"Vasile Alecsandri" University of Bacău
Faculty of Sciences
Scientific Studies and Research
Series Mathematics and Informatics
Vol. 27(2017), No. 1, 119-128

PRESIC TYPE FIXED POINT THEOREM FOR FOUR MAPS IN PARTIAL b-METRIC-LIKE SPACES

K.P.R.RAO, M.IMDAD AND E.T.RAMUDU

Abstract

In this paper, we obtain a Presic type fixed point theorem for two pairs of jointly $2 k$-weakly compatible maps in partial b-metric-like spaces. We also give an example to illustrate our main theorem. We obtain three corollaries, for three and two maps respectively,which are variations of theorems from the papers $[1,2]$ and $[8]$. 1. Introduction and Preliminaries

One of the generalizations of Banach contraction principle,for mappings $f: X^{k} \rightarrow X$ with X a complete metric space, was given by S.B.Presic [6] in 1965.

Throughout this paper, $\mathcal{R}^{+}, \mathcal{N}$ and k denote the set of all nonnegative real numbers, the set of all positive integers and a positive integer respectively.

Keywords and phrases: Complete metric spaces, Presic type theorem, Jointly $2 k$-weakly compatible mappings.
(2010) Mathematics Subject Classification: 54H25, 47H10.

Theorem 1.1 (6). Let (X, d) be a complete metric space and $f: X^{k} \rightarrow X$. Suppose that
$d\left(f\left(x_{1}, x_{2}, \cdots, x_{k}\right), f\left(x_{2}, x_{3}, \cdots, x_{k+1}\right)\right) \leq \sum_{i=1}^{k} q_{i} d\left(x_{i}, x_{i+1}\right)$
holds for all $x_{1}, x_{2}, \cdots, x_{k}, x_{k+1} \in X$, where $q_{i} \geq 0$ for $i=1,2, \ldots, n$ and $\sum_{i=1}^{k} q_{i} \in[0,1)$.
Then f has a unique fixed point x^{*}. Moreover, for any arbitrary points $x_{1}, x_{2}, \cdots, x_{k+1}$ in X, the sequence $\left\{x_{n}\right\}$ defined by $x_{n+k}=$ $f\left(x_{n}, x_{n+1}, \cdots, x_{n+k-1}\right)$, for all $n \in \mathcal{N}$ converges to x^{*}.

Later Ciric and Presic [3] generalized the above theorem as follows.
Theorem 1.2. ([3]). Let (X, d) be a complete metric space and $f: X^{k} \rightarrow X$. Suppose that

$$
d\left(f\left(x_{1}, x_{2}, \cdots, x_{k}\right), f\left(x_{2}, x_{3}, \cdots, x_{k+1}\right)\right) \leq \lambda \max _{1 \leq i \leq k}\left\{d\left(x_{i}, x_{i+1}\right)\right\}
$$

holds for all $x_{1}, x_{2}, \cdots, x_{k}, x_{k+1}$ in X, where $\lambda \in[0,1)$.
Then f has a fixed point $x^{*} \in X$. Moreover, for any arbitrary points $x_{1}, x_{2}, \cdots, x_{k+1}$ in X, the sequence $\left\{x_{n}\right\}$ defined by $x_{n+k}=$ $f\left(x_{n}, x_{n+1}, \cdots, x_{n+k-1}\right)$, for all $n \in \mathcal{N}$ converges to x^{*}.
Moreover, if $d(f(u, u, \cdots, u), f(v, v, \cdots, v))<d(u, v)$ holds for all $u, v \in X$ with $u \neq v$, then x^{*} is the unique fixed point of f.

Recently Rao et al. [1, 2] obtained some Presic type theorems for two and three maps in metric spaces.Now we give the following definition of $[1,2]$.

Definition 1.3. Let X be a non empty set and $T: X^{2 k} \rightarrow X$ and $f: X \rightarrow X$. The pair (f, T) is said to be $2 k$-weakly compatible if $f(T(x, x, \ldots, x, x))=T(f x, f x, \ldots, f x, f x)$ whenever $x \in X$ such that $f x=T(x, x, \ldots, x, x)$.

Using this definition, Rao et al. [1] proved the following
Theorem 1.4. ([1]). Let (X, d) be a metric space and $S, T: X^{2 k} \rightarrow$ $X, f: X \rightarrow X$ be mappings satisfying
(1.4.1) $d\left(S\left(x_{1}, x_{2}, \cdots, x_{2 k}\right), T\left(x_{2}, x_{3}, \cdots, x_{2 k+1}\right)\right) \leq \lambda \max _{1 \leq i \leq 2 k}\left\{d\left(f x_{i}, f x_{i+1}\right)\right\}$ for all $x_{1}, x_{2}, \cdots, x_{2 k}, x_{2 k+1}$ in X, (1.4.2) $d\left(T\left(y_{1}, y_{2}, \cdots, y_{2 k}\right), S\left(y_{2}, y_{3}, \cdots, y_{2 k+1}\right)\right) \leq \lambda \max _{1 \leq i \leq 2 k}\left\{d\left(f y_{i}, f y_{i+1}\right)\right\}$ for all $y_{1}, y_{2}, \cdots, y_{2 k}, y_{2 k+1}$ in X, where $0 \leq \lambda<1$.
(1.4.3) $d(S(u, \cdots, u), T(v, \cdots, v))<d(f u, f v)$, for all $u, v \in X$ with
$u \neq v$
(1.4.4) Suppose that $f(X)$ is complete and either (f, S) or (f, T) is a $2 k-$ weakly compatible pair.
Then there exists a unique point $p \in X$ such that $f p=p=$ $S(p, \cdots, p)=T(p, \cdots, p)$.

Very recently Nazir and Abbas [8] obtained the following Presic type theorem for a pair of maps in partial metric spaces as follows

Theorem 1.5. ([8]). Let (X, p) be a complete partial metric space. Suppose that $f, g: X^{k} \rightarrow X$ are two mappings satisfying (1.5.1) $p\left(f\left(x_{1}, x_{2}, \cdots, x_{k}\right), g\left(x_{2}, x_{3}, \cdots, x_{k+1}\right)\right) \leq \lambda \max _{1 \leq i \leq k}\left\{p\left(x_{i}, x_{i+1}\right)\right\}$ for all $x_{1}, x_{2}, \cdots, x_{k}, x_{k+1}$ in X, where $\lambda \in[0,1)$.
Then f has a unique fixed point x^{*}. Moreover, for any arbitrary points $x_{1}, x_{2}, \cdots, x_{k+1}$ in X, the sequence $\left\{x_{n}\right\}$ defined by $x_{n+k}=$ $f\left(x_{n}, x_{n+1}, \cdots, x_{n+k-1}\right)$, converges to x^{*}.

We observed that the conclusion is not clear and the proof given by Nazir and Abbas [8] to the Theorem is not correct. They wrongly used the condition (1.3.1)(Here (1.5.1)) three times in page 53 of [8] (see the line 5 from $4^{\text {th }}$ line, line 12 from line 11 and line 19 from line 18 from the above).

In this paper, we obtain a Presic type theorem for four mappings satisfying a slight different contractive condition in partial b-metriclike spaces. We also give an example and three corollaries to our main theorem. One of our corollary is a probable modification of main theorem of [8](Theorem 1.5 of this section).

Recently Khan et al.[5] introduced partial b-metric-like spaces by combining the concepts of b-metric-like spaces given by Alghamdi [4] and partial metric spaces given by Mathews [7].

Now we recall some basic definitions and remarks which play a crucial role in the theory of partial b-metric-like spaces.

Definition 1.6. ([5]) A partial b-metric-like on a nonempty set X is a function $p: X \times X \rightarrow \mathcal{R}^{+}$such that for all $x, y, z \in X$ and a constant $s \geq 1$ the following are satisfied:

$$
\begin{aligned}
& \left(p_{1}\right) p(x, y)=0 \Rightarrow x=y \\
& \left(p_{2}\right) p(x, x) \leq p(x, y) \\
& \left(p_{3}\right) p(x, y)=p(y, x) \\
& \left(p_{4}\right) p(x, y) \leq s[p(x, z)+p(z, y)-p(z, z)] .
\end{aligned}
$$

The triad (X, p, s) is called a partial b-metric-like space .

Definition 1.7. Let (X, p, s) be a partial b-metric-like space.
(i) A sequence $\left\{x_{n}\right\}$ in X is said to be convergent to $x \in X$ if $p(x, x)=\lim _{n \rightarrow \infty} p\left(x, x_{n}\right)$.
(ii) A sequence $\left\{x_{n}\right\}$ in X is said to be a Cauchy sequence in X if $\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)$ exists and is finite.
(iii) X is said to be complete if every Cauchy sequence $\left\{x_{n}\right\}$ in X converges to a point $x \in X$ such that $\lim _{n \rightarrow \infty} p\left(x, x_{n}\right)=p(x, x)=$ $\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)$.
Remark 1.8. Let (X, p, s) be a partial b-metric-like space and $\left\{x_{n}\right\}$ be a sequence in X such that $\lim _{n \rightarrow \infty} p\left(x, x_{n}\right)=0$. Then
(i) x is unique,
(ii) $\frac{1}{s} p(x, y) \leq \lim _{n \rightarrow \infty} p\left(x_{n}, y\right) \leq s p(x, y)$ for all $y \in X$, whenever the limit exists,
(iii) $p\left(x_{n}, x_{0}\right) \leq s p\left(x_{0}, x_{1}\right)+s^{2} p\left(x_{1}, x_{2}\right)+\ldots+s^{n-1} p\left(x_{n-2}, x_{n-1}\right)$ $+s^{n} p\left(x_{n-1}, x_{n}\right)$.
Now, we introduce the definition of jointly $2 k$-weakly compatible pairs.

Definition 1.9. Let X be a nonempty set, k a positive integer, $S, T: X^{2 k} \rightarrow X$ and $f, g: X \rightarrow X$ be mappings. Then the pairs (f, S) and (g, T) are said to be jointly $2 k$-weakly compatibe if $f(S(x, x, \ldots, x)=S(f x, f x, \ldots, f x)$ and $g(T(x, x, \ldots, x))=$ $T(g x, g x, \ldots, g x)$ whenever there exists $x \in X$ such that $f x=$ $S(x, x, \ldots, x)$ and $g x=T(x, x, \ldots, x)$.

Remark 1.10. If the two pairs (f, S) and (g, T) are $2 k$-weakly compatible then the pairs (f, S) and (g, T) are jointly $2 k$-weakly compatible. But the converse need not be true in view of the following example.

Example 1.11. Let $X=[0,1]$ and $k=1$. Define $S(x, y)=\frac{3 x^{2}+2 y}{72}$, $T(x, y)=\frac{2 x+3 y^{2}}{72}, f x=\frac{x}{6}, g x=\frac{x^{2}}{4}$ for all $x, y \in X$.
The pair (g, T) is not 2-weakly compatible since $T(x, x)=g x$ implies $x=0, \frac{2}{15}$ and $g\left(T\left(\frac{2}{15}, \frac{2}{15}\right)\right) \neq T\left(g \frac{2}{15}, g \frac{2}{15}\right)$.But the pairs (f, S) and (g, T) are jointly 2-weakly compatible.

Now we present our main result.

2. Main Result

Theorem 2.1. . Let (X, p, s) be a complete partial b-metric-like space with $s \geq 1$ and $S, T: X^{2 k} \rightarrow X$ and $f, g: X \rightarrow X$ be mappings
satisfying
(2.1.1) $S\left(X^{2 k}\right) \subseteq g(X), T\left(X^{2 k}\right) \subseteq f(X)$,

$$
\begin{equation*}
p\left(S\left(x_{1}, x_{2}, \cdots, x_{2 k-1}, x_{2 k}\right), T\left(y_{1}, y_{2}, \cdots, y_{2 k-1}, y_{2 k}\right)\right) \tag{2.1.2}
\end{equation*}
$$

$\leq \lambda \max \left\{\begin{array}{c}p\left(g x_{1}, f y_{1}\right), p\left(f x_{2}, g y_{2}\right), p\left(g x_{3}, f y_{3}\right), p\left(f x_{4}, g y_{4}\right), \cdots, \\ p\left(g x_{2 k-1}, f y_{2 k-1}\right), p\left(f x_{2 k}, g y_{2 k}\right)\end{array}\right\}$
for all $x_{1}, x_{2}, \cdots, x_{2 k}, y_{1}, y_{2}, \cdots, y_{2 k} \in X$ and $\lambda \in\left(0, \frac{1}{s^{2 k}}\right)$,
(2.1.3) (f, S) and (g, T) are jointly $2 k$-weakly compatible pairs.
(2.1.4) Suppose $z=f u=g u$ for some $u \in X$ whenever there exists a sequence $\left\{y_{2 k+n}\right\}_{n=1}^{\infty}$ in X such that $\lim _{n \rightarrow \infty} y_{2 k+n}=z \in X$.
Then z is the unique point in $X \stackrel{n \rightarrow \infty}{n}$ such that $z=f z=g z=$ $S(z, z, \cdots, z)=T(z, z, \cdots, z)$.

Proof. Suppose $x_{1}, x_{2}, \cdots, x_{2 k}$ are arbitrary points in X.
From (2.1.1), define

$$
\begin{aligned}
y_{2 k+2 n-1} & =S\left(x_{2 n-1}, x_{2 n}, \cdots x_{2 k+2 n-2}\right)=g x_{2 k+2 n-1} \\
y_{2 k+2 n} & =T\left(x_{2 n}, x_{2 n+1}, \cdots x_{2 k+2 n-1}\right)=f x_{2 k+2 n} \text { for } n=1,2, \cdots
\end{aligned}
$$

Let

$$
\begin{aligned}
\alpha_{2 n} & =p\left(f x_{2 n}, g x_{2 n+1}\right), \\
\alpha_{2 n-1} & =p\left(g x_{2 n-1}, f x_{2 n}\right), n=1,2, \cdots
\end{aligned}
$$

Let $\theta=\lambda^{\frac{1}{2 k}}$ and $\mu=\max \left\{\frac{\alpha_{1}}{\theta}, \frac{\alpha_{2}}{\theta^{2}}, \cdots, \frac{\alpha_{2 k}}{\theta^{2 k}}\right\}$.
Then $0<\theta<1$ and by the selection of μ we have
(1) $\alpha_{n} \leq \mu \theta^{n}$, for $n=1,2, \cdots, 2 k$.
(2) $\alpha_{2 k+1}=p\left(g x_{2 k+1}, f x_{2 k+2}\right)$
$=p\left(S\left(x_{1}, x_{2}, x_{3}, x_{4}, \cdots, x_{2 k-1}, x_{2 k}\right), T\left(x_{2}, x_{3}, x_{4}, \cdots, x_{2 k}, x_{2 k+1}\right)\right)$
$\leq \lambda \max \left\{\begin{array}{c}p\left(g x_{1}, f x_{2}\right), p\left(f x_{2}, g x_{3}\right), p\left(g x_{3}, f x_{4}\right), \\ p\left(f x_{4}, g x_{5}\right), \cdots, p\left(g x_{2 k-1}, f x_{2 k}\right),\left(f x_{2 k}, g x_{2 k+1}\right)\end{array}\right\}$
from (2.1.2)
$=\lambda \max \left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \cdots, \alpha_{2 k-1}, \alpha_{2 k}\right\}$
$\leq \lambda \max \left\{\mu \theta, \mu \theta^{2}, \mu \theta^{3}, \mu \theta^{4}, \cdots, \mu \theta^{2 k-1}, \mu \theta^{2 k}\right\}$ from(1)
$=\lambda \mu \theta=\theta^{2 k} \mu \theta$
$=\mu \theta^{2 k+1}$
and
(3) $\alpha_{2 k+2}=p\left(f x_{2 k+2}, g x_{2 k+3}\right)$
$=p\left(S\left(x_{3}, x_{4}, x_{5}, x_{6}, \cdots, x_{2 k+1}, x_{2 k+2}\right), T\left(x_{2}, x_{3}, x_{4}, \cdots, x_{2 k}, x_{2 k+1}\right)\right)$
$\leq \lambda \max \left\{\begin{array}{c}p\left(g x_{3}, f x_{2}\right), p\left(f x_{4}, g x_{3}\right), p\left(g x_{5}, f x_{4}\right), \\ p\left(f x_{6}, g x_{5}\right), \cdots, p\left(g x_{2 k+1}, f x_{2 k}\right), p\left(f x_{2 k+2}, g x_{2 k+1}\right)\end{array}\right\}$
from (2.1.2)
$=\lambda \max \left\{\alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \cdots, \alpha_{2 k}, \alpha_{2 k+1}\right\}$
$\leq \lambda \max \left\{\mu \theta^{2}, \mu \theta^{3}, \mu \theta^{4}, \mu \theta^{5}, \cdots, \mu \theta^{2 k}, \mu \theta^{2 k+1}\right\}$ from (1), (2)
$=\lambda \mu \theta^{2}=\theta^{2 k} \mu \theta^{2}$
$=\mu \theta^{2 k+2}$.

Continuing in this way,by induction, we get
(4) $\alpha_{n} \leq \mu \theta^{n}$ for $n=1,2, \cdots$

Now consider
(5) $p\left(y_{2 k+2 n-1}, y_{2 k+2 n}\right)$
$=p\left(S\left(x_{2 n-1}, x_{2 n}, \cdots, x_{2 k+2 n-3}, x_{2 k+2 n-2}\right)\right.$,
$\left.T\left(x_{2 n}, x_{2 n+1}, \cdots, x_{2 k+2 n-2}, x_{2 k+2 n-1}\right)\right)$
$\leq \lambda \max \left\{p\left(g x_{2 n-1}, f x_{2 n}\right), p\left(f x_{2 n}, g x_{2 n+1}\right), \cdots, p\left(f x_{2 k+2 n-2}, g x_{2 k+2 n-1}\right)\right\}$
$=\lambda \max \left\{\alpha_{2 n-1}, \alpha_{2 n}, \alpha_{2 n+1}, \alpha_{2 n+2} \cdots, \alpha_{2 k+2 n-3}, \alpha_{2 k+2 n-2}\right\}$
$\leq \lambda \max \left\{\mu \theta^{2 n-1}, \mu \theta^{2 n}, \mu \theta^{2 n+1}, \mu \theta^{2 n+2}, \cdots, \mu \theta^{2 k+2 n-3}, \mu \theta^{2 k+2 n-2}\right\}$,
from (4)
$=\lambda \mu \theta^{2 n-1}=\theta^{2 k} \mu \theta^{2 n-1}$
$=\mu \theta^{2 k+2 n-1}$
Also
(6) $p\left(y_{2 k+2 n}, y_{2 k+2 n+1}\right)=p\left(S\left(x_{2 n+1}, x_{2 n+2}, \cdots, x_{2 k+2 n-1}, x_{2 k+2 n}\right)\right.$,
$\left.T\left(x_{2 n}, x_{2 n+1}, \cdots, x_{2 k+2 n-2}, x_{2 k+2 n-1}\right)\right)$
$\leq \lambda \max \left\{p\left(g x_{2 n+1}, f x_{2 n}\right), p\left(f x_{2 n+2}, g x_{2 n+1}\right), \cdots, p\left(f x_{2 k+2 n}, g x_{2 k+2 n-1}\right)\right\}$
$=\lambda \max \left\{\alpha_{2 n}, \alpha_{2 n+1}, \alpha_{2 n+2}, \alpha_{2 n+3}, \cdots, \alpha_{2 k+2 n-2}, \alpha_{2 k+2 n-1}\right\}$
$\leq \lambda \max \left\{\mu \theta^{2 n}, \mu \theta^{2 n+1}, \mu \theta^{2 n+2}, \mu \theta^{2 n+3}, \cdots, \mu \theta^{2 k+2 n-2}, \mu \theta^{2 k+2 n-1}\right\}$,
from (4)
$=\lambda \mu \theta^{2 n}=\theta^{2 k} \mu \theta^{2 n}$
$=\mu \theta^{2 k+2 n}$
Thus from (5) and (6) we have
(7) $p\left(y_{2 k+n}, y_{2 k+n+1}\right) \leq \mu \theta^{2 k+n}$ for $n=1,2,3, \cdots$

Now from $m>n$ consider
(8) $p\left(y_{2 k+n}, y_{2 k+m}\right) \leq s p\left(y_{2 k+n}, y_{2 k+n+1}\right)+s^{2} p\left(y_{2 k+n+1}, y_{2 k+n+2}\right)+\cdots$ $+s^{m-n-1} p\left(y_{2 k+m-1}, y_{2 k+m}\right)$
$\leq s \mu \theta^{2 k+n}+s^{2} \mu \theta^{2 k+n+1}+\cdots+s^{m-n-1} \mu \theta^{2 k+m-1}$
from (7) $\leq \mu\left[(s \theta)^{2 k+n}+(s \theta)^{2 k+n+1}+\cdots+(s \theta)^{2 k+m-1}\right]$, since $s \geq 1$
$\leq \mu(s \theta)^{2 k} \frac{(s \theta)^{n}}{1-s \theta}$, since $s \theta=s \lambda^{\frac{1}{2 k}}<s \frac{1}{s}=1$
$\rightarrow 0$ as $n \rightarrow \infty, m \rightarrow \infty$
Hence $\left\{y_{2 k+n}\right\}$ is a Cauchy sequence in (X, p, s). Since (X, p, s) is complete, there exists $z \in X$ such that
$p(z, z)=\lim _{n \rightarrow \infty} p\left(y_{2 k+n}, z\right)=\lim _{n, m \rightarrow \infty} p\left(y_{2 k+n}, y_{2 k+m}\right)$.
From (8), we have
(9) $p(z, z)=0$

From (2.1.4), there exists $u \in X$ such that
(10) $z=f u=g u$

Now consider
(11) $p\left(S(u, u, \cdots, u, u), y_{2 k+2 n}\right)$
$=p\left(S(u, u, \cdots, u), T\left(x_{2 n}, x_{2 n+1}, \cdots, x_{2 k+2 n-3}\right)\right.$
$\leq \lambda \max \left\{p\left(g u, f x_{2 n}\right), p\left(f u, g x_{2 n+1}\right), \cdots, p\left(g u, f x_{2 k+2 n-2}\right), p\left(f u, g x_{2 k+2 n-1}\right)\right\}$
Letting $n \rightarrow \infty$ and using (9),(10)and Remark 1.8(ii), we get
$\frac{1}{s} p(S(u, u, \cdots, u, u), f u) \leq 0$ so that $f u=S(u, u, \cdots, u, u)$
Similarly we have
(12) $g u=T(u, u, \cdots, u, u)$

Since (f, S) and (g, T) are jointly $2 k$-weakly compatible pairs, we have
(13) $f z=f(f u)=f(S(u, u, \cdots, u, u))=S(f u, f u, \cdots, f u, f u))=$ $S(z, z, \cdots, z, z)$
and
(14) $g z=T(z, z, \cdots, z, z)$

Now consider
$p(f z, z)=p(f z, g u)$
$=p(S(z, z, z, z, \cdots, z, z), T(u, u, u, u, \cdots, u, u))$, from (13),(12)
$\leq \lambda \max \{p(g z, f u), p(f z, g u), \cdots, p(g z, f u), p(f z, g u)\}$
$=\lambda \max \{p(g z, z), d(f z, z)\}$, from (10)
Similarly we have $p(g z, z) \leq \lambda \max \{p(g z, z), p(f z, z)\}$.
Thus we have $\max \{p(f z, z), d(g z, z)\} \leq \lambda \max \{p(f z, z), p(g z, z)\}$
which in turn yields that $z=f z=g z$.
From (13) and (14), it follows that
(15) $z=f z=g z=S(z, z, \cdots, z, z)=T(z, z, \cdots, z, z)$

Suppose there exists $z^{\prime} \in X$ such that
$z^{\prime}=f z^{\prime}=g z^{\prime}=S\left(z^{\prime}, z^{\prime}, \cdots, z^{\prime}\right)=T\left(z^{\prime}, z^{\prime}, \cdots, z^{\prime}\right)$.
Then from (2.1.2) we have
$p\left(z, z^{\prime}\right)$
$=p\left(S(z, z, \cdots, z), T\left(z^{\prime}, z^{\prime}, \cdots, z^{\prime}\right)\right)$
$\leq \lambda \max \left\{p\left(g z, f z^{\prime}\right), p\left(f z, g z^{\prime}\right), \cdots, p\left(g z, f z^{\prime}\right), p\left(f z, g z^{\prime}\right)\right\}=\lambda p\left(z, z^{\prime}\right)$
This implies that $z^{\prime}=z$.
Thus z is unique point in X satisfying (15).
Now we give an example to illustrate our main Theorem 2.1.

Example 2.2. Let $X=[0,1], p(x, y)=\max \left\{x^{2}, y^{2}\right\}$ and $k=1$.Then (X, p, s) is a complete partial b-metric-like space with $s=2$.Define $S(x, y)=\left[\frac{3 x^{2}+2 y}{72}\right]^{\frac{1}{2}}, T(x, y)=\left[\frac{2 x+3 y^{2}}{72}\right]^{\frac{1}{2}}, f x=\left[\frac{x}{6}\right]^{\frac{1}{2}}$ and $g x=\frac{x}{2}$ for all $x, y \in X$.

Then for all $x_{1}, x_{2}, y_{1}, y_{2} \in X$, we have

$$
\begin{aligned}
& p\left(S\left(x_{1}, x_{2}\right), T\left(y_{1}, y_{1}\right)\right) \\
& =\max \left\{\frac{3 x_{1}^{2}+2 x_{2}}{72}, \frac{2 y_{1}+3 y_{2}^{2}}{7_{2}^{2}}\right\} \\
& \leq \frac{1}{7^{2}}\left[\max \left\{3 x_{1}^{2}, 2 y_{1}\right\}+\max \left\{2 x_{2}, 3 y_{2}^{2}\right\}\right] \\
& \leq \frac{1}{36} \max \left\{\max \left\{3 x_{1}^{2}, 2 y_{1}\right\}, \max \left\{2 x_{2}, 3 y_{2}^{2}\right\}\right\} \\
& =\frac{1}{3} \max \left\{\max \left\{\frac{x_{1}^{2}}{4}, \frac{y_{1}}{6}\right\}, \max \left\{\frac{x_{2}}{6}, \frac{y_{2}^{2}}{4}\right\}\right\} \\
& =\frac{1}{3} \max \left\{p\left(g x_{1}, f y_{1}\right), p\left(f x_{2}, g y_{2}\right)\right\} .
\end{aligned}
$$

Thus the condition (2.1.2) of Theorem 2.1 is satisfied. One can easily verify the remaining conditions of Theorem 2.1. Clearly, 0 is the unique point in X such that $0=f 0=g 0=S(0,0, \ldots, 0,0)=T(0,0, \ldots, 0,0)$.

Corollary 2.3. Let (X, p, s) be a partial b-metric-like space with $s \geq 1$ and $S, T: X^{2 k} \rightarrow X$ and $f: X \rightarrow X$ be mappings satisfying (2.3.1) $S\left(X^{2 k}\right) \subseteq f(X), T\left(X^{2 k}\right) \subseteq f(X)$,
$\begin{aligned} & \text { (2.3.2) } \\ & \lambda \max _{1 \leq i \leq 2 k}\left\{\left(S\left(x_{1}, x_{2}, \cdots, x_{2 k-1}, x_{2 k}\right), T\left(y_{1}, y_{2}, \cdots, y_{2 k-1}, y_{2 k}\right)\right)\right. \\ & \left.\left\{p y_{i}\right)\right\} \text { for all } x_{1}, x_{2}, \cdots, x_{2 k}, y_{1}, y_{2}, \cdots, y_{2 k} \in\end{aligned} \quad \leq$ and $\lambda \in\left(0, \frac{1}{s^{2 k}}\right)$,
(2.3.3) $f(X)$ is a complete subspace of X,
(2.3.4) the pairs (f, S) or (f, T) is $2 k$-weakly compatible.

Then there exists a unique $z \in X$ such that $z=f z=$ $S(z, z, \cdots, z, z)=T(z, z, \cdots, z, z)$.

Corollary 2.4. Let (X, p, s) be a complete partial b-metric-like space with $s \geq 1$ and $S, T: X^{2 k} \rightarrow X$ be mappings satisfying (2.4.1) $p\left(S\left(x_{1}, x_{2}, \cdots, x_{2 k-1}, x_{2 k}\right), T\left(y_{1}, y_{2}, \cdots, y_{2 k-1}, y_{2 k}\right)\right) \leq$ $\lambda \max _{1 \leq i \leq 2 k}\left\{p\left(x_{i}, y_{i}\right)\right\}$ for all $x_{1}, x_{2}, \cdots, x_{2 k}, y_{1}, y_{2}, \cdots, y_{2 k} \in X$ and $\lambda \in\left(0, \frac{1}{s^{2 k}}\right)$
Then there exists a unique $u \in X$ such that $u=S(u, u, \cdots, u, u)=T(u, u, \cdots, u, u)$.

Corollary 2.5. Let (X, p, s) be a partial b-metric-like space with $s \geq$ 1and $S: X^{k} \rightarrow X$ and $f: X \rightarrow X$ be mapping satisfying
(2.5.1) $S\left(X^{k}\right) \subseteq f(X)$,
(2.5.2) $p\left(S\left(x_{1}, x_{2}, \cdots, x_{k-1}, x_{k}\right), S\left(y_{1}, y_{2}, \cdots, y_{k-1}, y_{k}\right)\right)$
$\lambda \max _{1 \leq i \leq k}\left\{p\left(f x_{i}, f y_{i}\right)\right\}$ for all $x_{1}, x_{2}, \cdots, x_{k}, y_{1}, y_{2}, \cdots, y_{k} \in \quad$ and $\lambda \in\left(0, \frac{1}{s^{k}}\right)$,
(2.5.3) $f(X)$ is a complete subspace of X,
(2.5.4) the pair (f, S) is k-weakly compatible.

Then there exists a unique $z \in X$ such that $z=f z=S(z, z, \cdots, z, z)$.

References

[1] K.P.R.Rao, G.N.V.Kishore and Md.Mustaq Ali,Generalization of Banach contraction principle of Presic type for three maps, Math.Sci. 3(3), 2009, 273-280.
[2] K.P.R.Rao, Md.Mustaq Ali and B.Fisher,Some Presic type generalization of Banach contraction principle, Math.Moravica 15(2011), 41-47.
[3] Lj.B.Ciric and S.B.Presic,On Presic type generalization of Banach contraction mapping principle, Acta.Math.Univ.Comenianae, LXXVI (2), (2007), 143-147.
[4] M.Alghamdi,N.Ali Hussain and P.Salimi,Fixed point and coupled fixed point theorems on b-metric-like spaces,J.Inequalities and Applications,2013,(2013),402,25 pages.
[5] M.S.Khan,K.P.R.Rao and K.V.S.Parvathi,A unique common coupled fixed point theorem for four maps in partial b-metric-like spaces,SQU Journal for Science,19(2),(2015),55-61.
[6] S.B.Presic, Sur une classe d^{\prime} inequations aux differences finite et sur la convergence de certaines suites, Pub de l^{\prime} inst. Math. Belgrade, 5(19), (1965), 75-78.
[7] S.G.Matthews, Partial metric topology, in Proceedings of the 8th Summer Conference on General Topology and Applications 1994. vol. 728, pp. 183-197, Annals of the New York Academy of Sciences, 1994.
[8] Talat Nazir and Mujahid Abbas, Common fixed point of Presic type contraction mappings in partial metric spaces, Journal of Nonlinear Analysis and optimization, 5(1),(2014), 49-55.

Department of Mathematics, Acharya Nagarjuna University, Nagarjuna Nagar -522 510, A.P., India. email:kprrao2004@yahoo.com

Department of Mathematics, Aligarh Muslim University , Aligarh-202 002,Uttar Pradesh,India. email: mhimdad@yahoo.co.in

Department of Science and Humanities, Nova College of Engineering and Technology, Jupudi-521 456, Krishna Dt.,Andhra Pradesh, India. email: tarakaramudu32@gmail.com

