"Vasile Alecsandri" University of Bacău
Faculty of Sciences
Scientific Studies and Research
Series Mathematics and Informatics
Vol. 26(2016), No. 2, 95-114

$f g s^{*}$ - CLOSED SETS AND $f g s^{*}$-CONTINUOUS FUNCTIONS IN FUZZY TOPOLOGICAL SPACES

ANJANA BHATTACHARYYA

Abstract

In this paper, we introduce and study a new type of fuzzy generalized closed set and fuzzy generalized continuity in a fuzzy topological space. Also it is shown that fuzzy compactness and fuzzy normality remain invariant under this newly defined continuous function. Afterwards, a new type of fuzzy closure operator is introduced which is an idempotent operator which is distributive over union but not over intersection. Lastly, we introduce and characterize the notion of $f g s^{*}$-closed (resp., $f g s^{*}$-open) function which is weaker than that of $f g s$-closed (resp. fgs-open) function [8].

1. Introduction and Preliminaries

After the introduction of fuzzy generalized closed sets in [2], several types of fuzzy generalized forms of closed sets have been introduced and studied in $[3,4,5,6,7,8]$. Here we introduce the class of fgs^{*} closed sets which lies between the class of fuzzy semiclosed sets [1] and the class of $f g s$-closed sets [3].

Keywords: $f s^{*} g$-closed set, $f g s^{*}$-closed set, $f s^{*} g$-continuous function, $f g s^{*}$-continuous function, $f g s^{*}$-neighbourhood of a fuzzy point (fuzzy set), $f g s^{*}$-closed (open) function.
2010 Mathematics Subject Classifications: 54A40, 54C99.

In Section 2, we define a type of fuzzy space and in Section 3, we show that in this space fuzzy compactness and fuzzy normality remain invariant under fgs^{*}-continuous function.
Throughout this paper, by (X, τ) or simply by X we shall mean a fuzzy topological space (fts, for short) in the sense of Chang [10]. A fuzzy set [15] A in an fts X, denoted by $A \in I^{X}$, is defined to be a mapping from a non-empty set X into the closed interval $I=[0,1]$. The support [15] of a fuzzy set A, denoted by $\operatorname{supp} A$ and is defined by $\operatorname{supp} A=\{x \in X: A(x) \neq 0\}$. The fuzzy set with the singleton support $\{x\} \subseteq X$ and the value $t(0<t \leq 1)$ will be denoted by $x_{t} .0_{X}$ and 1_{X} are the constant fuzzy sets taking values 0 and 1 respectively in X. The complement [15] of a fuzzy set A in X is denoted by $1_{X} \backslash A$ and is defined by $\left(1_{X} \backslash A\right)(x)=1-A(x)$, for each $x \in X$. For any two fuzzy sets A, B in $X, A \leq B$ means $A(x) \leq B(x)$, for all $x \in X$ [15] while $A q B$ means A is quasi-coincident (q-coincident, for short) [12] with B, i.e., there exists $x \in X$ such that $A(x)+B(x)>1$. The negation of these two statements will be denoted by $A \not \leq B$ and $A q B$ respectively. A fuzzy set A in X is called a fuzzy neighbourhood (nbd, for short) [12] of a fuzzy point (resp., fuzzy set) x_{t} (resp., B) if there exists a fuzzy open set G in X such that $x_{t} \in G \leq A$ (resp., $B \leq G \leq A$). For a fuzzy set $A, c l A$ and $\operatorname{int} A$ will stand for fuzzy closure [10] and fuzzy interior [10] respectively. A fuzzy set A in X is called fuzzy regular open [1] (resp., fuzzy semiopen [1], fuzzy α open [9]) if $A=\operatorname{intcl} A$ (resp., $A \leq \operatorname{clint} A, A \leq \operatorname{intclint} A$). The complement of a fuzzy semiopen (resp., fuzzy α-open) set is called fuzzy semiclosed [1] (resp., fuzzy α-closed [9]). The intersection of all fuzzy semiclosed (resp., fuzzy α-closed) sets containing a fuzzy set A in X is called fuzzy semiclosure (resp., fuzzy α-closure) of A, to be denoted by scl A [1] (resp., $\alpha c l A[9]$). The union of all fuzzy semiopen sets contained in a fuzzy set A is called fuzzy semi interior of A, denoted by $\operatorname{sint} A$ [1]. The collection of all fuzzy semiopen sets in X is denoted by $F S O(X)$ and that of fuzzy semiclosed sets in X is denoted by $F S C(X)$. A fuzzy set A is called $f Q$-set if intcl $A=\operatorname{clint} A$.

2. $f g s^{*}$-Closed Sets : Some Properties

We first recall some definitions from $[2,3,5]$ for ease of reference.
Definition 2.1 [2]. A fuzzy set A in an fts (X, τ) is called fuzzy generalized closed ($f g$-closed, for short) [2] if $c l A \leq U$ whenever $A \leq U \in \tau$.

The complement of an $f g$-closed set is called an $f g$-open set.
Definition 2.2. A fuzzy set A in an $\mathrm{fts}(X, \tau)$ is called (i) fuzzy semi generalized closed (f sg-closed, for short) [3] if $\operatorname{scl} A \leq U$ whenever $A \leq U \in F S O(X)$,
(ii) fuzzy generalized semiclosed (fgs-closed, for short) [3] if scl $A \leq U$ whenever $A \leq U \in \tau$,
(iii) fuzzy α-generalized closed ($f \alpha g$-closed, for short) [3] if $\alpha c l A \leq U$ whenever $A \leq U \in \tau$,
(iv) fuzzy strongly generalized closed ($f s^{*} g$-closed, for short) [5] if cl $A \leq U$ whenever $A \leq U$ and U is $f g$-open in X.

The complements of the above mentioned closed sets are called their respective open sets.

Definition 2.3. A fuzzy set A in an $\mathrm{fts}(X, \tau)$ is called fuzzy generalized strongly closed ($f g s^{*}$-closed, for short) if $s c l A \leq U$ whenever $A \leq U$ where U is $f g$-open in X.

The complement of an $f g s^{*}$-closed set is called an $f g s^{*}$-open set.
Remark 2.4 (i). Every fuzzy semiclosed set is $f g s^{*}$-closed set, but not conversely, as it can be seen from Example 2.5.
(ii). Every fgs^{*}-closed set is fgs -closed, but not conversely, as it can be seen from Example 2.6.

Example 2.5. There exists an $f g s^{*}$-closed set which is not fuzzy semiclosed.
Let $X=\{a, b\}, \tau=\left\{0_{X}, 1_{X}, A, B\right\}$ where $A(a)=0.4, A(b)=$ $0.55, B(a)=0.5, B(b)=0.6$. Then (X, τ) is an fts. Here $\operatorname{FSO}(X)=\left\{0_{X}, 1_{X}, B, U\right\}$ where $U \geq A$ and that of $F S C(X)=\left\{0_{X}, 1_{X}, 1_{X} \backslash B, 1_{X} \backslash U\right\}$ where $1_{X} \backslash U \leq 1_{X} \backslash A$. Consider the fuzzy set D defined by $D(a)=0.6, D(b)=0.5$. Clearly D is not fuzzy semiopen. Again any non-zero fuzzy set $V \leq A$ is not $f g$-closed. So other than $1_{X}, 1_{X} \backslash V \geq 1_{X} \backslash A$ is not $f g$-open. So 1_{X} is the only $f g$-open set in X such that $D<1_{X}$ and so $s c l D \leq 1_{X}$, therefore D is $f g s^{*}$-closed.

Example 2.6. There exists an $f g s$-closed set which is not fgs*-closed.
Consider Example 2.5 and consider the fuzzy set C defined by $C(a)=0.5, C(b)=0.8$. Now $C<1_{X}(\in \tau)$ only and so
sclC $\leq 1_{X}$, therefore C is fgs-closed. Now $1_{X} \backslash C<B \in \tau$ and $\operatorname{cl}\left(1_{X} \backslash C\right)=1_{X} \backslash B<B$, hence $1_{X} \backslash C$ is $f g$-closed, i.e., C is $f g$-open in (X, τ). Now $C \leq C$, but scl $C=1_{X} \not \leq C$, therefore C is not $f g s^{*}$-closed.

Remark 2.7. Every $f s^{*} g$-closed set is $f g s^{*}$-closed, but not conversely, as follows from the next example.

Example 2.8. There exists an $f g s^{*}$-closed set which is not $f s^{*} g$-closed.
Consider Example 2.5. Consider the fuzzy set E defined by $E(a)=E(b)=0.4$. Clearly E is $f g$-open and so $E \leq E, s c l E=E \leq E$, hence E is $f g s^{*}$-closed. But $c l E=1_{X} \backslash B \not \leq E$ implies E is not $f s^{*} g$-closed.

Remark 2.9 (i). $f s g$-closedness and $f g s^{*}$-closedness are independent notions, as follows from Example 2.10 and Example 2.11.
(ii) $f \alpha g$-closedness and $f g s^{*}$-closedness are independent notions, as follows from Example 2.12 and Example 2.13.

Example 2.10. There exists an $f s g$-closed set which is not fgs*-closed.
Let $X=\{a, b\}, \tau=\left\{0_{X}, 1_{X}, A\right\}$ where $A(a)=0.5, A(b)=0.4$. Then (X, τ) is an fts. Then $F S O(X)=\left\{0_{X}, 1_{X}, U\right\}$ where $A \leq U \leq 1_{X} \backslash A$ and $F S C(X)=\left\{0_{X}, 1_{X}, 1_{X} \backslash U\right\}$ where $A \leq 1_{X} \backslash U \leq 1_{X} \backslash A$. The collection of all $f g$-closed sets is $\left\{0_{X}, 1_{X}, V\right\}$ where $V>A$ and that of $f g$-open sets is $\left\{0_{X}, 1_{X}, 1_{X} \backslash V\right\}$, where $1_{X} \backslash V<1_{X} \backslash A$. Consider the fuzzy set B defined by $B(a)=0.5, B(b)=0.3$. Then $B \leq B$ where B is $f g$-open in X and $s c l B=A \not 又 B$. Hence B is not $f g s^{*}$-closed in X. But $B \leq A$ where A is fuzzy semiopen in X, hence $\operatorname{scl} B=A \leq A$. Therefore B is $f s g$-closed in X.

Example 2.11. There exists an $f g s^{*}$-closed set which is not fsg-closed.
Consider Example 2.5. Here D is $f s^{*}$-closed. Now $D<U$, where U being fuzzy semiopen in X defined by $U(a)=0.6, U(b)=0.55$. Then $s c l D=1_{X} \not \subset U$. Therefore, D is not $f s g$-closed.

Example 2.12. There exists an $f \alpha g$-closed set which is not fgs*-closed.

Consider Example 2.6. Here C is not $f g s^{*}$-closed. But 1_{X} is the only fuzzy open set in X such that $C<1_{X}$ and so $\alpha c l C \leq 1_{X}$. Hence C is fog-closed.

Example 2.13. There exists an $f g s^{*}$-closed set which is not fog-closed.
Consider Example 2.10 and the fuzzy set A. Then A is $f g$-open in X with $A \leq A$ and $s c l A=A \leq A$ implies A is $f g s^{*}$-closed set. But $A \leq A \in \tau, \alpha c l A=1_{X} \backslash A \not \leq A$ and so A is not $f \alpha g$-closed. Infact, the collection of all fuzzy α-open sets in X is $\left\{0_{X}, 1_{X}, A\right\}$ and that of fuzzy α-closed sets is $\left\{0_{X}, 1_{X}, 1_{X} \backslash A\right\}$.

Remark 2.14 (i). Since for any two fuzzy sets A, B in an fts $(X, \tau), \operatorname{scl}(A \bigvee B)=s c l A \bigvee \operatorname{scl} B$, it is clear that union of any two $f g s^{*}$-closed sets is $f g s^{*}$-closed. So intersection of any two $f g s^{*}$-open sets is $f g s^{*}$-open.
(ii) Intersection of two $f g s^{*}$-closed sets need not be $f g s^{*}$-closed as it can be seen from the following example.

Example 2.15. Consider Example 2.10. Let a fuzzy set C be defined by $C(a)=0.4, C(b)=0.7$. Consider two fuzzy sets A and C. It is shown in Example 2.13 that A is $f g s^{*}$-closed. Now 1_{X} is the only $f g$-open set in X such that $C<1_{X}$ and so scl $C<1_{X}$ implies C is $f g s^{*}$-closed in X. But $D=A \bigwedge C$ defined by $D(a)=D(b)=0.4$ is not $f g s^{*}$-closed in X. Indeed, D is $f g$-open set in X with $D \leq D$, but $s c l D=A \not \leq D$ and hence D is not $f g s^{*}$-closed.

Lemma 2.16. Let $B \in I^{X}$ be an fgs*-closed set in X. Then there does not exist an $f g$-closed set V such that $V q B$ and $V q s c l B$.

Proof. Assume that V is an $f g$-closed set such that $V q B$. Then $B \leq 1_{X} \backslash V$ where $1_{X} \backslash V$ is $f g$-open set in X. As B is $f g s^{*}$-closed, $s c l B \leq 1_{X} \backslash V$, hence $V q s c l B$.

Lemma 2.17. Let (X, τ) be an fts. If $B \in I^{X}$ is $f g$-open and fgs*-closed in X, then B is fuzzy semiclosed.

Proof. $B \leq B$ implies $s c l B \leq B$ (as B is $f g s^{*}$-closed). which shows that B is fuzzy semiclosed.

Corollary 2.18. If $B \in I^{X}$ is fuzzy open and $f g s^{*}$-closed, then B is fuzzy semiclosed.

Lemma 2.19. Let $B \in I^{X}$ in an fts (X, τ). Then the following statements are equivalent:
(i) B is fuzzy regular open,
(ii) B is fuzzy open and $f g s^{*}$-closed.

Proof (i) \Rightarrow (ii). B is fuzzy regular open implies B is fuzzy open. Let H be an $f g$-open set in X with $B \leq H$. Then $B \bigvee$ intcl $B=B \leq H$, hence $\operatorname{scl} B \leq H$. Therefore B is $f g s^{*}$-closed.
(ii) \Rightarrow (i). Let $B \in \tau$ and $f g s^{*}$-closed in X. Then B is $f g$-open in X with $B \leq B$. By hypothesis, scl $B \leq B$ and so $B \bigvee$ intcl $B \leq B$ implies intcl $B \leq B$. Again as B is fuzzy open, $B \leq \operatorname{intcl} B$, hence $B=\operatorname{intcl} B$. Therefore B is fuzzy regular open in X.

Theorem 2.20. Let $B \in I^{X}$ in an fts (X, τ). Then the following statements are equivalent :
(i) $B \in \tau$ and $B \in \tau^{c}$,
(ii) $B \in \tau, B$ is an $f Q$-set and an $f g s^{*}$-closed set.

Proof (i) \Rightarrow (ii). By (i), $B=\operatorname{int} B, B=c l B$ and as a result $B=\operatorname{intcl} B=\operatorname{clint} B$, therefore B is an $f Q$-set. Let H be an $f g$-open set in X such that $B \leq H$. Then $c l B=B \leq H$, therefore $s c l B \leq c l B \leq H$. It follows that B is $f g s^{*}$-closed.
(ii) $\Rightarrow(\mathrm{i})$. By Lemma 2.19 (ii) $\Rightarrow(\mathrm{i}), B$ is fuzzy regular open. Again B is an $f Q$-set implies $\operatorname{intcl} B=\operatorname{clint} B$, hence $B=c l B$, i.e., $B \in \tau^{c}$.

3. fgs*-Continuity : Some Results *

We first recall some definitions for ease of reference.

Definition 3.1. A fuzzy function $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ is called
(i) fuzzy continuous [13] if $f^{-1}(V) \in \tau^{c}$ for every $V \in \tau_{1}^{c}$,
(ii) $f g s$-continuous [3] if $f^{-1}(V)$ is $f g s$-closed in X for every $V \in \tau_{1}^{c}$, (iii) $f s^{*} g$-continuous [5] if $f^{-1}(V) \in \tau^{c}$ for every $f g$-closed set V in Y,
(iv) fuzzy open function [14] if $f(F)$ is fuzzy open in Y for every fuzzy open set F in X.

Definition 3.2. A fuzzy function $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ is called $f g s^{*}$-continuous if $f^{-1}(V)$ is $f g s^{*}$-closed in X for every $V \in \tau_{1}^{c}$.

Theorem 3.3. Every fuzzy continuous function is fgs*-continuous.
Proof. The proof follows from the fact that every fuzzy closed set is $f g s^{*}$-closed.

The converse of Theorem 3.3. is not true, as it can be seen from the following example.

Example 3.4. fgs^{*}-continuity does not imply fuzzy continuity Let $X=\{a, b\}, \tau=\left\{0_{X}, 1_{X}, A\right\}, \tau_{1}=\left\{0_{X}, 1_{X}, B\right\}$ where $A(a)=0.5, A(b)=0.4, B(a)=0.5, B(b)=0.6$. Then (X, τ) and $\left(X, \tau_{1}\right)$ are fts's. Consider the identity function $i:(X, \tau) \rightarrow\left(X, \tau_{1}\right)$. Here $1_{X} \backslash B \in \tau_{1}^{c}, i^{-1}\left(1_{X} \backslash B\right)=1_{X} \backslash B$ which is $f g s^{*}$-closed (as shown in Example 2.13) in (X, τ), but not fuzzy closed in (X, τ). Hence i is $f g s^{*}$-continuous but not fuzzy continuous.

Remark 3.5. By Remark 2.4(ii), every fgs^{*}-continuous function is fgs-continuous. But the converse is not true, as it can be seen from the following example.

Example 3.6. fgs-continuity does not imply fgs *-continuity Let $X=\{a, b\}, \tau=\left\{0_{X}, 1_{X}, A, B\right\}, \tau_{1}=\left\{0_{X}, 1_{X}, C\right\}$ where $A(a)=0.4, A(b)=0.55, B(a)=0.5, B(b)=0.6, C(a)=0.5$, $C(b)=0.2$. Then (X, τ) and $\left(X, \tau_{1}\right)$ are fts's. Consider the identity function $i:(X, \tau) \rightarrow\left(X, \tau_{1}\right)$. Then $1_{X} \backslash C \in \tau_{1}^{c}, i^{-1}\left(1_{X} \backslash C\right)=1_{X} \backslash C$. Now 1_{X} is the only fuzzy open set in (X, τ) with $1_{X} \backslash C<1_{X}$ and so $1_{X} \backslash C$ is $f g s$-closed in (X, τ), therefore i is an $f g s$-continuous function. But $1_{X} \backslash C$ is $f g$-open in (X, τ) and so $1_{X} \backslash C \leq 1_{X} \backslash C$ implies $\operatorname{scl}\left(1_{X} \backslash C\right)=1_{X} \not \leq 1_{X} \backslash C$. It follows that the function i is not $f g s^{*}$-continuous.

Remark 3.7. The inverse image of some $f g s^{*}$-closed set under $f g s^{*}$-continuous function may not be $f g s^{*}$-closed as it can be seen from the following example.

Example 3.8. Consider Example 3.4. Let us consider the fuzzy set C defined by $C(a)=0.5, C(b)=0.3$. Now the collection of all $f g$-open as well as $F S O\left(X, \tau_{1}\right)$ is $\left\{0_{X}, 1_{X}, W\right\}$ where $W \geq B$ and
$F S C\left(X, \tau_{1}\right)=\left\{0_{X}, 1_{X}, 1_{X} \backslash W\right\}$ where $1_{X} \backslash W \leq 1_{X} \backslash B$. Now $C<B$ where B is $f g$-open in $\left(X, \tau_{1}\right)$ and $s c l C=C<B$ implies C is $f g s^{*}$-closed in $\left(X, \tau_{1}\right)$. But $i^{-1}(C)=C<C$ where C is $f g$-open in (X, τ) and $s c l C=A \not \leq C$. It follows that C is not $f g s^{*}$-closed in (X, τ).

Remark 3.9. Since a $f g s^{*}$-closed set is not necessarily fuzzy closed always, the composition of two $f g s^{*}$-continuous functions need not be $f g s^{*}$-continuous.

To achieve this result we have to define some new type of fuzzy space.

Definition 3.10. An fts (X, τ) is called $f T_{g s^{*}}$-space if every fgs*-closed set is fuzzy closed.

Theorem 3.11. Let $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ and $g:\left(Y, \tau_{1}\right) \rightarrow\left(Z, \tau_{2}\right)$ be two fgs*-continuous functions where $\left(Y, \tau_{1}\right)$ is $f T_{g s^{*}}$-space. Then the function $g \circ f:(X, \tau) \rightarrow\left(Z, \tau_{2}\right)$ is fgs*-continuous.

Proof. The proof is obvious.
Theorem 3.12. Every $f s^{*} g$-continuous function is $f g s^{*}$ continuous.

Proof. Let $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ be $f s^{*} g$-continuous and $V \in \tau_{1}^{c}$. Then V is $f g$-closed in Y. As f is $f s^{*} g$-continuous, $f^{-1}(V) \in \tau^{c}$ implies $f^{-1}(V)$ is $f g s^{*}$-closed in X. Hence the proof.

But the converse may not be true as it can be seen from the following example.

Example 3.13. fgs^{*}-continuity does not imply $f s^{*} g$-continuity Consider Example 3.4. Here the fuzzy set F defined by $F(a)=0.5, F(b)=0.7$ is $f g$-closed in $\left(X, \tau_{1}\right)$. Now $i^{-1}(F)=F \notin \tau^{c}$, therefore i is not $f s^{*} g$-continuous. But here i is $f g s^{*}$-continuous (as shown in Example 3.4).

Remark 3.14. In an $f T_{g s^{*}}$-space, $f g s^{*}$-closed set is $f s g$-closed, $f g$-closed.

4. $g s^{*}$-Closure Operator and $f g s^{*}$-Closed (Open) Functions : Some Properties

In this section a new type of closure (interior) operator, viz. $g s^{*}$-closure (resp., $g s^{*}$-interior) operator is introduced and studied. It is shown that this operator is an idempotent operator. Also a new type of fuzzy closed (resp., fuzzy open) function is introduced and characterized. It is shown that this class of fuzzy closed functions is strictly larger than the class of $f g s$-closed functions.

Definition 4.1. The intersection of all $f g s^{*}$-closed sets containing a fuzzy set A in an $\mathrm{fts}(X, \tau)$ is called $g s^{*}$-closure of A to be denoted by $g s^{*} c l A$, i.e., $g s^{*} c l(A)=\bigwedge\left\{F: A \leq F\right.$ and F is $f g s^{*}$-closed in $\left.X\right\}$.

Now we recall a definition from [8] for ease of reference.
Definition 4.2 [8]. The intersection of all $f g s$-closed sets containing a fuzzy set A in an $\mathrm{fts}(X, \tau)$ is called $g s$-closure of A and will be denoted by $\operatorname{gscl}(A)$, i.e., $\operatorname{gscl}(A)=\bigwedge\{F: A \leq F$ and F is $f g s$-closed in $X\}$.

Remark 4.3. Since every $f g s^{*}$-closed set is $f g s$-closed, it is clear that $A \leq g s c l(A) \leq g s^{*} c l(A) \leq c l A$.

Remark 4.4. If a fuzzy set A is $f g s^{*}$-closed, then $A=g s^{*} \operatorname{cl}(A)$. But $g s^{*} c l(A)$ may not be $f g s^{*}$-closed since intersection of two $f g s^{*}$-closed sets may not be so, as it is seen in Example 2.15.

Theorem 4.5. Let (X, τ) be an fts and $A \in I^{X}$. Then for a fuzzy point x_{t} in $X, x_{t} \in g s^{*} c l(A)$ if and only if for every $f g s^{*}$-open set U, $x_{t} q U$ implies $U q A$.

Proof. Let $x_{t} \in g s^{*} \operatorname{cl}(A)$ and let U be any $f g s^{*}$-open set in X with $x_{t} q U$. Then $x_{t} \in F$ for every $f g s^{*}$-closed set F containing A. Now $U(x)+t>1$ implies $x_{t} \notin 1_{X} \backslash U$, but $1_{X} \backslash U$ is an $f g s^{*}$-closed set in X and so $A \not \leq 1_{X} \backslash U$ shows that there exists $y \in X$ such that $A(y)>1-U(y)$, hence $A q U$.

Conversely, assume that for every $f g s^{*}$-open set $U, x_{t} q U$ implies $U q A$. We have to prove that $x_{t} \in F$, for every $f g s^{*}$-closed set F in X containing A. Let F be an $f g s^{*}$-closed set in X containing A. Assume by contrary that $x_{t} \notin F$. Then $F(x)<t$ implies $1-F(x)>1-t$,
i.e., $x_{t} q\left(1_{X} \backslash F\right)$, but $1_{X} \backslash F$ is $f g s^{*}$-open in X and so by hypothesis, $A q\left(1_{X} \backslash F\right)$. Then there exists $y \in X$ such that $A(y)+1-F(y)>1$, hence $A(y)>F(y)$, a contradiction.

Theorem 4.6. Let (X, τ) be an fts and $A, B \in I^{X}$. Then the following statements are true :
(i) $g s^{*} c l\left(0_{X}\right)=0_{X}$,
(ii) $\operatorname{gs}{ }^{*} c l\left(1_{X}\right)=1_{X}$,
(iii) If $A \leq B$, then $g s^{*} c l(A) \leq g s^{*} c l(B)$,
(iv) $g s^{*} c l(A \bigvee B)=g s^{*} c l(A) \bigvee g s^{*} c l(B)$,
(v) $g s^{*} c l(A \bigwedge B) \leq g s^{*} c l(A) \bigwedge g s^{*} c l(B)$
(vi) $g s^{*} c l\left(g s^{*} c l(A)\right)=g s^{*} c l(A)$.

Proof. The proofs of (i), (ii) and (iii) are obvious.
(iv) $g s^{*} c l(A) \bigvee g s^{*} c l(B) \leq g s^{*} c l(A \bigvee B)$ follows from (iii).

To prove the converse, let $x_{t} \in g s^{*} c l(A \bigvee B)$. Then by Theorem 4.5 , for any $f g s^{*}$-open set U in X with $x_{t} q U$, we have $U q(A \bigvee B)$. Then there exists $y \in X$ such that $U(y)+\max \{A(y), B(y)\}>1$ which shows that either $U(y)+A(y)>1$ or $U(y)+B(y)>1$. Then either $U q A$ or $U q B$, therefore either $x_{t} \in g s^{*} c l(A)$ or $x_{t} \in g s^{*} c l(B)$, hence $x_{t} \in g s^{*} c l(A) \bigvee g s^{*} c l(B)$.
(v) Follows from (iii).
(vi) From definition, $A \leq g s^{*} c l(A)$ implies $g s^{*} c l(A) \leq g s^{*} c l\left(g s^{*} c l(A)\right)$ by (iii).

To prove the converse, let $x_{t} \in g s^{*} c l\left(g s^{*} c l(A)\right)=g s^{*} c l(B)$ where $B=g s^{*} c l(A)$. Let U be any $f g s^{*}$-open set in X with $x_{t} q U$. Then $U q B$, therefore there exists $y \in X$ such that $U(y)+B(y)>1$. Let $B(y)=t$. Then $y_{t} \in B$ and $y_{t} q U$. Since $y_{t} \in g s^{*} c l(A)$, $U q A$ by Theorem 4.5, which implies $x_{t} \in \operatorname{gs*} c l(A)$ and hence $g s^{*} \operatorname{cl}\left(g s^{*} c l(A)\right) \leq g s^{*} c l(A)$.

In Theorem 4.6 (v), equality does not hold in general, as it can be seen in Example 4.7.

Example 4.7. Consider Example 2.15. Here A and C being $f g s^{*}$-closed sets in $X, A=g s^{*} c l(A), C=g s^{*} c l(C)$ and so $g s^{*} c l(A) \bigwedge g s^{*} c l(C)=A \bigwedge C=D \neq \operatorname{gs}{ }^{*} c l(D)=g s^{*} c l(A \bigwedge C)$ as D is not $f g s^{*}$-closed in X.

Definition 4.8. A function $f: X \rightarrow Y$ is said to be $f g s^{*}$-closed (resp., fgs^{*}-open) if $f(F)$ is $f g s^{*}$-closed (resp., fgs^{*}-open) in Y for every fuzzy closed (resp., fuzzy open) set F in X.

Remark 4.9. It is clear from definition that every fgs^{*}-closed (resp., fgs^{*}-open) function is fgs -closed (resp., fgs-open) function. The converse does not hold, as it can be seen from the following example.

Example 4.10. There exists an $f g s$-closed function which is not fgs*-closed.
Let $X=\{a, b\}, \tau_{1}=\left\{0_{X}, 1_{X}, B\right\}, \tau_{2}=\left\{0_{X}, 1_{X}, A\right\}$ where $A(a)=0.5, A(b)=0.4, B(a)=B(b)=0.6$. Then $\left(X, \tau_{1}\right)$ and $\left(X, \tau_{2}\right)$ are fts's. Now $\operatorname{FSO}\left(X, \tau_{2}\right)=\left\{0_{X}, 1_{X}, U\right\}$ where $A \leq U \leq 1_{X} \backslash A$ and $F S C\left(X, \tau_{2}\right)=\left\{0_{X}, 1_{X}, 1_{X} \backslash U\right\}$ where $A \leq 1_{X} \backslash U \leq 1_{X} \backslash A$. Consider the identity function $i:\left(X, \tau_{1}\right) \rightarrow\left(X, \tau_{2}\right)$. Now $1_{X} \backslash B \in \tau_{1}^{c}, i\left(1_{X} \backslash B\right)=1_{X} \backslash B(=D$, say $)$ is not $f g s^{*}$-closed in $\left(X, \tau_{2}\right)$ as shown in Example 2.15. So i is not $f g s^{*}$-closed function. We claim that i is $f g s$-closed function. Indeed, $1_{X} \backslash B<A \in \tau_{2}$, hence $s c l_{\tau_{2}}\left(1_{X} \backslash B\right)=A \leq A$, which implies that $1_{X} \backslash B$ is $f g s$-closed in $\left(X, \tau_{2}\right)$ and so i is $f g s$-closed function.

Theorem 4.11. If $f: X \rightarrow Y$ is an fgs *-closed function, then $g s^{*} c l(f(A)) \leq f(c l A)$ for all $A \in I^{X}$.

Proof. Let $A \in I^{X}$. Then $c l A$ is fuzzy closed in X. As f is $f g s^{*}$-closed function, $f(c l A)$ is $f g s^{*}$-closed in Y. Now $f(A) \leq f(c l A)$. So $g s^{*} c l(f(A)) \leq g s^{*} c l(f(c l A))=f(c l A)$.

Definition 4.12. The union of all $f g s^{*}$-open sets contained in a fuzzy set A in an fts X is called $g s^{*} \operatorname{int}(A)$.

Remark 4.13. It is clear from definitions that for a fuzzy set A in an fts $(X, \tau), \operatorname{int} A \leq g s^{*} i n t A \leq g \operatorname{sint} A \leq A$.

Lemma 4.14. For a fuzzy set A in an fts (X, τ), the following statements are equivalent:
(i) $g s^{*} c l\left(1_{X} \backslash A\right)=1_{X} \backslash g s^{*} \operatorname{int}(A)$
(ii) $g s^{*} i n t\left(1_{X} \backslash A\right)=1_{X} \backslash g s^{*} c l(A)$.

Proof (i). Let $x_{t} \in g s^{*} c l\left(1_{X} \backslash A\right)$. If possible, let $x_{t} \notin 1_{X} \backslash$ $g s^{*} \operatorname{int}(A)$. Then $1-\left(g s^{*} \operatorname{int}(A)\right)(x)<t$, i.e. $\left[g s^{*} \operatorname{int}(A)\right](x)+t>$ 1 , hence $g s^{*} \operatorname{int}(A) q x_{t}$. Then there exists at least one $f g s^{*}$-open set $F \leq A$ with $x_{t} q F$, which shows that $x_{t} q A$. As $x_{t} \in g s^{*} c l\left(1_{X} \backslash A\right)$ and $F q\left(1_{X} \backslash A\right)$, it follows that $A q\left(1_{X} \backslash A\right)$, a contradiction. Hence

$$
\begin{equation*}
g s^{*} c l\left(1_{X} \backslash A\right) \leq 1_{X} \backslash g s^{*} \operatorname{int}(A) \tag{1}
\end{equation*}
$$

Conversely, let $x_{t} \in 1_{X} \backslash g s^{*} \operatorname{int}(A)$. Then

$$
\begin{equation*}
1-\left[g s^{*} \operatorname{int}(A)\right](x) \geq t \Rightarrow x_{t} q\left(g s^{*} \operatorname{int}(A)\right) \Rightarrow x_{t} q F \tag{2}
\end{equation*}
$$

where F is any $f g s^{*}$-open set contained in A.
Let U be any $f g s^{*}$-closed set in X such that $1_{X} \backslash A \leq U$. Then $1_{X} \backslash U \leq A$. Now $1_{X} \backslash U$ is $f g s^{*}$-open set in X contained in A. By (2), $x_{t} q\left(1_{X} \backslash U\right)$ implies $x_{t} \in U$. Therefore $x_{t} \in \operatorname{gs} s^{*} c l\left(1_{X} \backslash A\right)$ and so

$$
\begin{equation*}
1_{X} \backslash g s^{*} \operatorname{int}(A) \leq g s^{*} c l\left(1_{X} \backslash A\right) . \tag{3}
\end{equation*}
$$

Combining (1) and (3), (i) follows.
(ii) Putting $1_{X} \backslash A$ for A in (i), we get $g s^{*} c l(A)=1_{X} \backslash g s^{*} \operatorname{int}\left(1_{X} \backslash A\right)$, hence $g s^{*} \operatorname{int}\left(1_{X} \backslash A\right)=1_{X} \backslash g s^{*} c l(A)$.

Theorem 4.15. For a bijective function $f: X \rightarrow Y$, the following statements are equivalent:
(i) f is $f g s^{*}$-open,
(ii) $f(\operatorname{int} A) \leq g s^{*} \operatorname{int}(f(A))$, for all $A \in I^{X}$,
(iii) For each fuzzy point x_{t} in X and each fuzzy open set U in X containing x_{t}, there exists an fgs*-open set V containing $f\left(x_{t}\right)$ such that $V \leq f(U)$.

Proof (i) \Rightarrow (ii). Let $A \in I^{X}$. Then $\operatorname{int} A$ is fuzzy open in X. By (i), $f(\operatorname{int} A)$ is $f g s^{*}$-open in Y. Since $f(\operatorname{int} A) \leq f(A)$ and $g s^{*} \operatorname{int}(f(A))$ is the union of all $f g s^{*}$-open sets contained in $f(A)$, we have $f(\operatorname{int} A) \leq g s^{*} \operatorname{int}(f(A))$.
(ii) \Rightarrow (i). Let U be a fuzzy open set in X. Then $f(U)=f(\operatorname{int} U) \leq g s^{*} \operatorname{int}(f(U)$) (by (ii)), hence $f(U)$ is fgs*open in Y.
(ii) \Rightarrow (iii). Let x_{t} be a fuzzy point in X and let U be a fuzzy open set in X such that $x_{t} \in U$. Then $f\left(x_{t}\right) \in f(U)=f(\operatorname{int} U) \leq g s^{*} \operatorname{int}(f(U))$,
hence $f(U)$ is $f g s^{*}$-open in Y. Let $V=f(U)$. Then $f\left(x_{t}\right) \in V$ and $V \leq f(U)$.
(iii) \Rightarrow (i). Let U be any fuzzy open set in X and y_{t} be any fuzzy point in $f(U)$, i.e., $y_{t} \in f(U)$. Then there exists $x \in X$ such that $f(x)=y$ (as f is bijective). Then $[f(U)](y) \geq t$, hence $U\left(f^{-1}(y)\right) \geq t$, therefore $U(x) \geq t$, which implies $x_{t} \in U$. By (iii), there exists an $f g s^{*}$-open set V in Y such that $f\left(x_{t}\right) \in V$ and $V \leq f(U)$. Then $f\left(x_{t}\right) \in V=g s^{*} \operatorname{int}(V) \leq g s^{*} \operatorname{int}(f(U))$. Since x_{t} is taken arbitrarily and $f(U)$ is the union of all fuzzy points in $f(U)$, $f(U) \leq g s^{*} \operatorname{int}(f(U))$, hence $f(U)$ is $f g s^{*}$-open in Y. It follows that the function f is $f g s^{*}$-open.

Theorem 4.16. If $f: X \rightarrow Y$ is $f g s^{*}$-open, then the following statements are true :
(i) For each fuzzy point x_{t} in X and each fuzzy open set U in X with $x_{t} q U$, there exists an $f g s^{*}$-open set V in Y with $f\left(x_{t}\right) q V$ such that $V \leq f(U)$,
(ii) $f^{-1}\left(g s^{*} c l(B)\right) \leq \operatorname{cl}\left(f^{-1}(B)\right)$, for all $B \in I^{Y}$.

Proof (i). Let x_{t} be any fuzzy point in X and U be any fuzzy open set in X with $x_{t} q U=\operatorname{int} U$ implies $f\left(x_{t}\right) q f(\operatorname{int} U) \leq g s^{*} \operatorname{int}(f(U)$) (by Theorem 4.15) which shows that $f\left(x_{t}\right) q g s^{*} \operatorname{int}(f(U))$ and hence there exists $f g s^{*}$-open set V in Y such that $f\left(x_{t}\right) q V$ and $V \leq f(U)$.
(ii) Let x_{t} be any fuzzy point in X such that $x_{t} \notin c l\left(f^{-1}(B)\right)$ for any $B \in I^{Y}$. Then there exists a fuzzy open set U in X with $x_{t} q U$, $U q f^{-1}(B)$. Now

$$
\begin{equation*}
f\left(x_{t}\right) q f(V) \tag{4}
\end{equation*}
$$

where $f(U)$ is $f g s^{*}$-open in Y (as f is $f g s^{*}$-open function). Now $f^{-1}(B) \leq 1_{X} \backslash U$ implies $B \leq f\left(1_{X} \backslash U\right) \leq 1_{Y} \backslash f(U)$ and so $B q f(U)$. Let $V=1_{Y} \backslash f(U)$. Then V is $f g s^{*}$-closed in Y with $B \leq V$. We claim that $f\left(x_{t}\right) \notin V$. Assume that $f\left(x_{t}\right) \in V=1_{Y} \backslash f(U)$. Then $1-[f(U)](f(x)) \geq t$, hence $f(U) q f\left(x_{t}\right)$, which contradicts (4). So $f\left(x_{t}\right) \notin V$ implies $f\left(x_{t}\right) \notin g s^{*} c l(B)$ and therefore $x_{t} \notin f^{-1}\left(g s^{*} c l(B)\right)$. Hence $f^{-1}\left(g s^{*} c l(B)\right) \leq \operatorname{cl}\left(f^{-1}(B)\right)$.

Theorem 4.17. If $f: X \rightarrow Y$ is an injective, f gs*-open function, $B \in I^{Y}$ and F is a fuzzy closed set in X with $f^{-1}(B) \leq F$, then there
exists an $f g s^{*}$-closed set V in Y such that $B \leq V$ and $f^{-1}(V) \leq F$.
Proof. Let $B \in I^{Y}$ and F be a fuzzy closed set in X with $f^{-1}(B) \leq$ F. Then $1_{X} \backslash f^{-1}(B) \geq 1_{X} \backslash F$, where $1_{X} \backslash F$ is fuzzy open in X, implies $f\left(1_{X} \backslash F\right) \leq f\left(1_{X} \backslash f^{-1}(B)\right) \leq 1_{Y} \backslash B$ (as f is injective) where $f\left(1_{X} \backslash F\right)$ is an $f g s^{*}$-open in Y. Let $V=1_{Y} \backslash f\left(1_{X} \backslash F\right)$. Then V is $f g s^{*}$-closed in Y such that $B \leq 1_{Y} \backslash f\left(1_{X} \backslash F\right)=V$. Now $f^{-1}(V)=f^{-1}\left(1_{Y} \backslash f\left(1_{X} \backslash F\right)\right)=1_{X} \backslash f^{-1}\left(f\left(1_{X} \backslash F\right)\right) \leq F$.
5. $f g s^{*}$-Neighbourhood of a Fuzzy Point and a Fuzzy Set

In this section a new type of fuzzy neighbourhood nbd, for short) system, viz., $f g s^{*}$-nbd system of a fuzzy point is introduced which is coarser than the fuzzy nbd system.

Definition 5.1. A fuzzy set A in an $\mathrm{fts}(X, \tau)$ is called an $f g s^{*}-\mathrm{nbd}$ of a fuzzy point x_{t} in X if there exists an $f g s^{*}$-open set G in X such that $x_{t} \in G \leq A$.

Definition 5.2. A fuzzy set A in an $\mathrm{fts}(X, \tau)$ is called an $f g s^{*}$-nbd of a fuzzy set B in X if there exists an $f g s^{*}$-open set G in X such that $B \leq G \leq A$.

Remark 5.3. The $f g s^{*}$-nbd of a fuzzy point x_{t} need not be an $f g s^{*}$-open set in X, as it can be seen from the following example.

Example 5.4. Consider Example 2.15 and the fuzzy point $a_{0.5}$. Here $1_{X} \backslash D$ is not $f g s^{*}$-open. Now $\left(1_{X} \backslash D\right)(a)=0.6>0.5$, hence $a_{0.5} \in 1_{X} \backslash D$. Now $\left(1_{X} \backslash A\right)(a)=0.5 \geq 0.5$ implies $a_{0.5} \in 1_{X} \backslash A \leq 1_{X} \backslash D$ where $1_{X} \backslash A$ is $f g s^{*}$-open in X and hence $1_{X} \backslash D$ is an $f g s^{*}-\operatorname{nbd}$ of $a_{0.5}$.

It is clear from definition that

Theorem 5.5. Every nbd of a fuzzy point x_{t} is an $f g s^{*}$-nbd of this point.

But the converse may not be true, as it can be seen from the following example.

Example 5.6. Consider Example 2.15 and a fuzzy point $a_{0.6}$. Here $1_{X} \backslash C$ being an $f g s^{*}$-open set with $a_{0.6} \in 1_{X} \backslash C$ is an $f g s^{*}$-nbd of
$a_{0.6}$. But $1_{X} \backslash C$ is not a fuzzy nbd of $a_{0.6}$.
Remark 5.7. An $f g s^{*}$-open set is an $f g s^{*}$-nbd of each of its points.

But the converse may not be true in general, as it can be seen from the following example.

Example 5.8. Consider Example 2.15. Here $1_{X} \backslash D$ is not $f g s^{*}$-open set. We claim that $1_{X} \backslash D$ is an $f g s^{*}$-nbd of each of its points. The points of $1_{X} \backslash D$ are either of the form a_{t}, $(0<t \leq 0.6)$ or of the form $b_{t_{1}},\left(0<t_{1} \leq 0.6\right)$. For $a_{t},(0<t \leq 0.6)$, $a_{t} \in 1_{X} \backslash C \leq 1_{X} \backslash D$ where $1_{X} \backslash C$ is an $f g s^{*}$-open set in X. For $b_{t_{1}},\left(0<t_{1} \leq 0.6\right), b_{t_{1}} \in 1_{X} \backslash A \leq 1_{X} \backslash D$ where $1_{X} \backslash A$ is an $f g s^{*}$-open set in X. So $1_{X} \backslash D$ is an $f g s^{*}$-nbd of each of its points.

Theorem 5.9. Let $F \in I^{X}$ be fgs*-closed set in X and $x_{t} \in 1_{X} \backslash F$. Then there exists an $f g s^{*}-n b d G$ of x_{t} such that $G q F$.

Proof. $1_{X} \backslash F$ is $f g s^{*}$-open in X. By Remark 5.7, there exists an $f g s^{*}-\operatorname{nbd} G$ of x_{t} such that $x_{t} \in G \leq 1_{X} \backslash F$ implies $G \not q F$.

Definition 5.10. The set of all $f g s^{*}$-nbds of a fuzzy point x_{t} $(0<t \leq 1)$ in an $\mathrm{fts}(X, \tau)$ is called the $f g s^{*}$-nbd system at x_{t}, to be denoted by $f g s^{*}-N\left(x_{t}\right)$.

Theorem 5.11. For a fuzzy point x_{t} in an fts (X, τ), the following statements hold :
(i) $f g s^{*}-N\left(x_{t}\right) \neq \emptyset$,
(ii) If $G \in f g s^{*}-N\left(x_{t}\right)$, then $x_{t} \in G$,
(iii) If $G \in f g s^{*}-N\left(x_{t}\right), F \geq G$, then $F \in f g s^{*}-N\left(x_{t}\right)$,
(iv) $F, G \in f g s^{*}-N\left(x_{t}\right)$ implies $F \bigwedge G \in f g s^{*}-N\left(x_{t}\right)$,
(v) If $G \in f g s^{*}-N\left(x_{t}\right)$, then there exists $F \in f g s^{*}-N\left(x_{t}\right)$ such that $F \leq G$ and $F \in f g s^{*}-N\left(y_{t^{\prime}}\right)$ for every $y_{t^{\prime}} \in F$.

Proof. (i) Since 1_{X} is an $f g s^{*}$-open set, it is an $f g s^{*}$-nbd of any fuzzy point $x_{t}(0<t \leq 1)$ and so $f g s^{*}-N\left(x_{t}\right) \neq \emptyset$.
(ii) and (iii) follow from Definition 5.10.
(iv) Follows from Remark 2.14 (i).
(v) Follows from Definition 5.10 and Remark 5.7.

Theorem 5.12. Let x_{t} be a fuzzy point in an fts (X, τ). Let fgs* $-N\left(x_{t}\right)$ be a non-empty collection of fuzzy sets in X satisfying the following conditions :
(1) $G \in f g s^{*}-N\left(x_{t}\right)$ implies $x_{t} \in G$,
(2) $F, G \in f g s^{*}-N\left(x_{t}\right)$ implies $F \bigwedge G \in f g s^{*}-N\left(x_{t}\right)$.

Let τ consist of 0_{X} and all those non zero fuzzy sets G of X having the property that for every $x_{t} \in G$ there exists an $F \in f g s^{*}-N\left(x_{t}\right)$ such that $x_{t} \in F \leq G$. Then τ is a fuzzy topology on X.

Proof. (i) By hypothesis, $0_{X} \in \tau$.
(ii) It is clear from the given property of τ that $1_{X} \in \tau$ as 1_{X} is an $f g s^{*}-N\left(x_{t}\right)$ for every fuzzy point $x_{t}(0<t \leq 1)$ in an fts X by (1).
(iii) Let $G_{1}, G_{2} \in \tau$. If $G_{1} \wedge G_{2}=0_{X}$, then $G_{1} \wedge G_{2} \in \tau$. If $G_{1} \wedge G_{2} \neq$ 0_{X}, let $x_{t} \in G_{1} \wedge G_{2}$ (where $0<t \leq 1$). Then $G_{1}(x) \geq t, G_{2}(x) \geq t$. Since $G_{1}, G_{2} \in \tau$, there exist $F_{1}, F_{2} \in f g s^{*}-N\left(x_{t}\right)$ such that $x_{t} \in$ $F_{1} \leq G_{1}, x_{t} \in F_{2} \leq G_{2}$. Then $x_{t} \in F_{1} \wedge F_{2} \leq G_{1} \bigwedge G_{2}$ and by (2), $F_{1} \bigwedge F_{2} \in f g s^{*}-N\left(x_{t}\right)$ implies $G_{1} \bigwedge G_{2} \in \tau$ by construction of τ.
(iv) Let $\mathcal{G}=\left\{G_{\alpha}: \alpha \in \Lambda\right\}$ where $G_{\alpha} \in \tau$, for all $\alpha \in \Lambda$. Let $x_{t} \in \bigvee_{\alpha \in \Lambda} G_{\alpha}$. Then $x_{t} \in G_{\beta}$, for some $\beta \in \Lambda$. By construction of τ, there exists $F_{\beta} \in f g s^{*}-N\left(x_{t}\right)$ such that $x_{t} \in F_{\beta} \leq G_{\beta} \leq \bigvee_{\alpha \in \Lambda} G_{\alpha}$ implies $\bigvee_{\alpha \in \Lambda} G_{\alpha} \in \tau$.
It follows that τ is a fuzzy topology on X.

6. Applications

In this section it is shown that fuzzy normal and fuzzy compact spaces remain invariant under $f g s^{*}$-continuous functions.

Definition 6.1 [11]. An fts (X, τ) is called fuzzy normal if for any two fuzzy closed sets A, B in X with $A \not q B$, there exist $U, V \in \tau$ such that $A \leq U, B \leq V$ and $U \not q V$.

Theorem 6.2. Let $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ be a bijective, $f g s^{*}$ continuous, open function. If X is fuzzy normal and $f T_{g s^{*}}$-space,
then Y is also fuzzy normal.
Proof. Let $A, B \in \tau_{1}^{c}$ be such that $A \not q B$. Then $f^{-1}(A) \not q^{-1}(B)$ where $f^{-1}(A)$ and $f^{-1}(B)$ are $f g s^{*}$-closed in X. As X is $f T_{g s^{*}}$-space, $f^{-1}(A), f^{-1}(B) \in \tau^{c}$. As X is fuzzy normal, there exist $U, V \in \tau$ such that $f^{-1}(A) \leq U, f^{-1}(B) \leq V$ and $U / q V$. As f is bijective, $A \leq f(U), B \leq f(V)$ and $f(U) / q f(V)$ where $f(U), f(V) \in \tau_{1}$ and hence Y is fuzzy normal space.

We now recall the following definition from [3] for easy reference
Definition 6.3. An fts (X, τ) is called $f T_{b}$-space if every $f g s$-closed set is fuzzy closed.

Theorem 6.4. Let $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ be a bijective, fgs*continuous, open function. If X is fuzzy normal and $f T_{b}$-space, then Y is fuzzy normal.

Proof. The proof is similar to that of Theorem 6.2.
Let us now recall the following two definitions from [10] for ready reference.

Definition 6.5. Let (X, τ) be an fts. A collection \mathcal{U} of fuzzy sets in X is called a fuzzy cover of X if $\cup \mathcal{U}=1_{X}$. If, in addition, all the members of \mathcal{U} are fuzzy open in X, \mathcal{U} is called a fuzzy open cover of X.

Definition 6.6. An $\mathrm{fts}(X, \tau)$ is said to be fuzzy compact if every fuzzy open cover \mathcal{U} has a finite subcover, i.e., there exists a finite subcollection \mathcal{U}_{0} of \mathcal{U} such that $\bigcup \mathcal{U}_{0}=1_{X}$.

Theorem 6.7. Let $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ be an fgs *-continuous function from a fuzzy compact, $f T_{g s^{*}}$-space X onto an fts Y. Then Y is fuzzy compact.

Proof. Let $\mathcal{U}=\left\{U_{\alpha}: \alpha \in \Lambda\right\}$ be a fuzzy cover of Y. Then $\mathcal{V}=\left\{f^{-1}\left(U_{\alpha}\right): \alpha \in \Lambda\right\}$ being an $f g s^{*}$-open cover is a fuzzy open cover of X (as f is $f g s^{*}$-continuous function and also X is an $f T_{g s^{*}-}$ space). Since X is fuzzy compact, there exists a finite subset Λ_{0} of Λ
such that $\bigcup_{\alpha \in \Lambda_{0}} f^{-1}\left(U_{\alpha}\right)=1_{X}$. Hence $1_{Y}=f\left(1_{X}\right)=f\left(\bigcup_{\alpha \in \Lambda_{0}} f^{-1}\left(U_{\alpha}\right)\right)=$ $\bigcup_{\alpha \in \Lambda_{0}} f f^{-1}\left(U_{\alpha}\right) \leq \bigcup_{\alpha \in \Lambda_{0}} U_{\alpha} \Rightarrow Y$ is fuzzy compact space.

References

[1] Azad, K.K.; On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J.Math. Anal. Appl., 82 (1981), 14-32.
[2] Balasubramanian, G. and Sundaram, P.; On some generalizations of fuzzy continuous functions, Fuzzy Sets and Systems, 86 (1997), 93-100.
[3] Bhattacharyya, Anjana; $f g^{*} \alpha$-continuous functions in fuzzy topological spaces, International Journal of Scientific and Engineering Research, Vol. 4, Issue 8 (2013), 973-979.
[4] Bhattacharyya, Anjana; Unified version of fuzzy generalized open sets on fuzzy topological spaces, Analele Universitătii Oradea Fasc. Matematica, Tom XXII, Issue No. 1 (2015), 69-74.
[5] Bhattacharyya, Anjana; Fuzzy generalized continuity, Annals of Fuzzy Mathematics and Informatics, 11 (4) (2016), 645-659.
[6] Bhattacharyya, Anjana; Several concepts of fuzzy generalized continuity in fuzzy topological spaces, Analele Universitătii Oradea Fasc. Matematica, Tom XXIII, Issue No. 2 (2016), 57-68.
[7] Bhattacharyya, Anjana; Fuzzy generalized closed sets in a fuzzy topological space, Jour. Fuzzy Math., (Accepted for Publication).
[8] Bhattacharyya, Anjana; On fgs-closed sets and fsg-closed sets in fuzzy setting (Communicated).
[9] Bin Shahna, A.S.; On fuzzy strong semicontinuity and fuzzy precontinuity, Fuzzy Sets and Systems 44 (1991), 303-308.
[10] Chang, C.L.; Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.
[11] Hutton, B.; Normality in fuzzy topological spaces, J. Math Anal. Appl., 50 (1975), 74-79.
[12] Pu, Pao Ming and Liu, Ying Ming; Fuzzy topology I. Neighbourhood structure of a fuzzy point and Moore-Smith convergence, J. Math Anal. Appl., 76 (1980), 571-599.
[13] Pu, Pao Ming and Liu, Ying Ming; Fuzzy topology II. Product and Quotient spaces, J. Math. Anal. Appl., 77 (1980), 20-37.
[14] Wong, C.K.; Fuzzy points and local properties of fuzzy topology, J. Math. Anal. Appl., 46 (1974), 316-328.
[15] Zadeh, L.A.; Fuzzy Sets, Inform. Control, 8 (1965), 338-353.
1

[^0]Department of Mathematics, Victoria Institution (College)
78 B, A.P.C. Road, Kolkata - 700009, INDIA
e-mail: anjanabhattacharyya@hotmail.com

[^0]: ${ }^{1}$ The author acknowledges the financial support from UGC (Minor Research Project), New Delhi

