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SUPERMINIMIZERS FOR ENERGY INTEGRALS
IN ORLICZ-SOBOLEV SPACES ON METRIC SPACES

MARCELINA MOCANU

Abstract. We extend the basic part of the study of supermini-
mizers for Dirichlet energy integrals on metric spaces, initiated in a
seminal paper by J. Kinnunen and O. Martio (2002) and thoroughly
undertaken in the monograph of A. Björn and J. Björn (2011), to a
case where the role of Newtonian spaces is played by more general
Orlicz-Sobolev spaces. We prove a comparison principle for obstacle
problems in this generalized setting, then we give some characteriza-
tions of superminimizers and methods of constructing new supermini-
mizers from existing ones. Finally, we establish a two-way connection
between the solutions of obstacle problems and the superminimizers
associated to an energy integral.

Dedicated to Professor Valeriu Popa on the Occasion of His 80th
Birthday

1. Introduction

Laplace equation is the prototype for linear elliptic partial differ-
ential equations of second order and the properties of its solutions,
harmonic functions, are the object of study of potential theory.
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Dirichlet’s principle for Laplace equation establishes a strong con-
nection between PDE’s and calcululs of variations. Consider the en-
ergy integral I(v) =

∫
Ω

|∇v(x)|2 dx, where Ω ⊂ Rn is a nonempty

open set and v ∈ C2 (Ω). Then u ∈ C2 (Ω) is harmonic in Ω if and
only if u is a stationary point of the functional I, in the sense that
d
dt
I (u+ tϕ)

∣∣
t=0

= 0 for all ϕ ∈ C∞0 (Ω). In the special case where Ω

is a bounded domain with a C1-boundary, a function u ∈ C2
(
Ω
)

is
harmonic in Ω if and only if u is a minimizer of I, with respect to the
functions having the same boundary values: I (u) ≤ I (w) whenever
w ∈ C2

(
Ω
)

satisfies w|∂Ω = u|∂Ω.
Nonlinear potential theory extends the study of harmonic functions

to solutions of partial differential equations that are nonlinear, possibly
degenerate, elliptic or parabolic.

A first step in generalizing Laplace equation by a nonlinear ellip-
tic equation in divergence form has been taken by introducing the
p−Laplace equation

− div
(
|∇u|p−2∇u

)
= 0.

Solutions of the p−Laplace equation in domains in Rn, called
p−harmonic functions, coincide with the minimizers of the p−Dirichlet
energy integral Ip(u) =

∫
Ω

|∇u(x)|p dx. Moreover, supersolutions of

the p−Laplace equation coincide with the superminimizers of the
p−Dirichlet energy integral.

A classical obstacle problem (in calculus of variations) requires to
find the equilibrium position of an elastic membrane whose boundary
is held fixed, and which is constrained to lie above a given obstacle.
This problem is related to the study of minimal surfaces and of the
capacity of a set in potential theory. The obstacle problem with the
obstacle identical −∞ is the corresponding Dirichlet problem. Ob-
stacle problems have applications in continuous media mechanics (the
study of fluid filtration in porous media, elasto-plasticity), optimal
control ( applied e.g. to the study of the electrochemical machining
problem), financial mathematics and many others [24].

[14] was the first monograph dealing with a potential theory for a
class of second order quasilinear elliptic equations that are ”measur-
able perturbations” of p−Laplace equation and whose solutions are in
a weighted Sobolev space of first order, with exponent p. An impor-
tant property of these solutions is that they are quasiminimizers of a
weighted p−Dirichlet integral.
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During the last two decades, potential theory has been developed in
the setting of doubling metric measure spaces supporting a p−Poincaré
inequality. Nonlinear potential theory on metric measure spaces uni-
fies the theory of variational integrals related to nonlinear elliptic
PDE’s, studied in various settings: in weighted Euclidean spaces with
Muckenhoupt weights, on Riemannian manifolds with nonnegative
Ricci curvature, on Carnot groups, on graphs, etc.

In the metric setting, the role of the length of the gradient is taken
by the notion of upper gradient, that was introduced by Heinonen
and Koskela [13]. The study of p−harmonic functions as solutions
of a partial differential equation is replaced by their study study as
minimizers of the p−Dirichlet integral, which belong to the Newtonian
spaceN1,p

loc (X). Superminimizers and solutions of the obstacle problem
for the p−Dirichlet integral play an important role in this study, as
shown in [16]. Quasiminimizers, that in first place have been used as
tools in studying regularity of minimizers of variational integrals, are
interesting in their own right, their potential theory on metric spaces
being developed in [17].

The monograph [3], considered a metric space enriched version of
[14], is a self-contained exposition on nonlinear potential theory of
p−harmonic functions on metric measure spaces supporting a p−Poin-
caré inequality.

We extend the basic part of the study of superminimizers for Dirich-
let energy integrals on metric spaces, initiated in a seminal paper by
J. Kinnunen and O. Martio [16], developed in papers as [2] and thor-
oughly undertaken in the monograph of A. Björn and J. Björn [3], to
a case where the role of Newtonian spaces is played by more general
Orlicz-Sobolev spaces. We prove a comparison principle for obstacle
problems in this generalized setting, then we give some characteriza-
tions of superminimizers and methods of constructing new supermini-
mizers from existing ones. Finally, we establish a two-way connection
between the solutions of obstacle problems and the superminimizers
associated to an energy integral.

2. Preliminaries. Weak upper gradients and
Orlicz-Sobolev spaces

Let (X, d, µ) be a metric measure space. It is assumed that µ is a
Borel regular measure, finite and positive on balls. We will denote by
B (x, r) the open ball centered at x ∈ X of radius r > 0. By a curve
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we mean a continuous mapping from a compact interval into X. We
will denote the image of a curve γ : [a, b]→ X by |γ|.

The measure µ is doubling if there exists a constant Cµ ≥ 1 such
that

µ (B (x, 2r)) ≤ Cµµ (B (x, r))

whenever x ∈ X and r > 0. Doubling measures play an important
role in harmonic analysis, through the notion of space of homogeneous
type.

We recall the notion of Orlicz space on a measure space [23]. The
notions of Young function and N−function are well-known. In what
follows, Ψ : [0,∞)→ [0,∞] will always be a Young function.

We deal with the growth rates given by ∆2−and ∇2−conditions for
Young functions. Ψ is said to satisfy a ∆2−condition (and is called
doubling) if there is a constant CΨ > 0 such that Ψ(2t) ≤ CΨΨ(t)
for every t ∈ [0,∞). On the other hand, Ψ : [0,∞) → [0,∞) is
said to satisfy a ∇2−condition if there is a constant C > 1 such that
Ψ(t) ≤ 1

2C
Ψ(Ct) for all t ∈ [0,∞).

Let (X,A, µ) be a measure space with µ a complete and σ−finite
measure. The Orlicz space associated to Ψ is

LΨ(X) =

u : X → R measurable:

∫
X

Ψ(λ |u|)dµ <∞ for some λ > 0

 .

The Orlicz space is a Banach space with the Luxemburg norm defined
by

‖u‖LΨ(X) = inf

λ > 0 :

∫
X

Ψ

(
|u|
λ

)
dµ ≤ 1

 .

If a Young function Ψ satisfies both a ∆2−condition and a
∇2−condition, then the space LΦ(Ω) is reflexive [6].

The notion on modulus of a curve family, with respect to an Orlicz
space, was introduced in [27] as a generalization of the p−modulus.
Denote by Γ (X) the family of all rectifiable non-constant curves γ :
[a, b]→ X. Let Γ ⊂ Γ (X) . Then A (Γ), the set of admissible function
for Γ, is defined as follows: ρ ∈ A (Γ) if ρ : X → [0,∞] is a Borel
function such that

∫
γ

ρ ds ≥ 1. The Ψ−modulus ModΨ (Γ) of Γ is

defined by

ModΨ (Γ) = inf
ρ∈A(Γ)

‖ρ‖LΨ(X) .
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The Ψ−modulus has the properties of an outer measure on Γ (X). It
is said that a property of curves holds for Ψ−almost every curve if the
Ψ−modulus of the set of curves in Γ (X) for which the property does
not hold is zero [27].

In first order calculus on metric spaces, the notion of upper gradient,
introduced by Heinonen and Koskela in [13], is a substitute for the
length of the gradient of a smooth function. A related notion is that
of upper gradient along a curve. All non-constant rectifiable curves γ :
[a, b] → X are assumed to be parameterized by arc length. Denoting
the length of γ by lγ, we will consider curves parameterized by arc
length written as γ : [0, lγ]→ X.

A Borel measurable function g : X → [0,∞] is an upper gradient of
an extended real-valued function u on X if

(2.1) |u(γ (0))− u(γ (lγ))| ≤
∫
γ

g ds.

Here the following convention is used: if at least one of u(γ (0)) and
u(γ (lγ)) is not finite, then

∫
γ

g ds =∞ ([3, page 9]).

Definition 1. A Borel measurable function g : X → [0,∞] is an
upper gradient of an extended real-valued function u on X, along a
non-constant rectifiable curve γ : [0, lγ] → X, if for every subcurve
γ1 : [0, lγ1 ]→ X of γ we have

|u(γ1 (0))− u(γ1 (lγ1))| ≤
∫
γ1

g ds.

The upper gradients are sensitive, being not preserved neither under
changes almost everywhere, nor under limits. These drawbacks are
eliminated by using the more general notion of p−weak upper gradient,
introduced by Koskela and MacManus [19]. We can define the notion
of Ψ−weak upper gradient associated to a Young function Ψ, slightly
modifying the definition from [27], by omitting the Borel measurability
requirement, as it was first suggested in [4]. As a consequence of the
Borel regularity of the measure µ, every measurable function f : X →
R agrees a.e. with a Borel function [3, Proposition 1.2]. Note that
for Ψ (t) = tp the Borel measurable Ψ−weak upper gradients coincide
with p−weak upper gradients.

Definition 2. A measurable function g : X → [0,∞] is a Ψ−weak
upper gradient of an extended real-valued function u on X if (2.1) holds
for Ψ−almost every non-constant rectifiable curve γ : [0, lγ]→ X.



130 M.MOCANU

The fact that
∫
γ

g ds is defined for Ψ−almost every curve γ ∈ Γ (X)

follows as shown in [3, Lemma 1.43] for the case Ψ (t) = tp, as we will
explain below.

Obviously, every upper gradient is a Ψ−weak upper gradient. The
converse is not true, but every Ψ−weak upper gradient is an upper
gradient along Ψ−almost every curve. Moreover, every Ψ−weak upper
gradient can be approximated in Orlicz norm by upper gradients, with
arbitrarily small error.

Remark 1. If Γ0 and Γ are curve families such that each γ ∈ Γ has
a subcurve γ0 ∈ Γ0, then ModΨ (Γ) ≤ModΨ (Γ0) [27, page 22].

Remark 2. As in [3, Lemma 1.40], it follows that for each Ψ−weak
upper gradient g of u the family of curves γ ∈ Γ (X) for which g is
not an upper gradient along γ has zero Ψ−modulus.

For a set E ⊂ X, denote ΓE = {γ ∈ Γ (X) with |γ| ∩ E 6= ∅}
and Γ+

E = {γ ∈ Γ (X) with Λ1 (γ−1 (E)) 6= 0}, where Λ1 is the outer
Lebesgue measure on R.

As in [3, Lemma 1.42], it is easy to prove that µ(E) = 0 implies
ModΨ

(
Γ+
E

)
= 0.

Lemma 1. Let g : X → [0,∞] be a measurable function and let
g̃ : X → [0,∞] be a Borel function such that g̃ = g a.e. Then,
for Ψ−almost every curve γ ∈ Γ (X), we have

∫
γ

g ds =
∫
γ

g̃ ds, in

particular
∫
γ

g ds is well defined.

Proof. As g̃ is a Borel function,
∫
γ

g̃ ds is defined for every curve γ ∈

Γ (X).
Let E = {x ∈ X : g (x) 6= g̃ (x)}. If γ ∈ Γ (X) \Γ+

E, then
∫
γ

g ds =∫
γ

g̃ ds. But ModΨ

(
Γ+
E

)
= 0, since we have µ(E) = 0.

Corollary 1. Each nonnegative function that agrees a.e. with a
Ψ−weak upper gradient of u is also a Ψ−weak upper gradient of u.
In particular, a function possesing a measurable Ψ−weak upper gradi-
ent also has a Borel Ψ−weak upper gradient.

The first part of the above corollary was proved for Borel measurable
functions in [27, Lemma 4.4].
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The following extension of [3, Lemma 2.6] can be proved as in the
case LΨ (X) = Lp (X), using only basic properties of Ψ−weak upper
gradients and of Ψ−modulus, as well as the property from Remark 2.

Lemma 2. If g1, g2 ∈ LΨ (X) are Ψ−weak upper gradients of a mea-
surable function u in X, then g = min {g1, g2} is also a Ψ−weak upper
gradient of u.

The problem of approximation in LΨ norm of a Ψ−weak upper
gradient by upper gradients was first solved in [19, Lemma 2.4] for
Ψ (t) = tp, then in [27, Lemma 4.3] for an arbitrary Young function
Ψ. Note that is not necessary to assumme that the Ψ−weak upper
gradient belongs to LΨ(X). From [27, Lemma 4.3] and Lemma 1 we
obtain

Lemma 3. Let g : X → [0,∞] be a Ψ−weak upper gradient of A func-
tion u. Then there is a decreasing sequence (gi)i≥1 of upper gradients
of u such that ‖gi − g‖LΨ(X) → 0 as i→∞.

Now we can recall the definition of the Orlicz-Sobolev spaceN1,Ψ(X)
introduced in [27]. First, the family of all functions u ∈ LΨ(X) having

a Ψ−weak upper gradient g ∈ LΨ(X) is denoted by Ñ1,Ψ(X).

Ñ1,Ψ(X) is a vector space. One defines a seminorm on Ñ1,Ψ(X) by
setting

‖u‖1,Ψ = ‖u‖
LΨ(X)

+ inf
g
‖g‖

LΨ(X)
,

where the infimum is taken over all Ψ−weak upper gradients g ∈
LΨ(X) of u.

Remark 3. Lemma 1 shows that the definition of Ñ1,Ψ(X) is not af-
fected if we use measurable, not necessarily Borel, Ψ−weak upper gra-
dients. In addition, by Lemma 3 the seminorm ‖u‖1,Ψ is not changed

if we take the infimum only over the upper gradients g ∈ LΨ(X) of u.

As in the case of Lp−spaces, the seminormed space Ñ1,Ψ(X) is
turned into a normed space via an equivalence relation. It is said

that functions u, v ∈ Ñ1,Ψ(X) are equivalent, u ∼ v, if ‖u− v‖1,Ψ = 0.
Denote the equivalence class of u by û.

One defines the normed space
(
N1,Ψ(X), ‖·‖N1,Ψ(X)

)
with

N1,Ψ(X) = Ñ1,Ψ(X)/ ∼ and ‖û‖N1,Ψ(X) = ‖u‖1,Ψ for every u ∈
Ñ1,Ψ(X). To ease the notation, we write u ∈ N1,Ψ(X) instead of
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û ∈ N1,Ψ(X), understanding that we choose an arbitrary represen-
tative of a given equivalence class belonging to N1,Ψ(X). The normed

space
(
N1,Ψ(X), ‖·‖N1,Ψ(X)

)
is the Orlicz-Sobolev space associated to

the Young function Ψ.
In the above definitions we may replace X by a nonempty open

subset Ω ⊂ X. It is said that a function u : X → R belongs to the
local Orlicz-Sobolev space N1,Ψ

loc (X) if u ∈ N1,Ψ(B) for each ball B ⊂ X
[27, Definition 6.3].

Some function spaces related to N1,Ψ(X) are very useful.
The Dirichlet space DΨ (X) can be defined as the space of measur-

able functions u : X → R having an upper gradient in LΨ(X) (equiva-
lently, by Lemma 1, having a Ψ−weak upper gradient in LΨ(X)). We

see that Ñ1,Ψ(X) = LΨ(X) ∩DΨ (X).
The space ACCΨ(X) of functions that are absolutely continuous on

Ψ−almost every curve in X is defined in [27, Definition 4.5], as follows:
u ∈ ACCΨ(X) if u : X → R and u ◦ γ is absolutely continuous on
[0, lγ] for Ψ−almost every curve γ ∈ Γ (X).

It is shown in [27, Lemma 4.6] that every u : X → R with
u ∈ DΨ (X) also belongs to ACCΨ(X). Note that we may drop
the restriction of finiteness of u. The existence of an upper gradi-
ent g ∈ LΨ(X) of u implies that the family Γ∞ ⊂ Γ (X), of curves γ
with

∫
γ

gds = ∞, has zero Ψ−modulus. According to Remark 2, the

family Γ0 of curves γ ∈ Γ (X) for which g is not an upper gradient
along γ also has zero Ψ−modulus. If γ ∈ Γ (X) \ (Γ∞ ∪ Γ0), it fol-
lows that u ◦ γ is absolutely continuous on [0, lγ], see the proof of [3,
Theorem 1.56]. Then DΨ (X) ⊂ ACCΨ(X).

In particular, we get Ñ1,Ψ(X) ⊂ ACCΨ(X) [27, Corollary 6.4].

A Sobolev capacity with respect to the space N1,Ψ(X) is the
Ψ−capacity introduced in [27, Definitions 6.1 and 6.2], defined by
CapΨ(E) = inf{‖u‖N1,Ψ(X) : u ∈ N1,Ψ (X) and u ≥ 1 on E} for

each set E ⊂ X. The Ψ−capacity is an outer measure. [27, Propo-
sition 7.3]. We have CapΨ(E) = 0 if and only if µ (E) = 0 and
ModΨ(ΓE) = 0 [27, Proposition 7.4].

It is said that a property regarding points in X holds Ψ−quasievery-
where (Ψ−q.e.) if the set of points for which the property does not
hold has zero Ψ−capacity.
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Remark 4. The Ψ−capacity represents the correct gauge for distin-
guishing between two functions representing classes in N1,Ψ(X): if
u ∈ N1,Ψ(X) and v : X → R, then v = u Ψ−q.e. if and only if
v ∈ N1,Ψ(X) and ‖u− v‖N1,Ψ(X) = 0, see [3, Proposition 1.61], [21,

Proposition 4].

A proof similar to that of [3, Proposition 1.59] shows that two func-
tions belonging to ACCΨ(X), that agree a.e., actually agree Ψ−q.e.,
see also [27, Corollary 6.12]. It follows that every representative of a
class in N1,Ψ(X) is finite Ψ−q.e., see [3, Corollary 1.70].

In order to compare boundary values of Orlicz-Sobolev functions we
need Orlicz-Sobolev spaces with zero boundary values on a set E ⊂ X.

Denote by Ñ1,Ψ
0 (E) be the collection of functions u : E → R for which

there exists u ∈ Ñ1,Ψ(X) such that u = u a.e. on E and u(x) = 0

Ψ−q.e in X\E. If u, v ∈ Ñ1,Ψ
0 (E) define u ' v if u = v a.e. on

E. Then ' is an equivalence relation. We consider the quotient

space N1,Ψ
0 (E) = Ñ1,Ψ

0 (E)/ '. A norm on N1,Ψ
0 (E) is unambiguously

defined by ‖u‖N1,Ψ
0 (E) := ‖u‖N1,Ψ(X). By Remark 4, we have

N1,Ψ
0 (E) =

{
u|E : u ∈ N1,Ψ(X) and u = 0 in X\E

}
.

Denote by Lipc (E) the set of Lipschitz functions with compact sup-

port in E. If Ω ⊂ X is open, then Lipc (Ω) ⊂ N1,Ψ
0 (Ω).

The following lemma generalizes [3, Lemma 2.37].

Lemma 4. Assume that E ⊂ X is measurable. If u ∈ N1,Ψ (E) and

v, w ∈ N1,Ψ
0 (E) satisfy the inequalities v ≤ u ≤ w Ψ−q.e. in E, then

u ∈ N1,Ψ
0 (E).

Proof. We denote the extension by zero of a function f : E → R to X
also by f . The extensions by zero of v, w belong to N1,Ψ (X).

We define the difference

d(x) =

{
u(x)− v(x), if x ∈ E and v(x) < +∞

0, if x ∈ E and v(x) = +∞ or if x ∈ X \ E .

Similarly, we define D replacing u by w. Note that D ∈ N1,Ψ
0 (E).

Then we have u = v + d and w = v +D on X.
Since v ≤ u ≤ w Ψ−q.e. in E, it follows that 0 ≤ d ≤ D. It suffices

to prove that d ∈ N1,Ψ
0 (E).

The above discussion show that it suffices to prove the lemma in
the case where v = 0. After redefining functions on sets of zero
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Ψ−capacity, we may assume that 0 ≤ u ≤ w everywhere in E. We
prove that the extension by zero of u belongs to N1,Ψ (X).

Fix gu ∈ LΨ (E) an upper gradient of u in E and gw ∈ LΨ (X) an
upper gradient of w in X.

Define

g =

{
gu + gw in E
gw in X \ E .

Clearly, g ∈ LΨ (X). We prove that g is an upper gradient of u in X,
hence u ∈ N1,Ψ (X).

Let γ : [0, l] → X be a curve of length 0 < l < ∞, parameterized
by arc length. Denote |γ| = γ ([0, l (γ)]).

Case 1. If |γ| ⊂ E, then |ũ (γ (0))− ũ (γ (l))| =
|u (γ (0))− u (γ (l))| ≤

∫
γ

guds ≤
∫
γ

gds.

Case 2. If {γ (0) , γ (l)} ⊂ X \ E, then |ũ (γ (0))− ũ (γ (l))| = 0 ≤∫
γ

gds.

Case 3. It remains to study the case when |γ| ∩ (X \ E) 6= ∅ and
{γ (0) , γ (l)} ∩ E 6= ∅.

a) If only one of the points γ (0), γ (l) belongs to E, we may assume
that γ (0) ∈ E, γ (l) ∈ X \ E, since the case γ (l) ∈ E, γ (0) ∈ X \ E
is similar. Then

|ũ (γ (0))− ũ (γ (l))| = |u (γ (0))| = u (γ (0))

≤ w (γ (0)) = |w (γ (0))− w (γ (l))|

≤
∫
γ

gwds ≤
∫
γ

gds.

b) If γ (0) , γ (l) ∈ E, we consider 0 < t < l such that γ (t) ∈ X \ E.
The above argument shows that |ũ (γ (0))− ũ (γ (t))| ≤

∫
γ|[0,t]

gds and

that |ũ (γ (t))− ũ (γ (l))| ≤
∫

γ|[t,l]

gds. Then

|ũ (γ (0))− ũ (γ (l))| ≤
∫

γ|[0,t]

gds+

∫
γ|[t,l]

gds =

∫
γ

gds.

Obviously, upper gradients, as well as Ψ−weak upper gradients,
are not unique (the sum between such a gradient and an arbitrary
nonnegative Borel function being a gradient of the same type). In
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order to substitute, in the problem of minimizing energy integral, the
length of the gradient |∇u| by an appropriate Ψ−weak upper gradient
of u, we need the notion of minimal Ψ−weak upper gradient.

Definition 3. Let u ∈ DΨ (X). A Ψ−weak upper gradient gu ∈
LΨ (X) of u is a minimal Ψ−weak upper gradient if gu ≤ g a.e.
in X for every Ψ−weak upper gradient g ∈ LΨ (X) of u.

Note that gu ≤ g a.e. implies
∫
X

Ψ (gu) dµ ≤
∫
X

Ψ (g) dµ and

‖gu‖LΨ(X) ≤ ‖g‖LΨ(X).

Tuominen [27] proved the following existence result for minimal
weak upper gradients of Orlicz-Sobolev functions.

Proposition 1. [27, Corollary 6.9] Assume that Ψ is a doubling
Young function (i.e., satisfies the ∆2−condition). Then for each
u ∈ N1,Ψ (X) there exists a Ψ−weak upper gradient gu ∈ LΨ (X) of u
such that

∫
X

Ψ (gu) dµ = inf
g

∫
X

Ψ (g) dµ and ‖gu‖LΨ(X) = inf
g
‖g‖LΨ(X),

where the infimum is taken over all Ψ−weak upper gradients of u.
Moreover, for every Ψ−weak upper gradient g ∈ LΨ (X) of u we have
gu ≤ g a.e. in X.

Remark 5. An analysis of the proofs from [27, 6.1], including the
proof of [27, Corollary 6.9], shows that the assumption u ∈ LΨ (X)
is not used. Therefore the results regarding minimal Ψ−weak upper
gradients in [27, 6.1] hold for u ∈ DΨ (X).

Note that a Ψ−weak upper gradient g ∈ LΨ (X) of u ∈ DΨ (X) is
determined up to sets of zero measure.

Now we can prove a glueing lemma for (measurable) Ψ−weak upper
gradients, extending [3, Lemma 2.19] from the case where LΨ (X) =
Lp (X), with a similar proof. The glueing lemma for Ψ−weak upper
gradients that are Borel functions was stated (without proof) in [27,
Lemma 4.11].

Lemma 5. Let u ∈ ACCΨ (X) and let v, w : X → R with g, h ∈
LΨ (X) being Ψ−weak upper gradients of v and w, respectively . As-
sume that there exists a a measurable set F ⊂ X such that u|F = v
and u|X\F = w. Then the function ρ = gχF + hχX\F is a Ψ−weak
upper gradient of u. Moreover, if Ψ is doubling and g = gv and h = gw
are minimal Ψ−weak upper gradients of v and w, respectively, then ρ
is a minimal Ψ−weak upper gradient of u.
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Proof. Let g1 = g+hχX\F and g2 = gχF+h. Note that g1, g2 ∈ LΨ (X)
and ρ = min {g1, g2}. It suffices to prove that g1 is a Ψ−weak upper
gradient of u. By symmetry, we see that g2 is also a Ψ−weak upper
gradient of u. Then using Lemma 2 it follows that ρ is a Ψ−weak
upper gradient of u.

By Remark 2 and Lemma 1, there exists a curve family Γ0 ⊂ Γ (X)
of zero Ψ−modulus such that for every γ ∈ Γ (X) \ Γ0, γ : [0, l]→ X
the following properties hold:

(1) γ−1 (F ) is measurable;
(2) u, v and w are absolutely continuous on γ;
(3) g and h are upper gradients along γ of v and w, respectively.
Case 1. If |γ| ⊂ X \ F , then

|u (γ (0))− u (γ (l))| = |w (γ (0))− w (γ (l))| ≤
∫
γ

hds ≤
∫
γ

g1ds,

hence

|u (γ (0))− u (γ (l))| ≤
∫
γ

g1ds.

Case 2. Now assume that |γ| ∩ F 6= ∅. Let α =
inf {t ∈ [0, l] : γ (t) ∈ F} and β = sup {t ∈ [0, l] : γ (t) ∈ F}.

If α > 0, then |u (γ (0))− u (γ (α))| = lim
t↗α
|w (γ (0))− w (γ (t))| ≤

lim
t↗α

∫
γ|[0,t]

hds =
∫

γ|[0,α]

hds ≤
∫

γ|[0,α]

g1ds, hence

|u (γ (0))− u (γ (α))| ≤
∫

γ|[0,α]

g1ds.

For α = 0 the above inequality is trivial.
Similarly, |u (γ (β))− u (γ (l))| ≤

∫
γ|[β,l]

g1ds.

Using the continuity of u and v along γ we get

|u (γ (α))− u (γ (β))| = |v (γ (α))− v (γ (β))| ≤
∫

γ|[α,β]

gds ≤
∫

γ|[α,β]

g1ds.

By the triangle inequality,

|u (γ (0))− u (γ (l))| ≤
∫

γ|[0,α]

g1ds+

∫
γ|[α,β]

g1ds+

∫
γ|[β,l]

g1ds =

∫
γ

g1ds,

hence the first part of the proof is complete.
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We proved that ρ, that clearly belongs to LΨ (X), is a Ψ−weak
upper gradient of u, hence u ∈ DΨ (X).

Now assume that Ψ is doubling (i.e., satisfies a ∆2−condition). By
Lemma 1 and Remark 5, there exists a minimal Ψ−weak upper gra-
dient gu of u. Then gu ≤ ρ a.e. on X.

For g = gu and h = gv, the first part of this lemma shows that

ρ1 := gvχF + gwχX\F

is a Ψ−weak upper gradient of u.
Applying the first part of the lemma, but with the roles of u and v

interchanged, we obtain that ρ2 := guχF + gvχX\F is a Ψ−weak upper
gradient of v. Then, by the a.e. minimality of gv and gu, we get

gv ≤ ρ2 = gu ≤ ρ = gv a.e. on F.

Then gu = gv a.e. on F , hence gu = ρ1 a.e. on F .
Similarly, applying the first part of this lemma, with the roles of u

and w interchanged, we obtain that ρ3 := gwχF +guχX\F is a Ψ−weak
upper gradient of w. Then, by the a.e. minimality of gw and gu, we
get

gw ≤ ρ3 = gu ≤ ρ = gw a.e. on X \ F.
Then gu = gw a.e. on X \ F , hence gu = ρ1 a.e. on X.

We proved that ρ1 is a minimal Ψ−weak upper gradient of u.

Corollary 2. Assume that the Young function Ψ is doubling. If v, w ∈
DΨ (X), then gv = gw a.e. on E := {x ∈ X : v(x) = w (x)}.
Proof. Define u = vχX\E +wχE. Since w = v on E, we see that u = v
on X. In particular, u ∈ DΨ (X) ⊂ ACCΨ (X).

By the second part of the glueing lemma, Lemma 5, with F := X\E,
it follows that

ρ := gvχX\E + gwχE
is a minimal Ψ−weak upper gradient of u, hence of v, on X.

Since gv is also a Ψ−weak upper gradient of v, we have gv = ρ a.e.
on X. This implies gv = gw a.e. on E.

Following the steps from the proof of [3, Lemma 2.23] and using
Remark 2 and Lemma 5 we get the next lemma. Note that the re-
striction of a minimal weak upper gradient is not always minimal [3,
page 51].

Lemma 6. Let Ω ⊂ X be a nonempty open set. If u ∈ DΨ (X) and gu
is a minimal Ψ−weak upper gradient of u in X, then the restriction
gu|Ω of gu to Ω is a minimal Ψ−weak upper gradient of u in Ω.
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Using Lemma 6, Proposition 1 can be extended from N1,Ψ (X) to
DΨ
loc (X), by the following result that generalizes [3, Theorem 2.25],

showing that every function in DΨ
loc (X) has a minimal Ψ−weak upper

gradient, determined up to a set of measure zero.

Proposition 2. Assume that the Young function Ψ is doubling. Then
for each u ∈ DΨ

loc (X) there exists a minimal Ψ−weak upper gradient
gu ∈ LΨ

loc (X) of u, i.e. gu ≤ g a.e. for all Ψ−weak upper gradients
g ∈ LΨ

loc (X) of u.

Proposition 3. Assume that the Young function Ψ is doubling. If
v, w ∈ DΨ

loc (X), then gv = gw a.e. on E := {x ∈ X : v(x) = w (x)}.

Proof. Fix x0 ∈ X. For every n ≥ 1 it follows, by Lemma 6 and
Corollary 2, that there exists a set En ⊂ E ∩B (x0, n) of zero measure

such that gv = gw on (E ∩B (x0, n)) \ En. For every x ∈ E \
∞⋃
n=1

En

there exists k ≥ 1 such that x ∈ (E ∩B (x0, k)) \ Ek, hence gv (x) =

gw (x). Since
∞⋃
n=1

En has zero measure, gv = gw a.e. on E.

3. A comparison principle for the solutions of
obstacle problems

We recall the definition the obstacle problem in Orlicz-Sobolev
spaces and an existence result for this problem.

Let Ψ be a doubling Young function and let Ω ⊂ X be a bounded
nonempty open set. For u ∈ N1,Ψ(Ω) denote by gu a minimal Ψ−weak
upper gradient of u in Ω. The existence of a minimal Ψ−weak upper
gradient, which is determined up to sets of zero measure, is guaranteed
by Proposition 1.

The obstacle problem’s requirement is to minimize the energy in-
tegral I(u,Ω) =

∫
Ω

Ψ(gu)dµ among the Orlicz-Sobolev functions u ∈

N1,Ψ(Ω) that have given boundary values β ∈ N1,Ψ(Ω) and lie above
an obstacle function ω : Ω→ R a.e.

Note that I(u,Ω) < ∞ whenever u ∈ N1,Ψ(Ω), since gu ∈ LΨ (Ω)
and the Young function Ψ is doubling.

The set of admissible functions for the obstacle problem is

Kω,β(Ω) = {v ∈ N1,Ψ(Ω) : v − β ∈ N1,Ψ
0 (Ω), v ≥ ω a.e.}.

If CapΨ (X \ Ω) = 0, then N1,Ψ
0 (Ω) = N1,Ψ(Ω), therefore the condi-

tion v − β ∈ N1,Ψ
0 (Ω) becomes void. One defines obstacle problems
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assuming that Ω ⊂ X is a bounded nonempty open set such that
CapΨ (X \ Ω) > 0. Note that µ (X \ Ω) > 0 implies CapΨ (X \ Ω) >
0.

Definition 4. A function u ∈ Kω,β(Ω) is said to be a solution to
the Kω,β(Ω)−obstacle problem if

∫
Ω

Ψ(gu)dµ ≤
∫
Ω

Ψ(gv)dµ, for every

v ∈ Kω,β(Ω).

It was proved in [22] that the obstacle problem stated above has
a unique solution under some assumptions that guarantee that a
(Ψ,Ψ)− Poincaré inequality for functions in N1,Ψ

0 (Ω) holds.

Theorem 1. [22, Theorem 4]Let X be a proper metric space, equipped
with a doubling measure, supporting a weak (1,Φ)−Poincaré inequality
for some strictly increasing Young function Φ. Assume that Ψ is a
doubling N− function and that Ψ ◦ Φ−1 is an N−function satisfying
a ∇2-condition. Let Ω ⊂ X be a bounded nonempty open set such that
diam(Ω) < diam(X)/3. If Kω,β(Ω) is nonempty, then there exists
a solution to the Kω,β(Ω)−obstacle problem. Moreover, if Ψ is also
strictly convex, then the solution to this obstacle problem is unique.

The uniqueness of the solution means that, whenever u1, u2 are so-
lutions of the Kω,β(Ω)−obstacle problem, the functions u1, u2 generate
the same equivalence class of N1,Ψ(Ω), in particular u1 = u2 Ψ−q.e.
in Ω.

Theorem 1 gives a partial extension of Theorem 3.2 proved by
Kinnunen and Martio in [16], in the case Ψ(t) = tp. The word
”partial” refers to the fact that in Theorem 1 the more general as-
sumption µ(X \ Ω) > 0 used in [16] is replaced by the assumption
diam(Ω) < diam(X)/3, needed in the proof of a (Ψ,Ψ)−Poincaré

inequality for functions in N1,Ψ
0 (Ω) [22, Theorem 2]. Note that in

[16] it was assumed that the metric measure space supports a weak
(1, q)−Poincaré inequality for some 1 < q < p, but later it turned
out that this follows from the apparently weaker assumption that the
space supports a weak (1, p)−Poincaré inequality for some p > 1 [15].

A variant of the above obstacle problem was studied in [3]. Replac-
ing the condition v ≥ ω a.e. in the definition of the admissible set
Kω,β(Ω) by the stronger condition v ≥ ω Ψ−q.e., the admissible set
turns into

K̃ω,β(Ω) = {v ∈ N1,Ψ(Ω) : v − β ∈ N1,Ψ
0 (Ω), v ≥ ω Ψ− q.e.}.
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A function u ∈ K̃ω,β(Ω) is said to be a solution to the

K̃ω,β(Ω)−obstacle problem if
∫
Ω

Ψ(gu)dµ ≤
∫
Ω

Ψ(gv)dµ for every v ∈

K̃ω,β(Ω).

Note that K̃ω,β(Ω) ⊂ Kω,β(Ω), since zero capacity sets have zero

measure. If u ∈ K̃ω,β(Ω) is a solution to the Kω,β(Ω)−obstacle prob-

lem, then u is also a solution to the K̃ω,β(Ω)−obstacle problem.
An analysis of the proof of Theorem 1 shows that its assumptions

actually ensure the existence of a solution of the K̃ω,β(Ω)−obstacle

problem, if K̃ω,β(Ω) is non-empty, as we will describe in the following.

Let I := inf
{
I(v,Ω) : v ∈ K̃ω,β(Ω))

}
. Consider a minimizing se-

quence (ui)i≥1 in K̃ω,β(Ω), i.e. I = lim
i→∞

I(gi,Ω), where gi := gui for

every i ≥ 1. Using the (Ψ,Ψ)−Poincaré inequality as in the proof
of [22, Theorem 2], we may assume, passing to some subsequences,
that (ui)i≥1 and (gi)i≥1 are weakly convergent in LΨ (X), to u and
g, respectively, where g ≥ 0. By a consequence of Mazur’s lemma,
[27, Theorem 4.17], there are sequences (uj)j≥1 and (gj)j≥1 of convex
combinations

uj =

nj∑
k=j

λkjuk, gj =

nj∑
k=j

λkjgk,

such that uj → u and gj → g in LΨ (X) as j → ∞. It is clear

that uj ∈ K̃ω,β(Ω) and gj is a Ψ−weak upper gradient of uj, for
each j ≥ 1. Moreover, the convexity of Ψ and the minimality of I
imply lim

j→∞

∫
Ω

Ψ (gj) dµ = I. In Orlicz spaces norm convergence implies

Ψ−mean convergence, hence I =
∫
Ω

Ψ (g) dµ.

Let ũ = lim sup
j→∞

uj and û = lim inf
j→∞

uj. As in the proof of [3, Propo-

sition 2.3], it follows that g is a Ψ−weak upper gradient of ũ and of

û. Then ũ, û ∈ Ñ1,Ψ(Ω). On the other hand, since there exists a
subsequence of (uj)j≥1 that converges a.e. to u, we see that ũ = u = û

a.e. Having ũ, û ∈ Ñ1,Ψ(Ω) and ũ = û a.e., it follows that ũ and û
represent the same equivalence class in N1,Ψ(Ω), hence ũ = û Ψ−q.e.

Considering a subsequence (ujm)m≥1 such that ũ = lim
m→∞

ujm , we see

that ũ ≥ ω Ψ−q.e. As in the proof of [22, Theorem 2], we obtain

ũ− β ∈ N1,Ψ
0 (Ω). Then ũ ∈ K̃ω,β(Ω).
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Then I ≤
∫
Ω

Ψ (gũ) dµ ≤
∫
Ω

Ψ (g) dµ = I. We proved that ũ is a

solution of the K̃ω,β(Ω)−obstacle problem. Similarly, û is a solution

of the K̃ω,β(Ω)−obstacle problem.
The uniqueness in N1,Ψ(Ω) of the solution for Ψ strictly convex

follows as in the proof of [22, Theorem 2].

In the particular case when the obstacle ω belongs to N1,Ψ (X), the

set K̃ω,β(Ω) is nonempty if and only if (ω − β)+ ∈ N1,Ψ
0 (Ω). For

Ψ (t) = tp with 1 < p <∞ this was proved in [3, Proposition 7.4].

Proposition 4. Assume that Ω is a bounded nonempty open set
in the metric measure space X, such that CapΨ (X \ Ω) > 0. Let

β, ω ∈ N1,Ψ(Ω). Then K̃ω,β(Ω) is nonempty if and only if (ω − β)+ ∈
N1,Ψ

0 (Ω).

Proof. Note that (ω − β)+ = max {ω, β} − β.

Necessity. Let u ∈ K̃ω,β(Ω). Then 0 ≤ (ω − β)+ ≤ (u− β)+ Ψ−q.e.

This inequality and (u− β)+ ∈ N
1,Ψ
0 (Ω) imply (ω − β)+ ∈ N

1,Ψ
0 (Ω),

according to Lemma 4.
Sufficiency. Define v := max {ω, β}. Since β, ω ∈ N1,Ψ(Ω), we have

v ∈ N1,Ψ(Ω). Clearly, v − β = (ω − β)+ ∈ N
1,Ψ
0 (Ω) and v ≥ ω on Ω.

Then v ∈ K̃ω,β(Ω).

Assume that 1 < p <∞, that X is a doubling metric measure space
supporting a (1, p)−Poincaré inequality and Ω ⊂ X is a bounded
nonempty open set such that Capp (X \ Ω) > 0. Let β ∈ N1,p(Ω) and

ω : Ω → R. Under these assumptions, it was proved in [3, Theorem

7.3] that K̃ω,β(Ω) is nonempty if and only if the Choquet integral∫
Ω

(ω − β)p+ d capp (·,Ω) is finite.

We do not know if there is an analogue for the above Adams’ crite-
rion in the setting of Orlicz-Sobolev spaces on metric measure spaces.

We prove a comparison principle for the solutions of a
Kω,β(Ω)−obstacle problem, assuming that every such problem has an
unique solution in N1,Ψ(Ω). This holds under the assumptions of The-
orem 1.

Proposition 5. Assume that every Kω,β(Ω)−obstacle problem has an
unique solution in N1,Ψ(Ω), whenever Kω,β(Ω) is nonempty.
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For j = 1, 2, let ωj : Ω→ R and βj ∈ N1,Ψ(Ω) be such that Kωj ,βj(Ω)
is nonempty and let uj be a solution of the Kωj ,βj(Ω)−obstacle problem.

If ω1 ≤ ω2 a.e. in Ω and (β1 − β2)+ ∈ N
1,Ψ
0 (Ω), then u1 ≤ u2 Ψ−q.e.

in Ω.

Proof. For each f ∈ N1,Ψ(Ω) we will denote by gf a minimal Ψ−weak
upper gradient of f .

Let u = min {u1, u2}. Then u ∈ N1,Ψ(Ω). We will prove that u = u1

Ψ−q.e. in Ω.
First we show that u ∈ Kω1,β1(Ω). Clearly, u ≥ ω1 a.e. in Ω.

Define h := (u1 − β1)− (u2 − β2). Note that h ∈ N1,Ψ
0 (Ω). We have

u− β1 = min {u1 − β1, (u2 − β2) + (β2 − β1)}
= (u2 − β2) + min {h, β2 − β1} ,

hence u− β1 ∈ N1,Ψ
0 (Ω). It follows that u ∈ Kω1,β1(Ω).

Similarly, for v = max {u1, u2} ∈ N1,Ψ(Ω) we show that v ∈
Kω2,β2(Ω). Obviously, v ≥ ω2 a.e. in Ω. We have

v − β2 = max {u1 − β1, (u2 − β2) + (β2 − β1)}
= (u2 − β2) + max {h, β2 − β1} ,

hence v − β2 ∈ N1,Ψ
0 (Ω). It follows that v ∈ Kω2,β2(Ω).

Next we compare
∫
Ω

Ψ(gu)dµ and
∫
Ω

Ψ(gu1)dµ.

Let A := {x ∈ Ω : u1 (x) > u2 (x)}. The set A is measurable. Since
u (x) = u2 (x) for x ∈ A and u (x) = u1 (x) for x ∈ Ω \A, the function
g̃u = gu2χA + gu1χΩ\A is a Ψ−weak upper gradient of u. Similarly,
since v (x) = u1 (x) for x ∈ A and v (x) = u2 (x) for x ∈ Ω \ A, the
function g̃v = gu1χA + gu2χΩ\A is a Ψ−weak upper gradient of v, by
Lemma 5.

Since u2 is a solution of the Kω2,β2-obstacle problem and v ∈
Kω2,β2(Ω), we have∫
Ω

Ψ(gu2)dµ ≤
∫
Ω

Ψ(gv)dµ ≤
∫
Ω

Ψ(g̃v)dµ =

∫
A

Ψ(gu1)dµ+

∫
Ω\A

Ψ(gu2)dµ.

The above inequalities imply∫
A

Ψ(gu2)dµ ≤
∫
A

Ψ(gu1)dµ,
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hence ∫
Ω

Ψ(gu)dµ ≤
∫
Ω

Ψ(g̃u)dµ =(3.1)

∫
A

Ψ(gu2)dµ+

∫
Ω\A

Ψ(gu1)dµ ≤
∫
Ω

Ψ(gu1)dµ.

Since u1 is a solution of the Kω1,β1 (Ω)-obstacle problem and u ∈
Kω1,β1(Ω), inequality (3.1) shows that u is also a solution of the
Kω1,β1 (Ω)-obstacle problem.

By the uniqueness property for the solution of an obstacle problem,
it follows that u = u1 Ψ−q.e. in Ω.

Remark 6. Replacing in the statement and in the proof of Proposition
5 inequalities a.e. by inequalities Ψ−q.e. we obtain a comparison

principle for K̃ω,β(Ω)−obstacle problem, extending [3, Lemma 7.6].

4. Superminimizers

In the following we assume that Ψ is a doubling Young function,
in order to ensure the existence of minimal Ψ−weak upper gradient
gu ∈ LΨ

loc (Ω) for each functions u ∈ N1,Ψ
loc (Ω), see Proposition 2.

Given a doubling Young function Ψ and a nonempty open set
Ω ⊂ X, we want to find functions u ∈ N1,Ψ

loc (Ω) that locally mini-
mize the energy integral I (v,D) =

∫
D

Ψ (gv) dµ for all nonempty open

sets D ⊂⊂ Ω among all functions v ∈ u + N1,Ψ
0 (Ω) or at least among

all functions v ∈ u+ Lipc(Ω).
The case Ψ (t) = tp was thoroughly studied in several papers, such

as [8], [26], [18], [16], [2], see the monograph [3, Chapter 7].

If u ∈ N1,Ψ
loc (Ω) and v ∈ u + N1,Ψ

0 (Ω), then gv ∈ LΨ (D) for every
nonempty open set D ⊂⊂ Ω, hence I(v,D) < ∞ by the doubling
property of the Young function Ψ.

Let Q ≥ 1 be a number.

Definition 5. A function u ∈ N1,Ψ
loc (Ω) is a Q−quasiminimizer in Ω

if for all ϕ ∈ Lipc(Ω) we have

(4.1)

∫
ϕ 6=0

Ψ (gu) dµ ≤ Q

∫
ϕ6=0

Ψ (gu+ϕ) dµ.
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Definition 6. A function u ∈ N1,Ψ
loc (Ω) is a Q−quasisuperminimizer

(a Q−quasisubminimizer) in Ω if the inequality (4.1) holds for all
ϕ ∈ Lipc(Ω) with ϕ ≥ 0 (respectively, with ϕ ≤ 0).

Definition 7. A function u ∈ N1,Ψ
loc (Ω) is

1) a Q−quasiminimizer in a strong sense in Ω if the inequality (4.1)

holds for all ϕ ∈ N1,Ψ
0 (Ω);

2) a Q−quasisuperminimizer (a Q−quasisubminimizer) in a strong

sense in Ω if the inequality holds (4.1) holds for all ϕ ∈ N1,Ψ
0 (Ω) with

ϕ ≥ 0 (respectively, with ϕ ≤ 0).

When we take Q = 1 in the above definitions, the prefix ”Q−quasi”
will be omitted, so that we talk about minimimizers, superminimizers,
subminimizers.

We will show below that the class of Q−quasiminimizers is the in-
tersection between the class of Q−quasisuperminimizers and the class
of Q−quasisubminimizers. Note that u is a Q−quasisubminimizer (in
a strong sense) if and only if (−u) is a Q−quasisuperminimizer (in a
strong sense). Therefore, it suffices to study Q−quasisuperminimizers.

Remark 7. Note that we obtain an equivalent definition of
Q−quasisuper-minimizers (in a strong sense) by replacing the con-
dition ”ϕ ≥ 0” by ”ϕ ≥ 0 a.e.”, see [3, Remark 7.10]. Indeed,
if a function ϕ ∈ N1,Ψ(Ω) is assumed to be nonnegative a.e., then
max {ϕ, 0} ∈ N1,Ψ(Ω) by the lattice property of Orlicz-Sobolev spaces
and ϕ = max {ϕ, 0} a.e., therefore ϕ = max {ϕ, 0} ≥ 0 Ψ−q.e. in Ω.
Moreover, replacing ϕ by a nonnegative representative of its equiva-
lence class in N1,Ψ(Ω) the integrals involved in (4.1) do not change.

Lemma 7. Let u ∈ N1,Ψ
loc (Ω). Then u is a Q−quasiminimizer (in a

strong sense) if and only if u is both a Q−quasisuperminimizer and a
Q−quasisubminimizer (in a strong sense).

Proof. The necessity is obvious.
Sufficiency : Let ϕ ∈ Lipc(Ω) (ϕ ∈ N1,Ψ

0 (Ω)). Then ϕ+, ϕ− ∈
Lipc(Ω) (respectively, ϕ+, ϕ− ∈ N1,Ψ

0 (Ω)).
As u is a Q−quasisuperminimizer (in a strong sense),∫
ϕ+ 6=0

Ψ (gu) dµ ≤ Q
∫

ϕ+ 6=0

Ψ
(
gu+ϕ+

)
dµ = Q

∫
ϕ>0

Ψ (gu+ϕ) dµ.

As u is a Q−quasisubminimizer (in a strong sense),∫
ϕ− 6=0

Ψ (gu) dµ ≤ Q
∫

ϕ− 6=0

Ψ
(
gu−ϕ−

)
dµ = Q

∫
ϕ<0

Ψ (gu+ϕ) dµ..

Adding the above inequalities we get (4.1).
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In the case Ψ (t) = tp, 1 < p < ∞, several characterizations of
Q−quasisuperminimizers have been proved in [2, Proposition 3.2],
see also [3, Proposition 7.9] for the special case Q = 1. One
of these characterizations proves the equivalence between the above
definition of Q−quasisuperminimizers involving (4.1) and the def-
inition of Q−quasisuperminimizers introduced in [17] (called here
Q−quasisuper-minimizers in a strong sense).

We extend below some characterizations of superminimizers.

Proposition 6. Let u ∈ N1,Ψ
loc (Ω). Then u is a minimizer (supermin-

imizer, subminimizer) in Ω if and only if

(4.2)

∫
suppϕ

Ψ (gu) dµ ≤
∫

suppϕ

Ψ (gu+ϕ) dµ

for all ϕ ∈ Lipc (Ω) (that in addition are nonnegative, respectively
nonpositive).

Proof. Let ϕ ∈ Lipc (Ω). Denote A = {x ∈ suppϕ : ϕ (x) = 0}. Since
suppϕ is compact, the integrals in (4.2) are finite.

For all v ∈ N1,Ψ
loc (Ω) we have∫

suppϕ

Ψ (gv) dµ =

∫
ϕ6=0

Ψ (gv) dµ+

∫
A

Ψ (gv) dµ.

By Proposition 3, gu = gu+ϕ a.e. in A, hence
∫
A

Ψ (gu) dµ =∫
A

Ψ (gu+ϕ) dµ <∞. It follows that

∫
suppϕ

Ψ (gu) dµ ≤
∫

suppϕ

Ψ (gu+ϕ) dµ if and only if

∫
ϕ6=0

Ψ (gu) dµ ≤
∫
ϕ 6=0

Ψ (gu+ϕ) dµ.

Now compare the definition of minimizers (superminimizers, sub-
minimizers) used here with the extension of the definition introduced
by Kinnunen and Martio [16] in the case Ψ(t) = tp.
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Proposition 7. Let u ∈ N1,Ψ
loc (Ω). Then u is a minimizer (supermin-

imizer, subminimizer) in Ω if and only if

(4.3)

∫
D

Ψ (gu) dµ ≤
∫
D

Ψ (gu+ϕ) dµ

holds for all open nonempty sets D ⊂⊂ Ω and all ϕ ∈ Lipc (D) (that
in addition are nonnegative, respectively nonpositive).

Proof. It suffices to study the case of superminimizers.
Sufficiency: Let ϕ ∈ Lipc (Ω). It suffices to assume that ϕ ≥ 0,

but ϕ is not identically zero. Let D = {x ∈ Ω : ϕ (x) 6= 0}. Then D is
open, nonempty and D ⊂⊂ Ω and (4.3) turns into (4.1).

Necessity: Fix an open nonempty set D ⊂⊂ Ω and a nonnegative
function ϕ ∈ Lipc (D) . Then we also have ϕ ∈ Lipc (Ω). Moreover,
{x ∈ Ω : ϕ(x) 6= 0} ⊂ D, hence D = {x ∈ Ω : ϕ(x) 6= 0} ∪ A, where
A := {x ∈ D : ϕ(x) = 0}.

Since u is a superminimizer in Ω, we have
∫
ϕ6=0

Ψ (gu) dµ ≤∫
ϕ6=0

Ψ (gu+ϕ) dµ.

As gu = gu+ϕ a.e. in A, we have
∫
A

Ψ (gu) dµ =
∫
A

Ψ (gu+ϕ) dµ =:

I (u,A). Adding I (u,A) to both members of the above inequality we
get (4.3).

If Ω is bounded and X is proper it is enough to test the minimizing
property from the definition introduced by Kinnunen and Martio using
(4.3) only for D = Ω, as it is shown below.

Proposition 8. Let u ∈ N1,Ψ
loc (Ω). Assume that

(4.4)

∫
D

Ψ (gu) dµ ≤
∫
D

Ψ (gu+ϕ) dµ

for all open nonempty sets D ⊂⊂ Ω and all ϕ ∈ Lipc (D) (that in
addition are nonnegative, respectively nonpositive). If Ω is bounded
and X is proper, then (4.4) also holds for D = Ω and ϕ ∈ Lipc (Ω) .

Proof. Let ϕ ∈ Lipc (Ω). It suffices to assume that ϕ ≥ 0, but ϕ is not
identically zero.

For n ≥ 1, define Dn :=
{
x ∈ Ω : d (x, ∂Ω) > 1

n

}
. The set Dn

is nonempty for n large enough. By the continuity of the func-
tion x 7→ d (x, ∂Ω), the set Dn is always open. Since Dn ⊂
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x ∈ Ω : d (x, ∂Ω) ≥ 1

n

}
⊂ Ω and we have Ω bounded and X proper,

it follows that Dn is compact, hence Dn ⊂⊂ Ω.
Note that for large n we have suppϕ ⊂ Dn, hence ϕ ∈ Lipc (Dn).
By Proposition 3, gu = gu+ϕ a.e. in {x ∈ Ω : ϕ (x) = 0}. Then we

have ∫
Dn

Ψ (gu) dµ =

∫
Dn∩{ϕ6=0}

Ψ (gu) dµ+

∫
Dn∩{ϕ=0}

Ψ (gu) dµ

and ∫
Dn

Ψ (gu+ϕ) dµ =

∫
D∩{ϕ6=0}

Ψ (gu+ϕ) dµ+

∫
D∩{ϕ=0}

Ψ (gu) dµ.

Using (4.4) for D = Dn and the fact that
∫

Dn∩{ϕ=0}
Ψ (gu) dµ <∞ it

follows that

(4.5)

∫
Dn∩{ϕ6=0}

Ψ (gu) dµdµ ≤
∫

Dn∩{ϕ 6=0}

Ψ (gu) dµ.

Since Dn ⊂ Dn+1 for all n ≥ 1 and Ω =
∞⋃
n=1

Dn, letting n → ∞ in

(4.5) we get (4.3) for D = Ω.

Since we have Lipc (Ω) ⊂ N1,Ψ
0 (Ω), every Q−quasiminimizer in a

strong sense is also a Q−quasiminimizer. The analogous statements
hold for Q−quasisuperminimizers and Q−quasubsiminimizers. It is
very important to point out that the converse holds in the case where
Ψ (t) = tp, 1 < p < ∞, as it is proved in [2, Proposition 3.2], using
the density of compactly supported Lipschitz function in Newtonian
spaces with zero boundary values under some usual assumptions on
the metric measure space X. The proofs of implications (e) ⇒ (a)
and (c) ⇒ (f) in [2, Proposition 3.2], that use this density property
are not easy to extend to our case.

We recall some results on the density of compactly supported Lip-
schitz functions in an Orlicz-Sobolev space with zero boundary value,
[20, Theorem 1] and [20, Corollary 2].

Lemma 8. ([20, Theorem 1]) Let X be a proper metric measure space
and let Ψ be a doubling N−function. If locally Lipschitz functions are
dense in N1,Ψ (X), then Lipc (Ω) is a dense subset of N1,Ψ

0 (Ω) , for
every nonempty open set Ω ⊂ X.
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Remark 8. The proof of the above result shows that every nonneg-
ative function in N1,Ψ

0 (Ω) is the limit in N1,Ψ (Ω) of a sequence of
nonnegative functions belonging to Lipc (Ω).

By [27, Theorem 6.17], if Ψ is a doubling Young function and if the
metric measure space X is doubling and supports a (1,Ψ)−Poincaré
inequality, then Lipschitz functions are dense in N1,Ψ (X) , both in
norm and in Lusin’s sense. The following sufficient conditions for the
density of Lipc (Ω) in N1,Ψ

0 (Ω) follows.

Corollary 3. ([20, Corollary 2]) Assume that Ψ is a doubling
N−function and that the metric measure space X is proper, doubling
and supports a (1,Ψ)−Poincaré inequality. Then Lipc (Ω) is a dense

subset of N1,Ψ
0 (Ω) , for every open set Ω ⊂ X.

Proposition 9. Let X be a proper metric measure space and let Ψ
be a doubling N−function, such that locally Lipschitz functions are
dense in N1,Ψ (X). Assume that u ∈ N1,Ψ

loc (Ω). If u is a minimizer
(superminimizer, subminimizer) in Ω, then u is a Q−quasiminimizer
(Q−quasisuperminimizer, Q−quasisubminimizer) in a strong sense in
Ω, where Q depends only on the doubling constant of Ψ.

Proof. It suffices to assume that u is a superminimizer.
Let ϕ ∈ N1,Ψ

0 (Ω) be nonnegative. Let 0 < ε < 1. By Lemma 8 and
Remark 8, there exists a nonnegative function f ∈ Lipc (Ω) such that
‖f − ϕ‖LΨ(Ω) < ε.

By [11, Lemma 3.8.4], the following inequalities between the
Ψ−integral and the Luxemburg norm hold:∫

Ω

Ψ (|v|) dµ ≤ ‖v‖LΨ(Ω) if ‖v‖LΨ(Ω) ≤ 1, respectively
∫
Ω

Ψ (|v|) dµ ≥

‖v‖LΨ(Ω) if ‖v‖LΨ(Ω) ≥ 1. Since ‖f − ϕ‖LΨ(Ω) < ε < 1, we have∫
Ω

Ψ (|f − ϕ|) dµ ≤ ‖f − ϕ‖LΨ(Ω) < ε.

As u is a superminimizer in a weak sense,∫
Ω

Ψ (gu) dµ ≤
∫
Ω

Ψ (gu+f ) dµ.

Writing u + f = u + ϕ + (f − ϕ), we see that gu+f ≤ gu+ϕ + gf−ϕ
a.e.. Then, using the doubling constant CΨ of Ψ and the properties of
monotonicity and convexity of Ψ, we get

Ψ (gu+f ) ≤ Ψ (gu+ϕ + gf−ϕ) ≤ 1

2
CΨ (Ψ (gu+ϕ) + Ψ (gf−ϕ)) .
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Then∫
Ω

Ψ (gu) dµ ≤
∫
Ω

Ψ (gu+f ) dµ

≤ 1

2
CΨ

∫
Ω

Ψ (gu+ϕ) dµ+
1

2
CΨ

∫
Ω

Ψ
(
g
f−ϕ

)
dµ,

hence
∫
Ω

Ψ (gu) dµ <
1
2
CΨ

∫
Ω

Ψ (gu+ϕ) dµ+ 1
2
CΨε.

Letting ε tend to zero, we get∫
Ω

Ψ (gu) dµ <
1

2
CΨ

∫
Ω

Ψ (gu+ϕ) dµ.

Since 0 ≤ ϕ ∈ N1,Ψ
0 (Ω) is arbitrary, it follows that u is a

Q−quasisuper-minimizer, where Q := 1
2
CΨ.

We consider the problem of constructing new superminimizers from
existing ones.

Lemma 9. Consider an ascending sequence of open sets Ω1 ⊂ Ω2 ⊂
... ⊂ Ω =

∞⋃
j=1

Ωj and u ∈ N1,Ψ
loc (Ω). Then u is a superminimizer in Ω

if and only if u is a superminimizer in Ωj for each j ≥ 1.

Proof. Necessity: Use Lipc (Ωj) ⊂ Lipc (Ω), where j ≥ 1.
Sufficiency: Assume that u is a superminimizer in Ωj for each j ≥ 1.

Then u is defined on Ω =
∞⋃
j=1

Ωj.

Let ϕ ∈ Lipc (Ω) be nonnegative. Since suppϕ is a compact subset

of Ω and Ω1 ⊂ Ω2 ⊂ ... ⊂ Ω =
∞⋃
j=1

Ωj, there exists i ≥ 1 such that

suppϕ ⊂ Ωi, in particular {x ∈ Ω : ϕ (x) 6= 0} ⊂ Ωi. Since u is a
superminimizer in Ωi we get (4.1).

It follows that u is a superminimizer in Ω.

Theorem 2 (Pasting superminimizers). Let Ω1 ⊂ Ω2 be open sets.
Assume that uj is a superminimizer in a strong sense in Ωj, where
j = 1, 2. Define

u =

{
min {u1, u2} in Ω1

u2 in Ω2 \ Ω1
.

If u ∈ N1,Ψ
loc (Ω2), then u is a superminimizer in Ω2.
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Proof. Let ϕ ∈ Lipc (Ω2) be nonnegative. We have to show that

(4.6)

∫
G

Ψ (gu) dµ ≤
∫
G

Ψ (gv) dµ,

where G := {x ∈ Ω2 : ϕ (x) > 0} and v := u+ ϕ. Note that G ⊂⊂ Ω2

is an open set.
Consider M := {x ∈ Ω2 : u1 (x) < u2 (x)}. Then

u =

{
u1 in Ω1 ∩M

u2 in (Ω2 \ Ω1) ∪ (Ω1 \M)
.

Let A := {x ∈ Ω2 : u2 (x) < v (x)} and B := {x ∈ Ω2 : u2 (x) < v (x)}.
The above representation of u shows that

G = (B ∩ Ω1 ∩M) ∪ (A ∩ ((Ω2 \ Ω1) ∪ (Ω1 \M))) .

Note that A ⊂ G, since u ≤ u2 in Ω2.
Obviously, B∩Ω1∩M ⊂ G∩Ω1∩M . For every x ∈ G∩Ω1∩M we

have u (x) = u1 (x) < v (x), hence x ∈ B. It follows that B∩Ω1∩M =
G ∩ Ω1 ∩M .

Denote E := G ∩ Ω1 ∩M . We conclude that G = E ∪ A.
Since u = u1χE + u2χG\E, we have gu = gu1χE + gu2χG\E a.e. in G,

by Lemma 5. Noticing that G \ E = A \ E, it follows that

(4.7)

∫
G

Ψ (gu) dµ =

∫
E

Ψ (gu1) dµ+

∫
A\E

Ψ (gu2) dµ.

The following are equivalent: (a) x ∈ E; (b) x ∈ Ω1 and u1 (x) <
min {u2 (x) , v (x)}; (c) x ∈ Ω2 and u (x) < min {u2 (x) , v (x)}.

Denote m (x) := min {u2 (x) , v (x)}.
Then E = {x ∈ Ω2 : u (x) < m (x)}.
As E ⊂ G ⊂⊂ Ω2, we have (m− u) ∈ N1,Ψ(E). But (m− u)+ =

m − u1 on E and m − u = 0 in Ω2 \ E, hence (m− u)+ ∈ N
1,Ψ
0 (E).

Since u1 is a superminimizer in a strong sense and m = u1 + (m− u)+

in E, it follows that

(4.8)

∫
E

Ψ (gu1) dµ ≤
∫
E

Ψ (gm) dµ.

But m = u2χA + vχΩ2\A, therefore gm = gu2χA + gvχΩ2\A a.e. in Ω2.
Then gm = gu2χE∩A + gvχE\A a.e. in E, hence

(4.9)

∫
E

Ψ (gm) dµ =

∫
E∩A

Ψ (gu2) dµ+

∫
E\A

Ψ (gv) dµ.
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Using (4.7), (4.8) and (4.9), we obtain∫
G

Ψ (gu) dµ ≤
∫
E\A

Ψ (gv) dµ+

∫
E∩A

Ψ (gu2) dµ+

∫
A\E

Ψ (gu2) dµ,

i.e. ∫
G

Ψ (gu) dµ ≤
∫
E\A

Ψ (gv) dµ+

∫
A

Ψ (gu2) dµ.

As A ⊂ G ⊂⊂ Ω2, we have (v − u2) ∈ N1,Ψ(A). But (v − u2)+ =

v−u2 in A and (v − u2)+ = 0 in Ω2\A, therefore (v − u2)+ ∈ N
1,Ψ
0 (A).

Since u2 is a superminimizer in a strong sense and v = u2 + (v − u2)+

in A, we have ∫
A

Ψ (gu2) dµ ≤
∫
A

Ψ (gv) dµ.

The latter two inequalities imply∫
G

Ψ (gu) dµ ≤
∫
E\A

Ψ (gv) dµ+

∫
A

Ψ (gv) dµ.

This is the required inequality (4.6), since A and E \A are disjoint
and A ∪ (E \ A) = A ∪ E = G.

Corollary 4. If u1 and u2 are superminimizers in a strong sense in
Ω, then u = min {u1, u2} is a superminimizer in Ω.

Proof. Apply the above theorem with Ω1 = Ω2 = Ω.

5. Connections between superminimizers and
obstacle problems

In the following we assume that Ψ is a doubling Young function and
Ω ⊂ X is a nonempty open set.

Proposition 10. Let Ω ⊂ X be a bounded nonempty open set. As-
sume that β ∈ N1,Ψ(Ω) and ω : Ω → R. If u is a solution of the

Kω,β(Ω)−obstacle problem or of the K̃ω,β(Ω)−obstacle problem, then
u is a superminimizer in a strong sense.

Proof. Let u be a solution of the Kω,β(Ω)−obstacle problem (or of the

K̃ω,β(Ω)−obstacle problem). Let 0 ≤ ϕ ∈ N1,Ψ
0 (Ω). Then we have
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u+ ϕ ∈ Kω,β(Ω) (respectively, u+ ϕ ∈ K̃ω,β(Ω)), hence∫
Ω

Ψ (gu) dµ ≤
∫
Ω

Ψ (gu+ϕ) dµ.

Let A = {x ∈ Ω : ϕ (x) = 0}. By Corollary 2, gu = gu+ϕ a.e. in A.
Substracting

∫
A

Ψ (gu) dµ =
∫
A

Ψ (gu+ϕ) dµ <∞ from both sides of the

above inequality, it follows that∫
ϕ6=0

Ψ (gu) dµ ≤
∫
ϕ6=0

Ψ (gu+ϕ) dµ.

Proposition 11. Let u be a superminimizer in a strong sense in
Ω. Assume that D ⊂ Ω is a bounded nonempty open set with
CapΨ (X \D) > 0 and u ∈ N1,Ψ(D). Then u is a solution of the

K̃u,u(D)−obstacle problem.

Proof. Obviously, u ∈ K̃u,u(D). Let v ∈ K̃u,u(D). We have to prove
that

∫
D

Ψ(gu)dµ ≤
∫
D

Ψ(gv)dµ.

Denote ϕ = v − u. Then ϕ ∈ N1,Ψ
0 (D) and ϕ ≥ 0 Ψ−q.e.

Let E = {x ∈ D : ϕ (x) < 0}. By our assumption, CapΨ (E) = 0.
Define α on D by α (x) = ϕ (x) if x ∈ D \E and α (x) = 0 if x ∈ E.

Then 0 ≤ α ∈ N1,Ψ
0 (D) and α represents the same equivalence class

as ϕ in N1,Ψ(D).
Since u is a superminimizer in a strong sense in Ω,

∫
α 6=0

Ψ (gu) dµ ≤∫
α 6=0

Ψ (gu+α) dµ, hence
∫
D

Ψ (gu) dµ ≤
∫
D

Ψ (gu+α) dµ.

We have gu+α = gv a.e. in D \ E, hence gu+α = gv a.e. in D. Then∫
D

Ψ(gv)dµ =
∫
D

Ψ (gu+α) dµ ≥
∫
D

Ψ (gu) dµ.

Proposition 12. Assume that either X is unbounded or Ω 6= X.

If u ∈ N1,Ψ
loc (Ω) is a solution of K̃u,u(D)−obstacle problem for all

nonempty open sets D ⊂⊂ Ω, then u is a superminimizer in Ω.

Proof. Let 0 ≤ ϕ ∈ Lipc (Ω). Then G = {x ∈ Ω : ϕ (x) > 0} is an
open set with G ⊂⊂ Ω.
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Since u is a solution of the K̃u,u(G)−obstacle problem and 0 ≤ ϕ ∈
N1,Ψ

0 (G), we have
∫
G

Ψ(gu)dµ ≤
∫
G

Ψ(gu+ϕ)dµ, i.e.

∫
ϕ6=0

Ψ(gu)dµ ≤
∫
ϕ6=0

Ψ(gu+ϕ)dµ.

This proves that u is a superminimizer in Ω.

In the case Ψ(t) = tp, 1 < p < ∞, the following equivalence is
proved in [3]: assuming that either X is unbounded or Ω 6= X, u ∈
N1,p
loc (Ω) is a superminimizer in Ω if and only if u is a solution of the

K̃u,u(D)−obstacle problem for all D ⊂⊂ Ω. Recall that in this case
the notions of superminimizer and superminimizer in a strong sense
are equivalent.

Proposition 11 and the counterpart of the comparison principle,
Proposition 5, discussed in Remark 6 imply the following extension
of [3, Corollary 7.17], showing that a solution of an obstacle problem
is the smallest superminimizer with the prescribed boundary values,
which lies above the obstacle.

Corollary 5. Assume that Ω ⊂ X is a bounded nonempty open set
with CapΨ(X \ Ω) > 0, β ∈ N1,Ψ(Ω) and ω : Ω → R. If u is a

solution of the K̃ω,β(Ω)−obstacle problem and if v ∈ K̃ω,β(Ω) is a
superminimizer in a strong sense in Ω, then u ≤ v Ψ−q.e. in Ω.

Proof. By Proposition 11, v is a solution of the K̃v,v(Ω)−obstacle prob-

lem. But u is a solution of the K̃ω,β(Ω)−obstacle problem and as ω ≤ v

Ψ−q.e. in Ω and (β − v)+ ∈ N1,Ψ
0 (Ω). Then the counterpart for

K̃ω,β(Ω)−obstacle problems of the comparison principle, Proposition
5, implies u ≤ v Ψ−q.e. in Ω.
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