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HERMITE-HADAMARD TYPE INEQUALITIES FOR
TRIGONOMETRICALLY CONVEX FUNCTIONS

HURIYE KADAKAL

Abstract. In this paper we introduce and study the concept
of trigonometrically convex function, which is a special case of h-
convex functions. The class of trigonometrically convex function is
large enough to include the class of non-negative convex functions.
We prove two Hermite-Hadamard type inequalities for the newly in-
troduced class of functions. We also obtain two refinements of the
Hermite-Hadamard inequality for functions whose first derivative in
absolute value, raised to a certain power which is greater than one,
respectively at least one, is trigonometrically convex.

1. Introduction

Throughout the paper I is a non-empty interval in R.

Definition 1. A function f : I → R is said to be convex if the in-
equality

f (tx+ (1− t)y) ≤ tf (x) + (1− t) f (y)

is valid for all x, y ∈ I and t ∈ [0, 1]. If this inequality reverses, then
f is said to be concave on the interval I.
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Convexity theory provides powerful principles and techniques to
study a wide class of problems in both pure and applied mathematics.
See articles [4, 6, 8, 9, 10] and the references therein.
Let f : [a, b]→ R be a convex function. Then the inequality

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f (a) + f(b)

2

is known as the Hermite-Hadamard inequality (for more information,
see [7] ). Since then, some refinements of the Hermite-Hadamard in-
equality for convex functions have been obtained [4, 5, 12].

Definition 2. [6] A non-negative function f : I → R is said to be a
P -function if the inequality

f (tx+ (1− t) y) ≤ f (x) + f (y)

holds for all x, y ∈ I and t ∈ [0, 1]. The set of P -functions on the
interval I is denoted by P (I).

Definition 3. [11] Let h : J → R be a non-negative function, h 6= 0.
We say that f : I → R is an h-convex function, or that f belongs to
the class SX (h, I), if f is non-negative and for all x, y ∈ I, α ∈ (0, 1)
we have

f (αx+ (1− α)y) ≤ h(α)f (x) + h(1− α)f (y) .

If this inequality is reversed, then f is said to be h-concave, i.e. f ∈
SV (h, I).

2. Main Results

In this section we introduce a new concept, which is called trigono-
metrically convex function, as follows:

Definition 4. A non-negative function f : I → R is called trigono-
metrically convex if for every x, y ∈ I and t ∈ [0, 1],

(1) f (tx+ (1− t)y) ≤
(

sin
πt

2

)
f(x) +

(
cos

πt

2

)
f(y).

We will denote by TC (I) the class of all trigonometrically convex
functions on interval I.

We discuss some connections between the class of trigonometrically
convex functions and other classes of generalized convex functions.
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Remark 1. For h (t) = sinπt
2

, every trigonometrically convex function
is a h-convex function.

Remark 2. Clearly, if f(x) is a nonnegative function, then every
trigonometric convex function is a P -function. Indeed, for every x, y ∈
I and t ∈ [0, 1] we have

f (tx+ (1− t)y) ≤
(

sin
πt

2

)
f(x) +

(
cos

πt

2

)
f(y) ≤ f(x) + f(y).

Example 1. Non-negative constant functions are trigonometrically
convex, since sinπt

2
+ cosπt

2
≥ 1 for all t ∈ [0, 1].

Lemma 1. i) Every non-negative convex function is trigonometrically
convex.

ii) Every trigonometrically convex function is h-convex with h(t) =
πt
2

.

Proof. i.) Since the cardinal sine function sinx
x

is decreasing on
[
0, π

2

]
,

it follows that t ≤ sinπt
2
≤ πt

2
for all t ∈ [0, 1]. Then 1 − t ≤ cos πt

2
≤

π
2

(1− t) for all t ∈ [0, 1].
ii.) Let f be a trigonometrically convex function. If we take h2(t) =

sin πt
2

, then the function f is h2-convex. In [11], it is proved that if
h2 ≤ h1 and a function f is h2-convex, then f is h1 convex. If we take
as h1(t) = h(t) = πt

2
, t ∈ [0, 1], then it follows, since h2(t) ≤ h(t) for

all t ∈ [0, 1], that the function f is also h-convex.

We can see that the space of trigonometrically convex functions is
a convex cone in the vector space of functions f : [a, b]→ R.

Theorem 1. Let f, g : [a, b] → R. If f and g are trigonometrically
convex functions, then

(i) f + g is trigonometrically convex function,
(ii) For c ∈ R (c ≥ 0) cf is trigonometrically convex function.

Proof. Theorem 1 follows from the known fact that the space of h-
convex function is a convex cone, for each h (see [11], Proposition
9).

Theorem 2. If f : I → J is convex and g : I → J is trigonometrically
convex and increasing, then g◦f : I → R is a trigonometrically convex
function.
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Proof. For x, y ∈ I and t ∈ [0, 1] , we get

(g ◦ f) (tx+ (1− t)y) = g (f (tx+ (1− t)y))

≤ g (tf(x) + (1− t)f(y))

≤
(

sin
πt

2

)
g (f(x)) +

(
cos

πt

2

)
g (f(y))

=

(
sin

πt

2

)
(g ◦ f) (x) +

(
cos

πt

2

)
(g ◦ f) (y).

This completes the proof of theorem.

Also, the above Theorem can be derived from Theorem 15 in [11].

Theorem 3. Let b > 0 and fα : [a, b] → R be an arbitrary family
of trigonometrically convex functions and let f(x) = supα fα(x). If
J = {u ∈ [a, b] : f(u) <∞} is nonempty, then J is an interval and f
is a trigonometrically convex function on J .

Proof. Let t ∈ [0, 1] and x, y ∈ J be arbitrary. Then

f (tx+ (1− t)y) = sup
α
fα (tx+ (1− t)y)

≤ sup
α

[(
sin

πt

2

)
fα (x) +

(
cos

πt

2

)
fα (y)

]
≤

(
sin

πt

2

)
sup
α
fα (x) +

(
cos

πt

2

)
sup
α
fα (y)

=

(
sin

πt

2

)
f (x) +

(
cos

πt

2

)
f (y) <∞.

This shows simultaneously that J is an interval, since it contains every
point between any two of its points, and that f is a trigonometrically
convex function on J .

This completes the proof of theorem.

3. HERMITE-HADAMARD INEQUALITY FOR
TRIGONOMETRICALLY CONVEX FUNCTIONS

The goal of this paper is to establish some inequalities of Hermite-
Hadamard type for trigonometrically convex functions.

We will denote by L [a, b] the space of (Lebesgue) integrable func-
tions on [a, b] .
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Theorem 4. Let f : [a, b]→ R be a trigonometrically convex function.
If a < b < and f ∈ L [a, b], then the following inequality holds:

1

b− a

∫ b

a

f(x)dx ≤ 2

π
[f (a) + f (b)] .

Proof. By using trigonometrically convexity of the function f , if the
variable is changed as u = ta+ (1− t)b, then

1

b− a

∫ b

a

f(u)du =

∫ 1

0

f (ta+ (1− t)b) dt

≤
∫ 1

0

[(
sin

πt

2

)
f (a) +

(
cos

πt

2

)
f (b)

]
dt

= f (a)

∫ 1

0

sin
πt

2
dt+ f (b)

∫ 1

0

cos
πt

2
dt

=
2

π
[f (a) + f (b)] .

This completes the proof of theorem.

The following Theorem is a special case of Theorem 5 from [2], but
we will give a direct simpler proof.

Theorem 5. Let the function f : [a, b] → R,be a trigonometrically
convex function. If a < b and f ∈ L [a, b], then the following inequality
holds:

f

(
a+ b

2

)
≤
√

2

b− a

∫ b

a

f(x)dx.

Proof. By the trigonometrically convexity of the function f , we have

f

(
a+ b

2

)
= f

(
[ta+ (1− t)b] + [(1− t)a+ tb]

2

)
= f

(
1

2
[ta+ (1− t)b] +

1

2
[(1− t)a+ tb]

)
≤ sin

π

4
f (ta+ (1− t)b) + cos

π

4
f ((1− t)a+ tb)

=

√
2

2
[f (ta+ (1− t)b) + f ((1− t)a+ tb)] .
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Now, if we take integral in the last inequality with respect to t ∈ [0, 1],
we deduce that

f

(
a+ b

2

)
≤
√

2

2

[∫ 1

0

f (ta+ (1− t)b) dt+

∫ 1

0

f ((1− t)a+ tb) dt

]
=

√
2

2

[
1

a− b

∫ a

b

f(x)dx+
1

b− a

∫ b

a

f(y)dy

]
=

√
2

b− a

∫ b

a

f(x)dx.

This completes the proof of theorem.

4. SOME NEW INEQUALITIES FOR
TRIGONOMETRICALLY CONVEXITY

The main purpose of this section is to establish new estimates that
refine Hermite-Hadamard inequality for functions whose first deriva-
tive in absolute value, raised to a certain power which is greater than
one, respectively at least one, is trigonometrically convex. Dragomir
and Agrawal [3] used the following lemma

Lemma 2. The following equality holds true:

f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx =
b− a

2

∫ 1

0

(1− 2t)f ′ (ta+ (1− t)b) dt

Note that we will use the following integrals in this section:∫ 1

0

sin
πt

2
dt =

∫ 1

0

cos
πt

2
dt =

2

π
,∫ 1

0

|1− 2t| sinπt
2
dt =

∫ 1

0

|1− 2t| cos
πt

2
dt =

2

π2

(
π − 4

(√
2− 1

))
,∫ 1

0

|1− 2t|p dt =
1

p+ 1
.

We denote by A (u, v) the arithmetic mean of u and v.

Theorem 6. Let f : I → R be a continuously differentiable function,
let a < b in I and assume that f ′ ∈ L [a, b]. If |f ′| is trigonometrically
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convex function on interval [a, b], then the following inequality∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣
≤ 2

π
(b− a)

[
1− 4

π

(√
2− 1

)]
A (|f ′(a)| , |f ′(b)|)

holds for t ∈ [0, 1].

Proof. Using Lemma 2 and the inequality

|f ′ (ta+ (1− t)b)| ≤
(

sin
πt

2

)
|f ′(a)|+

(
cos

πt

2

)
|f ′(b)| ,

we get ∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣
≤

∣∣∣∣b− a2

∫ 1

0

(1− 2t)f ′ (ta+ (1− t)b) dt
∣∣∣∣

≤ b− a
2

∫ 1

0

|1− 2t| |f ′ (ta+ (1− t)b)| dt

≤ b− a
2

∫ 1

0

|1− 2t|
[(

sin
πt

2

)
|f ′(a)|+

(
cos

πt

2

)
|f ′(b)|

]
dt

= 2 (b− a)

[
1

π
+

4

π2

(
1−
√

2
)]

A (|f ′(a)| , |f ′(b)|) .

This completes the proof of theorem.

Theorem 7. Let f : I → R be a continuously differentiable function,
let a < b in I and assume that q > 1. If |f ′|q is a trigonometrically
convex function on interval [a, b], then the following inequality∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣
≤ b− a

2

(
1

p+ 1

) 1
p

2
2
qπ−

1
qA

1
q
(
|f ′(a)|q , |f ′(b)|q

)
.

holds for t ∈ [0, 1], where 1
p

+ 1
q

= 1.

Proof. Using Lemma 2, Hölder’s integral inequality and inequality

|f ′ (ta+ (1− t)b)|q ≤
(

sin
πt

2

)
|f ′(a)|q +

(
cos

πt

2

)
|f ′(b)|q



26 HURIYE KADAKAL

which is the trigonometrically convexity of |f ′|q, we obtain

∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣
≤ b− a

2

∫ 1

0

|1− 2t| |f ′ (ta+ (1− t)b)| dt

≤ b− a
2

(∫ 1

0

|1− 2t|p dt
) 1

p
(∫ 1

0

|f ′ (ta+ (1− t)b)|q dt
) 1

q

≤ b− a
2

(
1

p+ 1

) 1
p
(∫ 1

0

[(
sin

πt

2

)
|f ′(a)|q +

(
cos

πt

2

)
|f ′(b)|q

]
dt

) 1
q

=
b− a

2

(
1

p+ 1

) 1
p
[
|f ′(a)|q

∫ 1

0

sin
πt

2
dt+ |f ′(b)|q

∫ 1

0

cos
πt

2
dt

] 1
q

=
b− a

2

(
1

p+ 1

) 1
p
[

2 (|f ′(a)|q + |f ′(b)|)
π

q] 1
q

=
b− a

2

(
1

p+ 1

) 1
p

2
2
qπ−

1
qA

1
q
(
|f ′(a)|q , |f ′(b)|q

)
.

This completes the proof of theorem.

Theorem 8. Let f : I ⊆ R → R be a continuously differentiable
function, let a < b in I and assume that q ≥ 1. If |f ′|q is a trigono-
metrically convex function on the interval [a, b], then the following
inequality

∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣
≤ b− a

2

(
1

2

)1− 3
q

[
1

π
−

4
(√

2− 1
)

π2

] 1
q

A
1
q
(
|f ′(a)|q , |f ′(b)|q

)
holds for t ∈ [0, 1].
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Proof. Assume first that q > 1. From Lemma 2, Hölder integral in-
equality and trigonometrically convexity of |f ′|q, we have∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣
≤ b− a

2

∫ 1

0

|1− 2t| |f ′ (ta+ (1− t)b)| dt

≤ b− a
2

(∫ 1

0

|1− 2t| dt
)1− 1

q
(∫ 1

0

|1− 2t| |f ′ (ta+ (1− t)b)|q dt
) 1

q

=
b− a

2

(∫ 1

0

|1− 2t| dt
)1− 1

q

×
(∫ 1

0

|1− 2t|
[(

sin
πt

2

)
|f ′(a)|q +

(
cos

πt

2

)
|f ′(b)|q

]
dt

) 1
q

=
b− a

2

(∫ 1

0

|1− 2t| dt
)1− 1

q

×
(
|f ′(a)|q

∫ 1

0

|1− 2t| sinπt
2
dt+ |f ′(b)|q

∫ 1

0

|1− 2t| cos
πt

2
dt

) 1
q

Since
∫ 1

0
|1− 2t| dt = 1

2
and

∫ 1

0
|1− 2t| sinπt

2
dt =∫ 1

0
|1− 2t| cosπt

2
dt = 2

π2

(
π − 4

(√
2− 1

))
, it follows that∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣ ≤
b−a
2

(
1
2

)1− 1
q

{[
2

π2

(
π − 4

(√
2− 1

))] (
|f ′(a)|q + |f ′(b)|q

)} 1
q

=
b− a

2

(
1

2

)1− 1
q

2
2
q

{[
1

π2

(
π − 4

(√
2− 1

))]
A
(
|f ′(a)|q , |f ′(b)|q

)} 1
q

=
b− a

2

(
1

2

)1− 3
q

[
1

π
−

4
(√

2− 1
)

π2

] 1
q

A
1
q
(
|f ′(a)|q , |f ′(b)|q

)
.

For q = 1 we use the estimates from the proof of Theorem 6, which
also follow step by step the above estimates.

This completes the proof of theorem.

Corollary 1. Under the assumption of Theorem 8 with q = 1, we get
the conclusion of Theorem 6.
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[6] SS. Dragomir, J. Pečarić and LE.Persson, Some inequalities of Hadamard
Type, Soochow Journal of Mathematics, 21 (3)(2001), pp. 335-341.

[7] J. Hadamard, Étude sur les propriétés des fonctions entières en
particulier d’une fonction considérée par Riemann, J. Math. Pures
Appl. 58(1893), 171-215.
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