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Faculty of Sciences
Scientific Studies and Research
Series Mathematics and Informatics
Vol. 28(2018), No. 1, 97-108

A GENERAL FIXED POINT THEOREM FOR TWO
PAIRS OF MAPPINGS SATISFYING A

φ - IMPLICIT RELATION IN 0 - COMPLETE
PARTIAL METRIC SPACES

VALERIU POPA AND ALINA-MIHAELA PATRICIU

Abstract. In this paper a general fixed point theorem for two pairs
of mappings satisfying a φ - implicit relation is proved. As application
we obtain a fixed point theorem for a sequence of mappings in 0 -
complete partial metric spaces, different by results from [24].

1. Introduction

In 1994, Matthews [16] introduced the concept of partial metric
spaces as a part of the study of denotional semantics of dataflow net-
works and proved the Banach contraction principle in such spaces.

Recently, in [2], [5], [7], [13], [14], some fixed point theorems under
various contractive conditions are proved.

Romaguera [21] introduced the notions of 0 - Cauchy sequence and
0 - complete partial metric spaces, proving some characterizations of
partial metric spaces in terms of completeness and 0 - completeness.

Some fixed point theorems for mappings in 0 - complete partial
metric spaces are proved in [4], [17], [8], [10], [23] and in other papers.
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In 1994, Pant [18] introduced the notion of R - weakly commuta-
tivity, which is equivalent to commutativity in coincidence points. In
[12] is introduced the notion of weakly compatible mappings.

In [13] some fixed point theorems for weakly compatible mappings
in partial metric spaces are proved.

Some classical fixed point theorems and common fixed point theo-
rems in metric spaces have been unified considering a general condition
by an implicit relation in [19], [20].

Some fixed point theorems for mappings satisfying implicit relations
in partial metric spaces are proved in [9] - [11], [23].

In [6], Altun and Türkoglu introduced a new type of implicit rela-
tions satisfying a φ - maps.

The purpose of this paper is to prove a general fixed point theorem
for two pairs of mappings satisfying a new type of φ - implicit relation
in 0 - complete partial metric spaces including and a Hardy - Rogers
type theorem.

As application, we prove a fixed point theorem for a sequence of
mappings in 0 - complete partial metric spaces different by the result
from [24].

2. Preliminaries

Definition 2.1 ([16]). Let X be a nonempty set. A function p :
X×X → R+ is said to be a partial metric on X if for every x, y, z ∈ X,
the following conditions hold:
(P1) : p(x, x) = p(y, y) = p(x, y) if and only if x = y,
(P2) : p(x, x) ≤ p(x, y),
(P3) : p(x, y) = p(y, x),
(P4) : p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

The pair (X, p) is called a partial metric space.

If p(x, y) = 0 then by (P1) and (P2), x = y, but the converse does
not always hold.

Each partial metric p on X generates a T0 - topology τp which has
as base the family of open p - balls {Bp(x, ε) : x ∈ X and ε > 0},
where Bp(x, ε) = {y ∈ X : p(x, y) ≤ p(x, x) + ε} for all x ∈ X and
ε > 0.

If p is a partial metric on X, then the function dp(x, y) = 2p(x, y)−
p(x, x)− p(y, y) is a metric on X.

A sequence {xn} in a partial metric space (X, p) converges to a point
x ∈ X with respect to τp if and only if limn→∞ p(xn, x) = p(x, x).
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Lemma 2.2 ([2], [14]). Let (X, p) be a partial metric space and {xn}
a sequence in X such that xn → z as n→∞, where p (z, z) = 0. Then
limn→∞ p (xn, y) = p (z, y) for all y ∈ X.

Definition 2.3 ([16], [21]). a) A sequence {xn} in a partial metric
space (X, p) is called Cauchy if limn,m→∞ p(xn, xm) exists and is finite.
b) A partial metric space (X, p) is said to be complete if every Cauchy
sequence in X converges with respect to τp to a point x ∈ X such that
limn→∞ p(xn, x) = p(x, x).
c) A sequence {xn} in a partial metric space (X, p) is called 0 -
Cauchy if limn,m→∞ p(xn, xm) = 0.
d) A partial metric space (X, p) is said to be 0 - complete if every 0
- Cauchy sequence in X converges with respect to τp to a point x ∈ X
such that p(x, x) = 0.

Lemma 2.4 ([16], [21], [22]). Let (X, p) be a partial metric space and
{xn} be a sequence in X.
a) {xn} is a Cauchy sequence in (X, p) if and only if {xn} is a Cauchy
sequence in metric space (X, dp).
b) (X, p) is complete if and only if (X, dp) is complete.

Further more, limn→∞ dp (xn, x) = 0 if and only if p (x, x) =
limn→∞ p (xn, x) = limn.m→∞ p (xn, xm).
c) Every 0 - Cauchy sequence in (X, p) is Cauchy in (X, dp).
d) If (X, p) is complete, then is 0 - complete.

The converses of assertions c) and d) are not true.

Definition 2.5. A function ϕ : [0,∞) → [0,∞) is a φ - function,

ϕ ∈ φ if ϕ is continuous, nondecreasing such that
∞∑
n=1

ϕn (t) < ∞ for

all t > 0 and ϕ (0) = 0.

Remark 2.6. Since
∞∑
n=1

ϕn (t) < ∞, limn→∞ ϕ
n (t) = 0, then as in

[16], ϕ (t) < t, ∀t > 0.

3. φ - implicit relations

Definition 3.1. Let Fφ be the set of all continuous functions
F (t1, ..., t6) : R6

+ → R such that:
(F1) : F is nonincreasing in variables t2, t3, ..., t6,
(F2) : There exists ϕ ∈ φ such that for all u, v ≥ 0
(F2a) : F (u, v, v, u, u+ v, v) ≤ 0
and
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(F2b) : F (u, v, u, v, v, u+ v) ≤ 0
implies u ≤ ϕ (v).

In the following examples, the proofs of (F1) are obviously.

Example 3.2. F (t1, ..., t6) = t1 − at2 − bt3 − ct4 − dt5 − et6, where
a, b, c, d, e ≥ 0 and a+ b+ c+ 2d+ 2e < 1.
(F2) : Let u, v ≥ 0 and F (u, v, v, u, u+ v, v) = u − av −
bv − cu − d (u+ v) − ev ≤ 0. If u > v, then u[1 −
(a+ b+ c+ 2d+ e)] ≤ 0, a contradiction. Hence, u ≤ v which im-
plies u ≤ (a+ b+ c+ 2d+ e) v ≤ (a+ b+ c+ 2d+ 2e) v and (F2) is
satisfied for ϕ (t) = (a+ b+ c+ 2d+ 2e) t.

Example 3.3. F (t1, ..., t6) = t1 − kmax {t2, t3, ..., t6}, where k ∈
[0, 1

2
).

(F2) : Let u, v ≥ 0 and F (u, v, v, u, u+ v, v) = u − k (u+ v) ≤ 0
which implies u ≤ k

1−kv. Similarly, F (u, v, u, v, v, u+ v) ≤ 0 implies

u ≤ k
1−kv and (F2) is satisfied for ϕ (t) = k

1−k t.

Example 3.4. F (t1, ..., t6) = t1 − kmax
{
t2, t3, t4,

t5+t6
3

}
, where k ∈

(0, 1).
(F2) : Let u, v ≥ 0 and F (u, v, v, u, u+ v, v) = u −
kmax

{
u, v, 2v+u

3

}
≤ 0. If u > v, then u (1− k) ≤ 0, a contradiction.

Hence, u ≤ v which implies u ≤ kv. Similarly, F (u, v, u, v, v, u+ v) ≤
0 implies u ≤ kv and (F2) is satisfied for ϕ (t) = kt.

Example 3.5. F (t1, ..., t6) = t1 − max {at2, b (t3 + t4) , b (t5 + t6)},
where a ∈ (0, 1) and b ∈

[
0, 1

3

)
.

(F2) : Let u, v ≥ 0 and F (u, v, v, u, u+ v, v) = u −
max {av, b (v + 2u) , b (u+ 2v)} ≤ 0. If u > v, then
u [1−max{a, 3b}] ≤ 0, a contradiction. Hence, u ≤ v which im-
plies u ≤ max{a, 3b}v. Similarly, F (u, v, u, v, v, u+ v) ≤ 0 implies
u ≤ max{a, 3b}v and (F2) is satisfied for ϕ (t) = max{a, 3b}t.
Example 3.6. F (t1, ..., t6) = t21−amax{t22, t23, t24}−bt5t6, where a, b ≥
0 and a+ 2b < 1.
(F2) : Let u, v ≥ 0 and F (u, v, v, u, u+ v, v) = u2 − amax {u2, v2} −
bv (u+ v) ≤ 0. If u > v, then u2 [1− (a+ 2b)] ≤ 0, a contra-
diction. Hence, u ≤ v which implies u ≤

√
a+ 2bv. Similarly,

F (u, v, u, v, v, u+ v) ≤ 0 implies u ≤
√
a+ 2bv and (F2) is satisfied

for ϕ (t) =
√
a+ 2bt.

Example 3.7. F (t1, ..., t6) = t1 − ϕ (at2 + bt3 + ct4 + dt5 + et6),
where a, b, c, d, e ≥ 0, a+ b+ c+ 2d+ e < 1and ϕ ∈ φ.
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(F2) : Let u, v ≥ 0 and F (u, v, v, u, u+ v, v) = u −
ϕ (av + bv + cu+ d (u+ v) + ev) ≤ 0. If u > v, then
u [1− ϕ ((a+ b+ c+ 2d+ e)u)] ≤ 0, a contradiction. Hence, u ≤ v
which implies u ≤ ϕ ((a+ b+ c+ 2d+ e) v) = ϕ (v). Similarly,
F (u, v, u, v, v, u+ v) ≤ 0 implies u ≤ ϕ (v).

Example 3.8. F (t1, ..., t6) = t1 − ϕ
(
max

{
t2, t3, t4,

t5+t6
3

})
, where

ϕ ∈ φ.
The proof is similar to the proof from Example 3.7.

4. Main results

Lemma 4.1 ([1]). Let f, g be weakly compatible mappings of a
nonempty set X. If f and g have a unique point of coincidence
w = fx = gx for some x ∈ X, then w is the unique common fixed
point of f and g.

Theorem 4.2. Let (X, p) be a partial metric space and A,B, S and
T self mappings of X satisfying the condition

(4.1) F

(
p (Ax,By) , p (Sx, Ty) , p (Sx,Ax) ,
p (Ty,By) , p (Sx,By) , p (Ty,Ax)

)
≤ 0

for all x, y ∈ X and F ∈ Fφ.
If there exists u, v ∈ X such that Su = Au and Tv = Bv, then there

exists t ∈ X such that t is the unique point of coincidence of A and S,
as well is the unique point of coincidence of B and T .

Proof. First we prove that Su = Tv. We suppose that Su 6= Tv. Then
by (4.1) we get

(4.2) F

(
p (Au,Bv) , p (Su, Tv) , p (Su,Au) ,
p (Tv,Bv) , p (Su,Bv) , p (Tv,Au)

)
≤ 0,

(4.3) F

(
p (Su, Tv) , p (Su, Tv) , p (Su, Su) ,
p (Tv, Tv) , p (Su, Tv) , p (Tv, Su)

)
≤ 0.

By (P2),

p (Su, Su) ≤ p (Su, Tv) ,

p (Tv, Tv) ≤ p (Su, Tv) .

By (F1) we have

(4.4) F

(
p (Su, Tv) , p (Su, Tv) , p (Su, Tv) ,
p (Su, Tv) , 2p (Su, Tv) , p (Su, Tv)

)
≤ 0
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which implies

(4.5) p (Su, Tv) ≤ ϕ (p (Su, Tv)) < p (Su, Tv) ,

a contradiction. Hence, p (Su, Tv) = 0, i.e. Su = Tv. Therefore,

(4.6) Au = Su = Tv = Bv = t

for some t ∈ X.
Assume that there exists w 6= u such that Aw = Sw 6= Au. Then

by (4.1) we obtain

(4.7) F

(
p (Aw,Bv) , p (Sw, Tv) , p (Sw,Aw) ,
p (Tv,Bv) , p (Sw,Bv) , p (Tv,Aw)

)
≤ 0,

(4.8) F

(
p (Sw, Tv) , p (Sw, Tv) , p (Sw, Sw) ,
p (Tv, Tv) , p (Sw, Tv) , p (Tv, Sw)

)
≤ 0.

By (P2),

p (Sw, Sw) ≤ p (Sw, Tv) ,

p (Tv, Tv) ≤ p (Sw, Tv) .

By (F1) we obtain

(4.9) F

(
p (Sw, Tv) , p (Sw, Tv) , p (Sw, Tv) ,
p (Sw, Tv) , 2p (Sw, Tv) , p (Sw, Tv)

)
≤ 0.

By (F2a) we obtain

(4.10) p (Sw, Tv) ≤ ϕ (p (Sw, Tv)) < p (Sw, Tv) ,

a contradiction if ϕ (p (Sw, Tv)) > 0. Hence

(4.11) p (Sw, Tv) = 0,

which implies

(4.12) Sw = Aw = Su = Au = Tv = Bv = t.

Hence t is the unique point of coincidence of A and S. Similarly, t
is the unique point of coincidence of B and T . �

Theorem 4.3. Let (X, p) be a 0 - complete partial metric space and
A,B, S and T be self mappings on X such that A (X) ⊂ T (X),
B (X) ⊂ S (X) and the inequality (4.1) holds for all x, y ∈ X, where
F ∈ Fφ. If one of A (X) , B (X) , S (X) , T (X) is closed then
1) A and S have a point of coincidence,
2) B and T have a point of coincidence.

Moreover, if the pairs {A,B} and {S, T} are weakly compatible, then
A,B, S and T have a unique common fixed point.
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Proof. Let x0 ∈ X be an arbitrary, but fixed point in X. Since
A (X) ⊂ T (X), there exists x1 ∈ X such that Tx1 = Ax0. Since
B (X) ⊂ S (X), there exists x2 ∈ X such that Sx2 = Bx1. Contin-
uing this process we construct sequences {xn} and {yn} in X defined
by

(4.13) y2n = Tx2n+1 = Ax2n, y2n+1 = Sx2n+2 = Bx2n+1, n ∈ N.
We prove that {yn} is a 0 - Cauchy sequence in (X, p).
By (4.1) for x = x2n and y = x2n+1 we have

(4.14) F

 p (Ax2n, Bx2n+1) , p (Sx2n, Tx2n+1) ,
p (Sx2n, Ax2n) , p (Tx2n+1, Bx2n+1) ,
p (Sx2n, Bx2n+1) , p (Tx2n+1, Ax2n)

 ≤ 0,

(4.15) F

(
p (y2n, y2n+1) , p (y2n−1, y2n) , p (y2n−1, y2n) ,
p (y2n, y2n+1) , p (y2n−1, y2n+1) , p (y2n, y2n)

)
≤ 0.

Since by (P4),

(4.16) p (y2n−1, y2n+1) ≤ p (y2n−1, y2n) + p (y2n, y2n+1)

and by (P2),

(4.17) p (y2n, y2n) ≤ p (y2n−1, y2n) ,

then by (F1) and (4.15) we obtain

(4.18) F

 p (y2n, y2n+1) , p (y2n−1, y2n) ,
p (y2n−1, y2n) , p (y2n, y2n+1) ,

p (y2n−1, y2n) + p (y2n, y2n+1) , p (y2n−1, y2n)

 ≤ 0,

which implies by (F2a) that

(4.19) p (y2n, y2n+1) ≤ ϕ (p (y2n−1, y2n)) .

Similarly, by (4.1) for x = x2n+2 and y = x2n+1 we obtain

(4.20) F

 p (Ax2n+2, Bx2n+1) , p (Sx2n+2, Tx2n+1) ,
p (Sx2n+2, Ax2n+2) , p (Tx2n+1, Bx2n+1) ,
p (Sx2n+2, Bx2n+1) , p (Tx2n+1, Ax2n+2)

 ≤ 0,

(4.21) F

 p (y2n+2, y2n+1) , p (y2n+1, y2n) ,
p (y2n+1, y2n+2) , p (y2n, y2n+1) ,
p (y2n+1, y2n+1) , p (y2n, y2n+2)

 ≤ 0.

Since by (P4),

(4.22) p (y2n, y2n+2) ≤ p (y2n, y2n+1) + p (y2n+1, y2n+2)
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and by (P2),

(4.23) p (y2n+1, y2n+1) ≤ p (y2n, y2n+1) ,

by (F1) and (4.21) we obtain

(4.24) F

 p (y2n+2, y2n+1) , p (y2n, y2n+1) ,
p (y2n+2, y2n+1) , p (y2n, y2n+1) ,

p (y2n, y2n+1) , p (y2n+2, y2n+1) + p (y2n, y2n+1)

 ≤ 0.

By (F2b) we obtain

(4.25) ϕ (p (y2n+2, y2n+1)) ≤ ϕ (p (y2n, y2n+1))

which implies

(4.26) p (yn, yn+1) ≤ ϕ (p (yn−1, yn)) ≤ ... ≤ ϕn (p (y0, y1)) .

For n,m ∈ N with m > n we obtain by (P4) that

p (yn, ym) ≤ p (yn, yn+1) + p (yn+1, yn+2) + ...+ p (ym−1, ym)

=
m−1∑
k=n

ϕk (p (y0, y1)) .

Since

(4.27)
∞∑
k=1

ϕk (p (y0, y1)) <∞,

then

(4.28) lim
n,m→∞

m−1∑
k=n

ϕk (p (y0, y1)) = 0

and

(4.29) lim
n,m→∞

p (yn, ym) = 0

and so {yn} is a 0 - Cauchy sequence in (X, p). Since (X, p) is 0 -
complete, then there exists y ∈ X such that

(4.30) p (y, y) = lim
n,m→∞

p (yn, ym) = lim
n→∞

p (yn, y) = 0.

Hence

(4.31) lim
n→∞

y2n = lim
n→∞

y2n+1 = y.

Now we can suppose without loss of generality that S (X) is a closed
subset of (X, p). Then there exists u ∈ X such that y = Su.
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By (4.1) with x = u and y = x2n+1 we have

(4.32) F

 p (Au,Bx2n+1) , p (Su, Tx2n+1) ,
p (Su,Au) , p (Tx2n+1, Bx2n+1) ,
p (Su,Bx2n+1) , p (Tx2n+1, Au)

 ≤ 0,

(4.33) F

(
p (Au, y2n+1) , p (Su, y2n) , p (Su,Au) ,
p (y2n, y2n+1) , p (Su, y2n+1) , p (y2n, Au)

)
≤ 0.

Letting n tends to infinity by Lemma 2.2 we obtain

(4.34) F (p (Au, y) , 0, p (Au, y) , 0, 0, p (y, Au)) ≤ 0.

By (F2b)

(4.35) p (Au, y) ≤ ϕ (0) = 0

which implies

(4.36) y = Au = Su,

hence A and S have a coincidence point.
Since A (X) ⊂ T (X), y ∈ T (X), then there exists v ∈ X such that

y = Tv.
By (4.1) with x = u and y = x2n+1 we obtain

(4.37) F

(
p (Au,Bv) , p (Su, Tv) , p (Su,Au) ,
p (Tv,Bv) , p (Su,Bv) , p (Tv,Au)

)
≤ 0,

(4.38) F (p (y,Bv) , 0, 0, p (y,Bv) , p (y,Bv) , 0) ≤ 0.

By (F2a) we have p (y,Bv) = 0, i.e. y = Bv = Tv and B and
T have a coincidence point. By Theorem 4.2, y is the unique point
of coincidence of (A, S) and (B, T ). If (A, S) and (B, T ) are weakly
compatible, by Lemma 4.1, y is the unique common fixed point of
A,B, S and T . �

Remark 4.4. By Example 3.2 and Theorem 4.3 we obtain a theorem
of Hardy - Rogers type.
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For a function f : X → X we denote

Fix (f) = {x ∈ X : x = fx}.

Theorem 4.5. Let A,B, S and T be self mappings of a partial metric
space. If the inequality (4.2) holds for all x, y ∈ X, F ∈ Fφ, then

(4.39) [Fix (S)∩Fix (T )]∩Fix (A) = [Fix (S)∩Fix (T )]∩Fix (B) .

Proof. Let x ∈ [Fix (S) ∩ Fix (T )] ∩ Fix (A). Then, by (4.1) we have

(4.40) F

(
p (Ax,Bx) , p (Sx, Tx) , p (Sx,Ax) ,
p (Tx,Bx) , p (Sx,Bx) , p (Tx,Ax)

)
≤ 0,

(4.41) F

(
p (x,Bx) , p (x, x) , p (x, x) ,
p (x,Bx) , p (x,Bx) , p (x, x)

)
≤ 0.

By (P2),

(4.42) p (x, x) ≤ p (x,Bx) .

Then by (F1) we have

(4.43) F

(
p (x,Bx) , p (x,Bx) , p (x,Bx) ,
p (x,Bx) , 2p (x,Bx) , p (x,Bx)

)
≤ 0

which implies by (F2a) that

(4.44) p (x,Bx) ≤ ϕ (p (x,Bx)) < p (x,Bx) ,

if p (x,Bx) > 0, a contradiction.
Hence p (x,Bx) = 0 and x = Bx. So,

(4.45) [Fix (S)∩Fix (T )]∩Fix (A) ⊂ [Fix (S)∩Fix (T )]∩Fix (B) .

Similarly,

(4.46) [Fix (S)∩Fix (T )]∩Fix (B) ⊂ [Fix (S)∩Fix (T )]∩Fix (A) .

�

Theorems 4.3 and 4.5 implies the following one.

Theorem 4.6. Let S, T and {Ai}i∈N∗ be self mappings of a 0 - com-
plete partial metric space such that
a) A2 (X) ⊂ S (X) and A1 (X) ⊂ T (X),
b) one of S (X) and T (X) are closed,
c) the pairs {A1, S} and {A2, T} are weakly compatible,
d) the inequality

(4.47) F

(
p (Aix,Ai+1y) , p (Sx, Ty) , p (Sx,Aix) ,
p (Ty,Ai+1y) , p (Sx,Ai+1y) , p (Ty,Aix)

)
≤ 0
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holds for all x, y ∈ X, i ∈ N∗ and F ∈ Fφ.
Then S, T and {Ai}i∈N∗ have a unique common fixed point.

Remark 4.7. By Theorem 4.6 and Examples 3.2 - 3.8 we obtain new
particular results.
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