-
proach employs cross associations on adjacency matrices to facilitate
analysis of attacks [17]. Cross associations are useful in many areas
of information security and in other disciplines as: data mining, e-
commerce, information retrieval and network analysis. The problem of
finding cross associations (a cross association is a grouping of the rows
and columns of a matrix) is closely related to the problem of finding
biclique partitions. Peeters [14] has shown that the problem of finding
a biclique in G with the maximum number of edges is NP-complete.
Hochbaum [10] describes approximation algorithms for several prob-
lems involving bicliques. Szeider [21] defines a total biclique cover as
a collection of disjoint bicliques such that every vertex in the set is in
one of the bicliques and shows that the problem of determining if a
bipartite graph has a total biclique cover is NP -complete.

Given a graph and an integer k, the biclique cover problem ques-
tions whether the edge-set of the graph can be covered with at most
k bicliques; the biclique partition problem is defined similarly with
the additional condition that the bicliques are required to be mutually
edge-disjoint. The biclique vertex-cover problem questions whether
the vertex-set of the given graph can be covered with at most k bi-
cliques, the biclique vertex-partition problem is defined similarly with
the additional condition that the bicliques are required to be mutually
vertex-disjoint. All these four problems are known to beNP -complete.

The content of the paper is organized as follows. In Preliminaries,
we give the usual terminology in graph theory. In Section 3 we de-
termine a (maximal) biclique of cograph, we give a characterization
of {P4, 2P3}-free graphs ({P4, 2P3}-free graphs are maximal subclasses
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of P4-free graphs), we construct a biclique partition, a the recognition
algorithm for {P4, 2P3}-free graphs and we determine some combina-
torial optimization numbers in efficient time.

2. Preliminaries.

Throughout this paper, G=(V,E) is a connected, finite and undi-
rected graph ([4]), without loops and multiple edges, having V=V(G)
as the vertex set and E=E(G) as the set of edges. G (co-G) is the
complement of G. If U⊆V, by G(U) ([U ]G or [U]) we denote the sub-
graph of G induced by U. By G-X we mean the subgraph G(V-X),
whenever X⊆V, but we simply write G-v, when X={v}. If e=xy is
an edge of a graph G, then x and y are adjacent, while x and e are
incident, as are y and e. If xy∈E, we also use x∼y, and x ̸∼y whenever
x, y are not adjacent in G. If A, B⊆V are disjoint and ab∈E for every
a∈A and b∈B, we say that A, B are totally adjacent and we denote
by A∼B, while by A̸∼B we mean that no edge of G joins some vertex
of A to a vertex from B and, in this case, we say A and B are totally
non-adjacent.

The neighborhood of the vertex v∈V is the set NG(v)={u∈V:uv∈E},
while NG[v]=NG(v)∪{v}; we denote N(v) and N[v], when G appears
clearly from the context. The degree of v in G is dG(v)= |NG(v)|. The
neighborhood of the vertex v in the complement of G will be denoted
by N(v).

The neighborhood of S⊆V is the set N(S) = ∪v∈SN(v)-S and
N[S]=S∪N(S). A graph is complete if every pair of distinct vertices
is adjacent.

By Pn, Cn, Kn we mean a chordless path on n≥3 vertices, a chord-
less cycle on n≥3 vertices, and a complete graph on n≥1 vertices,
respectively.

Let F denote a family of graphs. A graph G is called F-free if none
of its subgraphs are in F.

The Zykov sum of the graphs G1, G2 is the graph G=G1+G2 having:
V(G) =V(G1)∪V(G2), E(G) =E(G1)∪E(G2)∪{uv:u∈V(G1),v∈V(G2)}.

3. The results

We remind a characterization of the weak decomposition of a graph.
Definition 1. ([22], [23]) A set A⊆V(G) is called a weak set of the

graph G if NG(A)̸=V(G)-A and G(A) is connected. If A is a weak
set, maximal with respect to set inclusion, then G(A) is called a weak
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component. For simplicity, the weak component G(A) will be denoted
with A.

Definition 2. ([22], [23]) Let G=(V,E) be a connected and non-
complete graph. If A is a weak set, then the partition {A,N(A),V-
A∪N(A)} is called a weak decomposition of G with respect to A.

The name of weak component is justified by the following result.
Theorem 1.([22], [23]) Every connected and non-complete

graph G=(V,E) admits a weak component A such that G(V-
A)=G(N(A))+G(N(A)).

Theorem 2.([7], [8]) Let G=(V,E) be a connected and non-
complete graph and A ⊆ V . Then A is a weak component of G if
and only if G(A) is connected and N(A) ∼N(A).

The next result, that follows from Theorem 2, ensures the existence
of a weak decomposition in a connected and non-complete graph.

Corollary 1. If G=(V,E) is a connected and non-complete graph,
then V admits a weak decomposition (A,B,C), such that G(A) is a
weak component and G(V-A)=G(B)+G(C).

Theorem 2 provides an O(n+m) algorithm for building a weak de-
composition for a non-complete and connected graph.

Algorithm for the weak decomposition of a graph ([22])
Input : A connected graph with at least two nonadjacent vertices,

G = (V,E).
Output : A partition V = (A,N,R) such that G(A) is connected,

N = N(A), A ̸∼R=N(A).
Begin
A:= any set of vertices such that A ∪ N(A) ̸= V N:= N(A)
R := V-A ∪ N(A)
While (∃n∈N, ∃r∈R such that nr/∈E) do
Begin
A:= A ∪{n}
N:= (N-{n})∪(N(n)∩R)
R:=R-(N(n) ∩R)
end
end
A biclique B of G is a maximal biclique of G if B is not properly

contained in another biclique of G.

A graph G=(V,E) is called unbreakable if it has at least three ver-
tices and neither G nor G has a star cutset. The subset A ⊂ V is
called a cutset if G-A is not connected. If, in addition, some v ∈ A is
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adjacent to every vertex in A-{v}, then A is called a star cutset and v
is called the center of A.

A graph G = (V,E) with at least three vertices is confidentially con-
nected if for any three distinct vertices v,x,y ∈ V, there exists a path
Pxy in G such that NG[v]∩V(Pxy) ⊆ {x, y}.

Let G=(V,E) be a connected, noncomplete graph and (A,N,R) a
weak decomposition with G(A) a weak component and a ∈ A such that
{a}∼ N.

There exists a ∈ A such that {a} ∼ N ?
Two answers: one with the confidentially connected graphs (I) and

other with the cographs (II).
(I)
A connected and non-complete graph G = (V,E) is unbreakable if

and only if {NG(v)|v∈V} is the family of the weakly components of G,
while {NG(v)|v∈V} is the family of the weakly components of G.

In (6, [22]), shows that a graph G is unbreakable if G and G are
confidentially connected.

G is minimal unbreakable ([22], [24]), if and only if G is Ck or Ck

for some k =5.

The applications of minimal unbreakable graphs
We give some applications of minimal unbreakable graphs in opti-

mization problems and in chemistry.
The following centrality indices are defined in (12) : The eccentricity

of a vertex u is eG(u) = max{d(u,v)|v ∈V}. The radius is r(G) =
min{eG(u)|u∈V}. The center of a graph G is C(G) ={u∈V|r(G) =
eG(u)}.

We denote the sum of the distances from a vertex u to any
other vertex in a graph G = (V,E) as the total distance s(u) =∑

v∈V d(u, v). If the minimum total distance of G is denoted by
s(G) = min{s(u)|u ∈V}, the median M(G) of G is given by M(G) =
{u ∈ V |s(G) = s(u)}.

The distance-counting polynomial was introduced in (11) as:
H(G, x) =

∑
k d(G, k)xk, with d(G, 0) = |V (G)| and d(G, 1) = |E(G)|,

where d(G, k) is the number of pairs of vertices lying at distance k to
each other. This polynomial was called Wiener polynomial (see 20).
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If G=(V,E) is a minimal unbreakable graph, then the center and the
median are equal to V.

If G=(V,E) is a minimal unbreakable graph, then the Wiener poly-
nomial is a polynomial with degree 2 if G= Cn and with degree n/2 if
G = Cn.

(II)
In ([22]) it shows that G is P4-free if and only if 1) A ∼ N ∼

R and 2) G(A), G(N) and G(R) are P4-free, for (A,N,R) a weak
decomposition, with G(A) the weak component.

We define the graph Ha (*) as follows:
V(Ha)=V-{a};
E(Ha)=

{
xy

∣∣xy ∈ E, x, y ∈ NG(A)(a)
}

∪
{
xy

∣∣xy ∈ E, x, y ∈ NG(A)(a)
}

∪{xy |xy ∈ E, x, y ∈ N }
∪ {xy |xy ∈ E, x, y ∈ R}∪

{
xy

∣∣xy ∈ E, x ∈ NG(A)(a), y ∈ N
}

∪
{
xy

∣∣xy /∈ E, x ∈ NG(A)(a), y ∈ NG(A)(a) ∪R
}
.

Theorem 3. Let G=(V,E) be a connected, noncomplete graph. Let
G be cograph and (A,N,R) a weak decomposition with G(A) a weak
component. Then V(B) a subset of V is a (maximal) biclique of G if
and only if V(B)-{a} is a (maximal) stable of Ha.

Proof. Let B be a (maximal) biclique of G and a ∈ A∩V (B). Then
V (B) ⊆ {a} ∪ NG(A)(a) ∪ NG(A)(a) ∪ R in G, where the independent
sets X and Y of the biclique B satisfy X ⊆ NG(A)(v) and Y ⊆ {a} ∪
NG(A)(a)∪R. Since B is a biclique and by the construction of Ha, we
obtain that V (B)− {a} is an independent set.

If V (B′) is a (maximal) independent set of Ha, for some a ∈ A ,
then V (B′)∩N is an independent set of G

(
NG(A)(a) ∪N

)
and V (B′)∩(

NG(A)(a) ∪R
)
is an independent set of G(V (B′) ∩

(
NG(A)(a) ∪R

)
).

Hence B′ is a biclique of G (V − {a}) = G
(
NG(A)(a)

)
∪N∪NG(A)(a)∪

R) and V (B′) ∪ {a}is a biclique of G. Finally, due to the correspon-
dence between bicliques and independent sets, this also holds for max-
imality by inclusion of vertices.

Since G(A) is connected and P4-free, there A
′ ⊂ A such that [A′]G(A)

is connected components in G(A). Instead of a, in the above theorem
(theorem 3), take A′.

So HA′(**):
V(HA′)=V-A’;
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E(HA′)=
{
xy

∣∣xy ∈ E, x, y ∈ NG(A)(A
′)
}

∪
{
xy

∣∣xy ∈ E, x, y ∈ NG(A)(A
′)
}

∪{xy |xy ∈ E, x, y ∈ N } ∪ {xy |xy ∈ E, x, y ∈ R}

∪
{
xy

∣∣xy ∈ E, x ∈ NG(A)(A
′), y ∈ N

}
∪
{
xy

∣∣xy /∈ E, x ∈ NG(A)(A
′), y ∈ R

}
.

Remark 1. Let G=(V,E) be a connected, noncomplete graph. Let
G be cograph and (A,N,R) a weak decomposition with G(A) a weak
component. Then V(B) a subset of V is a (maximal) biclique of G if
and only if V(B)-A’ is a (maximal) stable of HA′ and

α(HA′) = α(HA′(NG(A)(A
′))) +

+max
{
α(HA′(NG(A)(A

′))), α(HA′(N)) + α(HA′(R))
}
,

(ie: stability number of HA′ is equal with stability number of non-
neighbors of A’ (in G) + maximum of stability number of neighbors of
A’ (in G) and stability number of N (in G) + stability number of R
(in G).)

We give a characterization of a maximal subclas of P4-free graphs,
we construct a biclique partition, a the recognition algorithm for
{P4, 2P3}-free graphs.

A biclique cover of a graph G is a collection of bicliques of G such
that each edge of G is in at least one of the bicliques.

A biclique partition of a graph G is a collection of bicliques of G
such that each edge of G is in exactly one of the bicliques.
{P4, 2P3}-free graphs are maximal subclasses of P4-free graphs.
Theorem 4. Let G=(V,E) be connected with at least two nonadja-

cent vertices and (A,N,R) a weak decomposition with A weak compo-
nent. G is {P4, 2P3}-free graph if and only if:

1) A∼N∼R
2) G(A ∪N),G(N ∪R) are {P4, 2P3}-free graphs.
Proof. If G is a {P4, 2P3}-free graph then G(A ∪ N), G(N ∪ R)

are {P4, 2P3}-free graphs and A∼N∼R. We suppose that 1) and 2)
hold. Since A∼N∼R and G(A), G(N), G(R) are P4 -free graphs it
follows that G is P4 -free. If G ⊇ 2P3 then, because A∼N∼R and
A ̸∼ R it follows that either 2P3 ⊆ G(A ∪N) or 2P3 ⊆ G(N ∪ R), in
contradiction with 2).
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Theorem 3 provides the following recognition algorithm for
{P4, 2P3}-free graphs.

Algorithm 1
The recognition algorithm for {P4, 2P3}-free graphs
Input : A connected, non-complete graph G = (V,E).
Output : An answer to the question: ”Is G {P4, 2P3}-free”?
Begin
1. LG ← {G}
2. while LG ̸= ϕ do
3. extracts an element H from LG

4. determine the weak decomposition (A,N,R) with [A]H weak
component

5. if (∃a ∈ A,∃n ∈ N such that an /∈ E) then
G is not {P4, 2P3}-free else
6. introduce in LG subgraphs [V −R], [V −A] incomplete and of at

least order 4
7. Return: G is {P4, 2P3}-free
8. end
EndRecognition

The complexity of the algorithm 1
Because step 4 takes O(n+m) time, and the other steps of the cycle

while take less time, it
results that the algorithm is executed in an overall time of O(n(n+

m)).
Theorem 5. Let G=(V,E) a connected and non-complete graph.

Let (A,N,R) be a weak decomposition, with G(A) as weak component.
If G=(V,E) is {P4, 2P3}-free and k= min {|N |, |A|+|R|} then there
is a biclique partition of length 2k of a graph G’=(V∪V’, E), where V’
is a copy of V, and E’={x y’, x’ y |xy ∈E }.

Proof. Because G = (V,E) is {P4, 2P3}-free then either N or A
∪R is a dominating set for G. Let k = min{|N |, |A|+|R|} be. Let
D = {v1, ..., vk} be a dominating set for G. Clearly D can be either
N or A ∪ R, let D = N . We construct G′ = (V ∪ V ′, E) from G as
follows:

V ′ = {v′|v ∈ V };
E ′ = {xy′, x′y|xy ∈ E}.
Note that G′ is a bipartite graph, since all edges connect a vertex

in V with some vertex in V ′. Let f : V → V ′ by f(v) = v′,∀v ∈ V
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function one on one. For ∀X ⊆ V,X ′ = {f(x)|x ∈ X} = f(X). Let
D∗ = D ∪D′, where D′ = f(D).

Let X = A ∪R.
For i = 1 to k − 1
let wi ∈ X;
X → X − {wi}.
wk → A ∪R− ∪k−1

i=1 {wi}.
Let Ni = {wi}, i = 1, ..., k. Let N ′

i = f(N i), i = 1, ..., k.
Clearly, V = ∪k

i=1 ({vi} ∪Ni) and |Ni| ≥ 1, i = 1, ..., k. V is parti-
tioned by the sets ({vi} ∪Ni) for all wi ∈ D = N, i = 1, ..., k.

For each v ∈ D∗ we define N ′(v) as follows:
if v ∈ D then N ′(wi) = f(Ni), i = 1, ..., k;
if v ∈ D′ then N ′(w

′
i) = f−1(N

′
i ), i = 1, ..., k.

D∗ is a dominating set for G′ . Because, for all v ∈ D ∪ D′ (that
is v is v1, · · · , vk,v

′
1, · · · , v

′

k, v is adjacent to every vertex in N ′(v) it
follows that the sets {v} ∪ N ′(v) form bicliques. For v ∈ V ′, the sets
N ′(v) are disjoint since the sets N(v) are disjoint for v ∈ V . Because
D∗ is a dominating set for G′, every vertex in G′ will appear in one of
these sets. Since |D ∗ | = 2k, the sets {v} ∪N ′(v) for all v ∈ D∗ form
a biclique partition of G′ of size 2k.

Corollary 2. If G is a connected graph, {P4, 2P3}-free and (A,N,R)
a weak decomposition with A the weak component then the following
holds:

α(G)=max{α(G(N)), α(G(A)) + α(G(R))}
ω(G)=ω(G(N))+max{ω(G(A)), ωG((R))}.
We notice that the determination of α and ω takes O(n(n + m))

time.

4. Conclusions

In this paper we determine a (maximal) biclique of cograph, we
give a a characterization of are maximal subclasses of P4-free graphs,
we construct a biclique partition, a the recognition algorithm for
{P4, 2P3}-free graphs.

Acknowledgment. The research (of Mihai Talmaciu) was sup-
ported by the project entitled Structural properties and algorithmic
complexity of graph theory problems, ”AR-FRBCF”, 2016-2017, a
Bilateral Cooperation Research Project, involving Romanian Acad-
emy (”Vasile Alecsandri” University of Bacau is partner), National
Academy of Sciences of Belarus, Belarusian Republican Foundation
for Fundamental Research.



56 MIHAI TALMACIU

References

[1] J. Amilhastre, M.C. Vilarem, P. Janssen, Complexity of minimum biclique
cover and minimum biclique decomposition for bipartite dominofree graphs.
Discrete Appl. Math. 86 (1998), 125–144.

[2] Ammann, P., Pamuls, J., Ritchev, R. (1985). A Host Based Approach to Net-
work Attack Chaining Analysis. Proceedings of the 21st Annual Computer
Security Applications Conference. Tucson, Arizona, USA. IEEE Computer So-
ciety Press, pp. 72-84, 2005.

[3] Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger, Biclique
Cryptanalysis of the Full AE, Available at http://eprint.iacr.org/2011/449.pdf.

[4] Berge C. Graphs. Nort-Holland, Amsterdam.
[5] Bui, T.N., Jones, C., ” A Heuristic for Reducing Full-In in Sparse Matrix

Factorization” ,Proc. of the Sixth SIAM Conference on Parallel Processing for
Scientific Computing (1993) 445-452.

[6] V. Chvatal and N. Sbihi, Recognizing claw-free Berge graphs, J. Combinatorial
Theory, Ser. B, 44 (1988), 154-176.

[7] Croitoru, C., Olaru, E., Talmaciu, M. (2000).Confidentially connected graphs.
The annals of the University ”Dunarea de Jos” of Galaţi. Proceedings of the
international conference ”The risk in contemporany economy”,Supplement to
Tome XVIII (XXII), 17-20.

[8] Croitoru, C., Talmaciu, M. (2000). On Confidentially connected graphs. Bul.
Stiint. Univ. Baia Mare, Ser B, Matematica - Informatica, Vol.XVI, Nr. 1,
13-16.

[9] P. L. Hammer and B. Simeone, The splitance of a graph, Combinatorica 1
(1981), 275-284.

[10] Hochbaum, D. (1998). Approximating Clique and Biclique Problems. J. Al-
gorithms. 29(1). Academic Press. Duluth, MN. pages 174-200.

[11] H.Hosoya, On some couting polynomials in chemistry. Discrete Appl.Math.
19 (1988), 239-257.

[12] D. Koschutzki, K. Lehmann, L. Peeters, S. Richter, D. Tenfelde-Podehl and O.
Zlotowski, ”Centrality Indices”, Lecture Notes in Computer Sciences, Springer
Berlin / Heidelberg, Network Analysis, 16-61, 2005.

[13] Phillps, C., Swiler, L. P. (1998). A Graph-based System for Network Vulnera-
bility Analysis. Proceedings of the 1998 workshop on new security paradigms.
VA, USA: ACM Press, pp. 71-79.

[14] Peeters, R. (2003). The Maximum Edge Biclique Problem is NP-complete.
Discrete Applied Mathematics. 131, Elsevier B.V. pages 651-654

[15] Ramakrishman, C., Skar, R. (1998). Model-based Vulnerability Analysis of
Computer Systems. Proceedings of the 2nd International Workshop on Veri-
fication, Pisa, Italy. Model Checking and Abstract Interpretation Press. pp.
1-81.

[16] Ritchey, R., Ammann, P. (2001). Using Model C & Checking to Analyze
Network Vulnerabilities. Proceedings of the 2000 IEEE Symposium on Security
and Privacy. Berkeley,California, USA. IEEE Computer Society Press. pp. 156-
165.



ON BICLIQUES, BICLIQUE PARTITIONS... 57

[17] Sheyner, O. (2004). Scenario Graphs and Attack Graphs: PhD thesis, School
of Computer Science. Carnegie Mellon University, Pittsburgh, USA.

[18] Sheyner, O., Haines, J., Jha, S. (2002). Automated Generation and Analysis
of Attack Graphs. Proceedings of the 2002 IEEE Symposium on Security and
Privacy, Oakland,California, USA. IEEE Computer Society Press, pp. 254-265.

[19] Sheyner, Jha S., Wing J, O. (2002). Two Formal Analyses of Attack Graphs.
Proceedings of the 15th Computer Security Foundations Workshop. placeCity-
Beijing, country-regionChina. PlaceNameplaceChinese PlaceTypeAcademy of
Sciences Press. pp. 49-63.

[20] D. Stevanovic, Hosoya polynomial of composite graphs. Discrete Math., 235
(2001), 237-244.

[21] Szeider, S. (2005). Generalizations of Matched CNF Formulas. Annals
of Mathematics and Artificial Intelligence. vol. 43, No. 1-4, pp. 223-238.
DOI: 10.1007/s10472-005-0432-6.

[22] Talmaciu, M. (2002). Decomposition Problems in the Graph Theory with
Applications in Combinatorial Optimization. Ph. D. Thesis, University ”Al. I.
Cuza” Iasi, Romania.

[23] Talmaciu, M., Nechita, E. (2007). Recognition Algorithm for diamond-free
graphs. Informatica. Vol.18, No. 3, 457-462.

[24] Mihai Talmaciu - The normal graph conjecture is true for minimal unbreakable
graphs, Scientific Studies and Research, Series Mathematics and Informatics,
Proceedings of Gheorghe Vranceanu” International Conference on Mathematics
and Informatics ICMI 2, Bacău, 445-454, 2009.
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