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COMPACTNESS AND REGULARITY VIA MAXIMAL
OPEN AND MINIMAL CLOSED SETS IN
TOPOLOGICAL SPACES
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Abstract. In this paper, we introduce and study the notion of
maximal open cover which in turn leads us to define and study m-
compact spaces. We prove that there always exists a maximal open
cover in an infinite T} topological space. We also obtain some results
on minimal c-regular and minimal c-normal spaces. We prove that a
Hausdorff m-compact topological space is minimal c-normal.

1. INTRODUCTION

We simply write X to denote a topological space (X, Z?). By a
proper open set (resp., closed set) of a topological space X, we mean
an open set G # (), X (resp., E # (), X). We also write |A| to denote
the cardinality of the subset A of X.
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Nakaoka and Oda [7, 5] introduced and studied the concept of min-
imal open sets in topological spaces. The natural dualization of min-
imal open sets pave the way to introduce and study the concept of
maximal open sets in topological spaces [6]. As the consequences of
maximal and minimal open sets, Nakaoka and Oda [5] also introduced
and studied the notions of maximal and minimal closed sets in topolog-
ical spaces. The investigative aspects of maximal and minimal open
and closed sets are still vivid and still yielding new and interesting
concepts e.g. mean open sets [10]. In contrary to use of maximal
and minimal open sets in separation, covering properties e.g. [2, 3, 8];
mean open sets [1] pertain to the study of cut-point spaces [4].

2. SOME KNOWN DEFINITIONS AND THEOREMS

Firstly, we recall some known definitions and theorems to make the
article self-sufficient as much as possible and to use them in the sequel.

Definition 1 (Nakaoka and Oda [5, 7]). A proper open set U of X is
said to be a minimal open set if G is an open set of X contained in
U, then G=0 or G=U.

Definition 2 (Nakaoka and Oda [5, 6]). A proper open set U of X is
said to be a maximal open set if U contained in an open set G of X,

then G =U or G = X.

Definition 3 (Nakaoka and Oda [5]). A proper closed set E of X is
said to be a minimal closed set if ) and E are only closed sets of X
contained in F.

Definition 4 (Nakaoka and Oda [5]). A proper closed set E of X s
said to be a mazximal closed set if X and E are only closed sets of X
containing F.

Definition 5 (Mukharjee and Bagchi [10]). An open set M of X is
said to be a mean open set of X if there exist two distinct proper open
sets U,V (# M) of X such that U C M C V.

Definition 6 (Mukharjee and Bagchi [10]). A closed set E of X is
said to be a mean closed set if there exist two distinct proper closed
sets D, F(# E) of X such that D C E C F.

Lemma 1 (Bagchi and Mukharjee [1]). Every nonempty open set G of
a T1-connected topological space X is infinite. In particular, if G # X,
then G is not a minimal open set in X.
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Theorem 2 (Bagchi and Mukharjee [1]). Let X be a Ti-connected
topological space. A proper open set G of X is a mean open set iff

G# X —{z} foranyz € X.
3. MAXIMAL OPEN COVERS AND m-COMPACT SPACES

We now introduce and study the concepts of maximal open cov-
ers. Thereafter, we introduce the concept of m-compact spaces using
maximal open covers and study it.

We remind that a cover o of X is called a refinement of the cover
% of X if for each A € &7, there exists a B € % such that A C B.

Definition 7. Let &/ and A be two covers of a topological space X .
o is said to be an s-refinement of B if for each A € </ there is a
B € # such that A & B. An s-refinement & of A is said to be an
open s-refinement of A if all members of &/ and P are open.

Note that if Z = {X} and A # X for each A € <, then o is
an s-refinement of B. If & is an s-refinement of B then o7 is a
refinement of AB. Also we see that no element of an s-refinement of a
cover of X is maximal open.

Definition 8. An open cover o/ of a topological space X is said to be
a mazimal open cover of X if o/ is not an s-refinement of any other
open cover of X.

Lemma 3. An open cover containing a maximal open set is maximal.
Proof. Easy and hence omitted.

Theorem 4 (Existence of maximal open covers). There exists a maz-
imal open cover in an infinite Ty topological space.

Proof. Let X be an infinite T} topological space. Then for each x € X,
X — {x} is a maximal open set in X.

Let a € X. We choose a finite subset A = {z; € X | z; # a,i €
{1,2,...,n},n € N} of X. Since X is T3, A is closed in X. Then
{X —{a}, X — A} is an open cover of X containing a maximal open
set X —{a}. Hence by Lemma 3, {X —{a}, X — A} is a maximal open
cover of X. g

Theorem 5. Let ¥ be an open cover of an infinite T} topological space
X. Then 9 is a mazimal open cover of X if and only if ¢ contains a
maximal open set.

Proof. Let 4 = {G, | @ € A} be a maximal open cover of X such
that no G,,a € A is maximal open. By Theorem 2, GG, is not also
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minimal open for each o € A. It means that each G, € A is mean
open. So for each a € A, there exists a proper open set H, such that
Gy C H,. Let # ={H,| G, € Hy,G,, € 4}. Clearly, 5 is a cover
of X. Thus we see that ¢ is an s-refinement of .7, a contradiction to
the fact that ¢ is a maximal open cover of X. Hence ¢ has a maximal
open set as one among its members.

The converse part follows by Lemma 3. &

Definition 9. A topological space X is said to be m-compact if each
mazimal open cover of X has a finite open s-refinement.

Theorem 6. Every infinite T} connected topological space is m-
compact.

Proof. Let ¢4 be a maximal open cover of an infinite 77 connected
topological space X. By Theorem 5, ¢ contains a maximal open set
G. By Theorem 2, we may write G = X — {z} for some x € X. There
is an H € ¢ such that x € H. By Lemma 1, for z,y € H with z # y
we may have open sets H; = X —{x,y}, Hy = H—{xz}, Hy = H—{y}
of X. Then {H, Ho, H3} is an s-refinement of ¢. i

Example 1. Let R denote the set of all real numbers and a € R.
Then R is a compact topological space with respect to the topology
T ={0, R, (—0,a),a,00)}. But (R, 7) is not m-compact.

Remark 1. According to Theorem 6, the real number space R with the
usual topology s m-compact but it is known to us that this topological
space is not compact. Therefore using the Theorem 6 together with Ez-
ample 1, we conclude that the notions compactness and m-compactness
are independent.

Definition 10. Let X and Y be two topological spaces. A function
f: X =Y is said to be m-continuous if f~H(U) is a maximal open
set in X for each proper open set U in'Y .

Theorem 7. Let X be a m-compact topological space and f: X =Y
be a bijective m-continuous function. Then'Y is m-compact.

Proof. Let 4Y) be a maximal open cover of Y. Then ¢X) = {f~1(G) |
G € 9V} is a maximal open cover of X. By m-compactness of X,
%) has a finite s-refinement 4N = {f~1(G,) | G, € M)k €
{1,2,...,n}}. Tt implies that %) = {f(f"1(Gy)) | Gx € ¥k €
{1,2,...,n}} = {Gr | G, € 90k € {1,2,...,n}} covers Y. For
each k € {1,2,...,n}, there exists G € 4 such that f~1(Gy) &
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F~Y(G) which implies G; ¢ G. Therefore 4" is a finite s-refinement
of ¥Y) g

Definition 11. A point x of a topological space X 1is said to be m-
complete accumulation point of a subset K of X if |G N K| = |K| for
each maximal open set G containing x.

Theorem 8. FEach infinite subset of a m-compact space has an m-
complete accumulation point.

Proof. Let K be an infinite subset of a m-compact topological space
X. Suppose for each x € X, there is a maximal open set V, containing
x and satisfying |V, N K| < |K]|. Since {V, | € X'} is an open cover
of X consists of maximal open sets, by Lemma 3, {V, | x € X} is a
maximal open cover of X. So there is a finite s-refinement {V,, | z; €
X,ie{l,2,...,n}}of {V; |z € X}. |K| =|Ui_,(Vo, N K)| < |K|, a
contradiction. g

4. MINIMAL ¢c-REGULAR AND ¢c-NORMAL SPACES

Definition 12 (Benchalli et al. [2]'). A topological space X is said to
be minimal c-regular if for each x € X and each minimal closed set F
with © ¢ F, there exist disjoint open sets U,V such that x € U and
FcV.

Theorem 9. In a topological space X, the following are equivalent:
(i) X is minimal c-regular.
(i1) Given a point x € X and a mazimal open set U containing x
there is an open set V' such that x € V. C ClI(V) C U.
(i1i) For a point x € X and a minimal closed set F' with x ¢ F, there
exists an open set U containing x such that CI({U) N F = (.

Proof. (i)=-(ii): Follows by Theorem 3.5 [2].
(il)=(iii) and (iii)=-(i): Easy to follow. 1

Definition 13 (Benchalli et al. [3]). A topological space X is said to
be minimal c-normal if for each pair of distinct minimal closed sets
EF there exist disjoint open sets U,V such that £ C U and FF C V.

Theorem 10. In a topological space X, the following are equivalent:

1As contents of the present paper are developed, the first author noticed that
the notion of strong regularity [8] is same as the notion of minimal o-regularity [2]
due to Benchalli et al. and this mistake to proper citation of the works happen
inadvertently by him.
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(i) X is minimal c-normal.

(11) For each minimal closed set A and each mazimal open set U with
A C U there is an open set V such that ACV C Cl(V)CU.

(iii) For each pair of distinct minimal closed sets A, B, there exists
disjoint open sets U,V such that A C U,CI(U) N B = { and
BcCcV,Cl(V)NA=10.

(iv) For each pair of distinct minimal closed sets A, B, there exists
a pair of disjoint open sets U,V such that A C U, B C V and
Clu)NnCcyv) = 0.

Proof. (i)=>(ii): Follows by Theorem 2.5 [3].

(ii)=-(iii): X — B is a maximal open set such that A C X — B. By
(ii), there exists an open set U such that A C U C Cl(U) C X — B.
Cl(U) C X — B implies that CI(U)N B = (). Putting V = X — CI(U),
weget BCV C X—U C X—A. Since X —U is closed, B C Cl(V) C
X-UcCX—-A Cl(V) C X — A implies that CI(V)N A =0. Tt is
obvious that UNV = (.

(iii)=(iv): By (iii), we have two disjoint open sets U,V such that
AcUCI(UNB=0and BC V.Cl(V)NA=10. Cl(U)NB = () and
Cl(V) N A = 0 together imply that CI(U) N CIL(V) = 0.

(iv)=(i): Easy to follow and hence omitted. &

Theorem 11. FEvery Hausdorff m-compact space is minimal c-reqular.

Proof. Let X be a Hausdorff m-compact space. Suppose F'is a min-
imal closed set in X and p € X such that p ¢ F. Since X is Haus-
dorff, for each ¢ € F', there exist disjoint open sets U,, V, such that
pelUy,qeV, Let ¥ ={V, | g€ F}U{X —F}. Then ¢ is a maximal
open cover of X by Lemma 3. By m-compactness of X, there is a finite
s-refinement 7 of 4. Let U =\ {H € # | HNF # 0}. So U is an
open set which contains F'. Let Hy, Ho, ..., H, be the only members of
A such that H,NF # 0,k € {1,2,...,n}. Foreach k € {1,2,...,n},
there exists ¢ € F such that H, ¢ V,, .,k € {1,2,...,n}. We put
V =;_,Uq- Then p € V. It it is easy to show that UNV = 0. 1

Corollary 12. A Hausdorff m-compact space is minimal c-normal.

Proof. Let A, B be distinct minimal closed sets in a Hausdorff m-
compact space X. By Theorem 11, X is minimal c-regular. So for
each a € A, there exist open sets U, and V, such that a € U,, B C V,
and U, NV, = (. The collection 4 = {U, | a € A} U{X — A} is
a maximal open cover of X by Lemma 3. Now proceeding like the
proof of Theorem 11, we obtain two open sets U and V such that
AcCcUBCVandUNV =0. 1
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Lemma 13. IfY is a closed (resp. open) subset of a topological space
X, then minimal closed (resp. minimal open) sets in the subspace Y
of X are minimal closed (resp. minimal open) sets in X .

Proof. Let Y be a closed subset of a topological space X and A be a
minimal closed set in Y. There exists a closed set £ in X such that
A = ENY which implies that A is also closed in X. If possible,
suppose we have a closed set F' in X such that /' C A. Then FNY
is closed in Y such that FNY C FF C A. Since A is minimal closed
inY, wehave FNY = Aor FNY =0. FNY = A implies that
FNY = A = F. It now need to show that if F NY = (), then
F =10. We see that F C A C Y as A is a subset of Y. So we have
FNY =F #0if F # 0. Hence we get F = ().

Proceeding similarly, it can be proved that if Y is a open subset of
a topological space X, then minimal open sets in the subspace Y of
X are minimal open sets in X. 1

Definition 14. A subspace Y of a topological space X is said to be
minimally closed (resp. minimally open) invariant if minimal closed
(resp. minimal open) sets of Y are also minimal closed (resp. minimal
open) sets of X.

Theorem 14. Minimally closed invariant subspaces of minimal c-
normal spaces are minimal c-normal.

Proof. Let Y be a minimally closed invariant subspace of a minimal
c-normal space X. Let A, B be two distinct minimal closed sets in
Y. Therefore A, B are minimal closed sets in X. Since X is minimal
c-normal, the exist disjoint open sets U,V in X such that A C U and
B C V. Obviously, (YNU)N(YNV) = 0. We see that YNU and YNV
are disjoint open sets in Y such that ACYNU and BCYNV. 1§

Corollary 15. Fach closed subspace of a minimal c-normal space is
minimal c-normal.

Proof. Using Lemma 13, we have to proceed like that of Theorem 14.
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