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A GENERAL FIXED POINT THEOREM FOR A
SEQUENCE OF MAPPINGS IN Gp - COMPLETE

METRIC SPACES

VALERIU POPA AND ALINA-MIHAELA PATRICIU

Abstract. In this paper, a general fixed point theorem for a se-
quence of mappings in Gp - complete metric spaces is proved.

1. Introduction

In [8], [9] Dhage introduced a new class of generalized metric spaces,
named D - metric space. Mustafa and Sims [16], [17] proved that most
of the claims concerning the fundamental topological structures on D
- metric spaces are incorrect and introduced an appropriate notion of
generalized metric space, named G - metric space. In fact, Mustafa,
Sims and other authors [1], [12], [15] - [22], [30] - [35], studied many
fixed point results for self mappings in G - metric spaces under certain
conditions.

In 1994, Matthews [13] introduced the concept of partial metric
spaces as a part of the study of denotional semantics of dataflows
and proved the Banach contraction principle in such spaces. Recently,
in [2], [3], [7], [10], [11] and in other papers, some fixed point theo-
rems under various contractive conditions in partial metric spaces are
proved.
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Quite recently, Zand and Nazhad [37] introduced a generalization
and unification of G - metric spaces and partial metric spaces, named
Gp - metric spaces. Some fixed point results for mappings in Gp -
metric spaces are obtained in [4] - [6] and in other papers.

Several classical fixed point theorems and common fixed point the-
orems have been unified considering a general condition by an implicit
relation in [23], [24] and in other papers.

Recently, the method is used in the study of fixed points in met-
ric spaces, symmetric spaces, quasi - metric spaces, b - metric spaces,
ultra - metric spaces, Hilbert metric spaces, reflexive spaces, convex
metric spaces, compact metric spaces, paracompact metric spaces, in
two and three metric spaces, for single - valued mappings, hybrid pairs
of mappings and set - valued mappings. Quite recently, the method
is used in the study of fixed points for mappings satisfying a contrac-
tive/extensive condition of integral type, in fuzzy metric spaces, prob-
abilistic metric spaces, intuitionistic metric spaces. Also, the method
allows the study of local and global properties of fixed point structures.

The study of fixed points for mappings satisfying an implicit relation
in G - metric spaces is initiated in [25] - [29] and in other papers.
The study of fixed points for mappings satisfying implicit relations in
partial metric spaces is initiated in [36].

2. Preliminaries

Definition 2.1 ([37]). Let X be a nonempty set. A function G :
X3 → R+ is called a Gp - metric on X if the following conditions are
satisfied:
(GP1) : x = y = z if Gp(x, y, z) = Gp(x, x, x) = Gp(y, y, y) =
Gp(z, z, z),
(GP2) : 0 ≤ Gp(x, x, x) ≤ Gp(x, x, y) ≤ Gp(x, y, z) for all x, y, z ∈ X,
(GP3) : Gp(x, y, z) = Gp(y, z, x) = ... (symmetry in all three vari-
ables),
(GP4) : Gp(x, y, z) ≤ Gp(x, a, a) + Gp(a, y, z) − Gp(a, a, a) for all
x, y, z, a ∈ X.

The pair (X,Gp) is called a Gp - metric space.

Definition 2.2 ([37]). Let (X,Gp) be a Gp - metric space and
{xn} a sequence in X. A point x ∈ X is said to be the limit
of the sequence {xn} or xn → x ({xn} is Gp - convergent to x) if
limm,n→∞Gp(x, xn, xm) = Gp(x, x, x).
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Theorem 2.3 ([4]). Let (X,Gp) be a Gp - partial metric space. Then,
for any {xn} ∈ X and x ∈ X, the following conditions are equivalent:
a) {xn} is Gp - convergent to x,
b) Gp(xn, xn, x)→ Gp(x, x, x) as n→∞,
c) Gp(xn, x, x)→ Gp(x, x, x) as n→∞.

Definition 2.4 ([37]). Let (X,Gp) be a Gp - partial metric space.
1) A sequence {xn} of X is called a Gp - Cauchy sequence if
limm,n→∞Gp(xn, xm, xm) exists and is finite,
2) A Gp - metric space is said to be Gp - complete if and only if
every Gp - Cauchy sequence in X converges to x ∈ X such that
limn,m→∞Gp(xn, xm, xm) = Gp(x, x, x).

Lemma 2.5 ([4]). Let (X,Gp) be a Gp - metric space. Then:
1) If Gp(x, y, z) = 0 then x = y = z,
2) If x 6= y then Gp(y, x, x) > 0.

Lemma 2.6 ([8]). Let (X,Gp) be a Gp - metric space and {xn} a
sequence in X which is Gp - convergent to a point x ∈ X with
Gp(x, x, x) = 0. Then limn→∞Gp(xn, y, z) = Gp(x, y, z) for all
y, z ∈ X.

Proof. By (GP4)

(2.1)
Gp (x, y, z) ≤ Gp (x, xn, xn) + Gp (xn, y, z)−Gp (xn, xn, xn)

≤ Gp (x, xn, xn) + Gp (xn, y, z)

which implies

Gp (x, y, z)−Gp (x, xn, xn) ≤ Gp (xn, y, z)

≤ Gp (xn, x, x) + Gp (x, y, z) .

By Theorem 2.3,

Gp (xn, x, x)→ Gp(x, x, x) = 0

and

Gp (x, xn, xn)→ Gp(x, x, x) = 0.

Letting n tends to infinity in (2.1) we obtain

lim
n→∞

Gp (xn, y, z) = Gp (x, y, z) .

�

Quite recently, Meena and Nema [14] initiated the study of fixed
points for sequences of mappings in G - metric spaces.
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The purpose of this paper is to obtain some fixed point results for
a sequence of mappings satifying an implicit relation in Gp - metric
spaces.

3. Implicit relations

Definition 3.1. Let FpG be the set of all continuous functions
F (t1, ..., t5) : R5

+ → R satisfying the following conditions:
(F1) : F is nonincreasing in variable t2, t3, t4, t5,
(F2) : There exists h ∈ [0, 1) such that for all u, v ≥ 0, F (u, v, v, u, u) ≤
0 implies u ≤ hv,
(F3) : There exists k ∈ [0, 1) such that for all t, t′ > 0, F (t, t, t, t, t′) ≤ 0
implies t ≤ kt′.

In the following examples, the proof of property (F1) is obviously.

Example 3.2. F (t1, ..., t5) = t1 − at2 − bt3 − ct4 − dt5, where a, d >
0, b, c ≥ 0 and a + b + c + d < 1.
(F2) : Let u, v ≥ 0 be and F (u, v, v, u, u) = u− av− bv− cu− du ≤ 0.

Then u ≤ hv, where 0 ≤ h =
a + b

1− (c + d)
< 1.

(F3) : Let t, t′ > 0 be and F (t, t, t, t, t′) = t − at − bt − ct − dt′ ≤ 0.

Then t ≤ kt′, where 0 < k =
d

1− (a + b + c)
< 1.

Example 3.3. F (t1, ..., t5) = t1−cmax{t2, t3, t4, t5}, where c ∈ (0, 1).
(F2) : Let u, v ≥ 0 be and F (u, v, v, u, u) = u − cmax{u, v} ≤ 0. If
u > v, then u(1− c) ≤ 0, a contradiction. Hence, u ≤ v which implies
u ≤ hv, where 0 ≤ h = c < 1.
(F3) : Let t, t′ > 0 be and F (t, t, t, t, t′) = t− cmax{t, t′} ≤ 0. If t > t′,
then t(1− c) ≤ 0, a contradiction. Hence, t ≤ t′ which implies t ≤ kt′,
where 0 < k = c < 1.

Example 3.4. F (t1, ..., t5) = t1 − cmax

{
t2, t3,

t4 + t5
2

}
, where c ∈

(0, 1).
The proof is similar to the proof of Example 3.3.

Example 3.5. F (t1, ..., t5) = t21 − at2t3 − bt3t4 − ct4t5, where c >
0, a, b ≥ 0 and a + b + c < 1.
(F2) : Let u, v ≥ 0 be and F (u, v, v, u, u) = u2 − av2 − buv − cu2 ≤ 0.
If u > v, then u2[1 − (a + b + c)] ≤ 0, a contradiction. Hence u ≤ v,
which implies u ≤ hv, where 0 ≤ h =

√
a + b + c < 1.
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(F3) : Let t, t′ > 0 be and F (t, t, t, t, t′) = t2 − at2 − bt2 − ctt′ ≤ 0,
which implies t [1− (a + b)] − ct′ ≤ 0, i.e. t ≤ kt′, where 0 < k =

c

1− (a + b)
< 1.

Example 3.6. F (t1, ..., t5) = t1 − at2 − bmax{2t3, t4 + t5}, where
a ≥ 0, b > 0 and a + 2b < 1.
(F2) : Let u, v ≥ 0 be and F (u, v, v, u, u) = u−av−bmax{2u, 2v} ≤ 0.
If u > v, then u[1−(a+2b)] ≤ 0, a contradiction. Hence u ≤ v, which
implies u ≤ hv, where 0 ≤ h = a + 2b < 1.
(F3) : Let t, t′ > 0 be and F (t, t, t, t, t′) = t− at− bmax{2t, t+ t′} ≤ 0.
If t > t′, then t[1− (a+ 2b)] ≤ 0, a contradiction. Hence, t ≤ t′ which
implies t ≤ kt′, where 0 < k = a + 2b < 1.

Example 3.7. F (t1, ..., t5) = t1 − at2 − bmax{t3 + t4, 2t5}, where
a, b ≥ 0 and a + 2b < 1.

The proof is similar to the proof of Example 3.6.

Example 3.8. F (t1, ..., t5) = t21−at22−bt23−ct4t5, where c > 0, a, b ≥ 0
and a + b + c < 1.
(F2) : Let u, v ≥ 0 be and F (u, v, v, u, u) = u2 − av2 − bv2 − cu2 ≤ 0,

which implies u ≤ hv, where 0 ≤ h =

√
a + b

1− c
< 1.

(F3) : Let t, t′ > 0 be and F (t, t, t, t, t′) = t2 − at2 − bt2 − ctt′ ≤ 0,
which implies t − at − bt − ct′ ≤ 0. Hence t ≤ kt′, where 0 ≤ k =

c

1− (a + b)
< 1.

Example 3.9. F (t1, ..., t5) = t1−cmax{t2, t3,
√
t4t5}, where c ∈ (0, 1).

(F2) : Let u, v ≥ 0 be and F (u, v, v, u, u) = u − cmax{u, v} ≤ 0. If
u > v, then u (1− c) ≤ 0, a contradiction. Hence u ≤ v, which implies
u ≤ hv, where 0 ≤ h = c < 1.
(F3) : Let t, t′ > 0 be and F (t, t, t, t, t′) = t − cmax{t,

√
tt′} ≤ 0. If

t > t′, then t (1− c) ≤ 0, a contradiction. Hence, t ≤ t′ which implies
t ≤ kt′, where 0 < k = c < 1.

Example 3.10. F (t1, ..., t5) = t1 − cmax

{
t2, t3,

2t4 + t5
3

,
2t5 + t4

3

}
,

where c ∈ (0, 1).
(F2) : Let u, v ≥ 0 be and F (u, v, v, u, u) = u − cmax{u, v} ≤ 0. If
u > v, then u (1− c) ≤ 0, a contradiction. Hence u ≤ v, which implies
u ≤ hv, where 0 ≤ h = c < 1.
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(F3) : Let t, t′ > 0 be and F (t, t, t, t, t′) = t −

cmax

{
t,

2t + t′

3
,
2t′ + t

3

}
≤ 0. If t > t′, then t (1− c) ≤ 0,

a contradiction. Hence, t ≤ t′ which implies t ≤ kt′, where
0 < k = c < 1.

Example 3.11. F (t1, ..., t5) = t1−amax{t2, t3}−bmax{t4, t5}, where
a, b ≥ 0 and a + b < 1.
(F2) : Let u, v ≥ 0 be and F (u, v, v, u, u) = u − av − bu ≤ 0, which

implies u ≤ hv, where 0 ≤ h =
a

1− b
< 1.

(F3) : Let t, t′ > 0 be and F (t, t, t, t, t′) = t − at − bmax{t, t′} ≤ 0. If
t > t′, then t [1− (a + b)] ≤ 0, a contradiction. Hence, t ≤ t′ which
implies t ≤ kt′, where 0 < k = a + b < 1.

4. Main results

Theorem 4.1. Let (X,Gp) be a Gp - metric space and {Tn}n∈N be a
sequence of mappings such that for all x, y, z ∈ X and i, j, k ∈ N

(4.1)
F (Gp (Tix, Tjy, Tkz) , Gp (x, y, z) , Gp (x, Tix, Tjy) ,

Gp (y, Tjy, Tkz) , Gp (z, Tkz, Tix)) ≤ 0,

where F ∈ FpG. Then, {Tn}n∈N has a unique common fixed point.

Proof. Let x0 ∈ X be any arbitrary point. We define a sequence {xn}
in X with

xn+1 = Tn+1xn, n = 0, 1, 2, ... .

By (4.1) we have successively

F (Gp (Tnxn−1, Tn+1xn, Tn+2xn+1) , Gp (xn−1, xn, xn+1) ,
Gp (xn−1, Tnxn−1, Tn+1xn) , Gp (xn, Tn+1xn, Tn+2xn+1) ,

Gp (xn+1, Tn+2xn+1, Tnxn−1)) ≤ 0,

F (Gp (xn, xn+1, xn+2) , Gp (xn−1, xn, xn+1) , Gp (xn−1, xn, xn+1) ,
Gp (xn, xn+1, xn+2) , Gp (xn+1, xn+2, xn)) ≤ 0.

By (F2) we obtain

Gp (xn, xn+1, xn+2) ≤ hGp (xn−1, xn, xn+1)

which implies

(4.2) Gp (xn, xn+1, xn+2) ≤ hnGp (x0, x1, x2) .
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Now, for any positive integers k ≥ m ≥ n ≥ 1 we obtain by (GP4)

Gp (xn, xm, xk) ≤ Gp (xn, xn+1, xn+2) + Gp (xn+1, xn+2, xn+2) + ... +

+Gp (xk−2, xk−1, xk)

≤ hn
(
1 + h + ... + hk−n)Gp (x0, x1, x2)

≤ hn

1− h
Gp (x0, x1, x2)→ 0 as n→∞.

Since by (GP2), Gp (xn, xm, xm) ≤ Gp (xn, xm, xk) it follows that
Gp (xn, xm, xm) → 0 as n,m → ∞ and thus {xn} is a Gp - Cauchy
sequence, since (X,Gp) is a Gp - complete metric space.

By Theorem 2.3, (4.2) and Definition 2.2, there exists u ∈ X such
that

lim
m,n→∞

Gp (xn, xm, xm) = lim
n→∞

Gp (u, xn, xn)

= G (u, u, u) = 0.

Now we prove that u is a common fixed point of {Tn}n∈N. By (4.1)
we have successively

F (Gp (Tnxn−1, Tju, Tku) , Gp (xn−1, u, u) , Gp (xn−1, Tnxn−1, Tju) ,
Gp (u, Tju, Tku) , Gp (u, Tku, Tnxn−1)) ≤ 0,

(4.3)
F (Gp (xn, Tju, Tku) , Gp (xn−1, u, u) , Gp (xn−1, xn, Tju) ,

Gp (u, Tju, Tku) , Gp (u, Tku, xn)) ≤ 0.

By Lemma 2.6 we obtain

lim
n→∞

Gp (xn−1, x, x) = Gp (u, u, u) = 0.

On the other hand, by (GP4) and (GP2)

Gp (xn−1, xn, Tju) ≤ Gp (xn−1, xn, xn) + Gp (xn, u, Tju)

≤ Gp (xn−1, xn, xn+1) + Gp (xn, u, Tju) .

Letting n tends to infinity, by (4.2) and Lemma 2.6 we obtain

lim
n→∞

Gp (xn−1, xn, Tju) ≤ lim
n→∞

Gp (xn, u, Tju) .

Similarly, by Lemma 2.6 we have

lim
n→∞

Gp (u, xn, Tku) = Gp (u, u, Tku) .

Letting n tends to infinity in (4.3), using (F1), we obtain

(4.4)
F (Gp (u, Tju, Tku) , 0, Gp (u, u, Tju) ,
Gp (u, Tju, Tku) , Gp (u, u, Tku)) ≤ 0.
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By (GP2),

Gp (u, u, Tju) ≤ Gp (u, Tju, Tku) ,

Gp (u, u, Tku) ≤ Gp (u, Tju, Tku) .

By (4.4) and (F1) we obtain

F (Gp (u, Tju, Tku) , Gp (u, Tju, Tku) , Gp (u, Tju, Tku) ,
Gp (u, Tju, Tku) , Gp (u, Tju, Tku)) ≤ 0.

By (F2) we have Gp (u, Tju, Tku) ≤ kGp (u, Tju, Tku), which implies
Gp (u, Tju, Tku) = 0. By Lemma 2.5 (1), u = Tju = Tku. Hence u is a
common fixed point of {Tn}n∈N.

Suppose that {Tn}n∈N have an other fixed point v. By (4.1) we
obtain

F (Gp (Tiu, Tju, Tkv) , Gp (u, u, v) , Gp (u, Tiu, Tju) ,
Gp (u, Tju, Tkv) , Gp (v, Tkv, Tiu)) ≤ 0,

F (Gp (u, u, v) , Gp (u, u, v) , Gp (u, u, u) ,
Gp (u, u, v) , Gp (v, v, u)) ≤ 0.

By (GP3), Gp (u, u, u) ≤ Gp (u, u, v). Hence, by (F1) we obtain

F (Gp (u, u, v) , Gp (u, u, v) , Gp (u, u, v) ,
Gp (u, u, v) , Gp (v, v, u)) ≤ 0,

which implies by (F3) that

Gp (u, u, v) ≤ kGp (u, v, v) .

Similarly we obtain

Gp (u, v, v) ≤ kGp (u, u, v) .

Hence

Gp (u, u, v) ≤ kGp (u, v, v) ≤ k2Gp (u, u, v) ,

which implies

Gp (u, u, v)
(
1− k2

)
≤ 0,

i.e.

Gp (u, u, v) = 0.

By Lemma 2.5 (1), u = v. Therefore, u is the unique common fixed
point of {Tn}n∈N. �
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Theorem 4.2. Let (X,Gp) be a Gp - complete metric space and
{Tn}n∈N be a sequence of mappings such that for all x, y, z ∈ X and
i, j, k ∈ N, one of the following inequalities hold:

(4.5)
F (Gp (Tix, Tjy, Tkz) , Gp (x, y, z) , Gp (x, Tix, Tix) ,

Gp (y, Tjy, Tjy) , Gp (z, Tkz, Tkz)) ≤ 0,

(4.6)
F (Gp (Tix, Tjy, Tkz) , Gp (x, y, z) , Gp (x, Tjy, Tjy) ,

Gp (y, Tkz, Tkz) , Gp (z, Tix, Tix)) ≤ 0,

(4.7)
F (Gp (Tix, Tjy, Tkz) , Gp (x, y, z) , Gp (x, x, Tix) ,

Gp (y, y, Tjy) , Gp (z, z, Tkz)) ≤ 0,

(4.8)
F (Gp (Tix, Tjy, Tkz) , Gp (x, y, z) , Gp (x, x, Tjy) ,

Gp (y, y, Tkz) , Gp (z, z, Tix)) ≤ 0,

where F ∈ FpG. Then, {Tn}n∈N has a unique common fixed point.

Proof. We prove this theorem in the case of inequality (4.5).
By (GP3) we have

Gp (x, Tix, Tix) ≤ Gp (x, Tix, Tjy) ,
Gp (y, Tjy, Tjy) ≤ Gp (z, Tjy, Tkz) ,
Gp (z, Tkz, Tkz) ≤ Gp (z, Tkz, Tix) .

By (4.5) and (F1) we obtain

F (Gp (Tix, Tjy, Tkz) , Gp (x, y, z) , Gp (x, Tix, Tjy) ,
Gp (z, Tjy, Tkz) , Gp (z, Tkz, Tix)) ≤ 0,

which is inequality (4.1). By Theorem 4.1, {Tn}n∈N has a unique
common fixed point.

In cases (4.6), (4.7), (4.8), the proof is similar. �
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