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CONSTRUCTION OF SHIFT SPACES OF INFINITE
TYPE AND DEVANEY’S CHAOS

THANGJAM BIRKRAMJIT SINGH

Abstract.In this paper we present two new examples of shift
spaces of infinite type over two symbols. One of the spaces is shown
to be densely Li-Yorke chaotic and Robinson chaotic, but not chaotic
in the sense of Devaney, while the other one is found out to be
Devaney chaotic.

1. Introduction

A topological dynamical system (or simply dynamical system)
is a pair (X, f), where f is a continuous self map on a compact metric
space X. We define the forward orbit O+(x) =

⋃
n∈N fn(x), where

N = {0, 1, 2, · · · }. A point x ∈ X is periodic if fn(x) = x for some
n ∈ Z+, where Z+ = {1, 2, · · · }. If fn(x) is periodic for some n > 0,
then x is called eventually periodic. We use tr(f) to denote the
set of all those points whose forward orbit is dense in X.
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A point y ∈ X is an ω-limit point of x if there is a sequence
of strictly increasing positive integers {nk} such that fnk(x) → y as
k →∞. The ω-limit set of x is the set ω(x) of all ω-limit points of x
and is

ω(x) =
⋂

n∈Z+

⋃
i≥n

f i(x).

We say f or the dynamical system (X, f) is topologically transitive
or simply transitive if for any non-empty open subsets U and V of
X, there exist n ∈ Z+, such that fn(U) ∩ V 6= ∅ [1]. The dynamical
system (X, f) is said to be topologically mixing or simply mixing
if for any non-empty open subsets U and V of X, there exist k ∈ Z+,
such that fn(U) ∩ V 6= ∅, ∀ n ≥ k. The dynamical system (X, f) is
said to be totally transitive if (X, fn) is transitive for all n ∈ Z+. It
is clear that mixing implies totally transitive. The dynamical system
(X, f) is weakly blending if for any pair of non-empty open sets

Ü·U and V there exists an ÝŠn ∈ Z+, such that fn(U) ∩ fn(V ) 6= ∅
[4]. The dynamical system (X, f) has sensitive dependence on
initial conditions or simply sensitive if there exists an ε > 0 such
that for every x ∈ X and every neighborhood U of x, there exists
y ∈ U and n ∈ Z+ with d(fn(x), fn(y)) > ε.
A dynamical system (X, f) is said to be minimal if ω(x) = X for
any x ∈ X. A point x ∈ X is recurrent if x ∈ ω(x). A point
x ∈ X is almost periodic if for any open set U ⊂ X containing
x, we can find k ∈ Z+ such that for any n ∈ Z+ there is some
i ∈ {n, n + 1, · · · , n + k} such that f i(x) ∈ U . Infinite minimal
systems will not contain any periodic points and they are precisely
those systems which are the forward orbit closure of non-periodic,
almost periodic points [3]. Every almost periodic point is a recurrent
point but, the converse is not true. We give some of the well known
and useful results and for reader’s convenience we provide some of
the proofs.

Proposition 1. [3] If (X, f) is transitive dynamical system, then
tr(f) 6= ∅

Corollary 2. If the system (X, f) is transitive then either X is a
single periodic orbit or it contains no isolated points.

Proof. If X is finite then O+(x) is finite for every x ∈ X, also by

transitivity we have O+(x) = X for some x ∈ X, so O+(x) = X. It



CONSTRUCTION OF SHIFT SPACES OF ... 81

is well known that orbit of a non-periodic, eventually periodic point
cannot be transitive. Therefore, O+(x) is a periodic orbit.

Suppose X is infinite and if x ∈ X is an isolated point then O+(x) =
X. Also fn({x})∩{x} 6= ∅ for some n ∈ Z+, that is X is finite, which
is a contradiction.

Lemma 3 ([2]). If (X, f) is a transitive dynamical system, then
f(X) = X.

Proof. If X is a single periodic orbit then f(X) = X.
Suppose that X is infinite. Since (X, f) is transitive, we can find

x ∈ X such that O+(x) = X. Let y ∈ X be an arbitrary element. If
y ∈ O+(x) then the result follows, else there is a sequence {fnk(x)}
such that fnk(x) → x. Using the compactness of X, without loss
of generality we can take fnk−1(x) → z for some z ∈ X, therefore
fnk(x)→ f(z) and hence y = f(z).

Theorem 4. The dynamical system (X, f) is transitive if and only if
there exists a point x ∈ X such that ω(x) = X.

Proof. Suppose, ω(x) = X for some x ∈ X. Let U and V be any two
nonempty open sets. Then there exist m ∈ N and n ∈ N with n > m
such that fm(x) ∈ U and fn(x) ∈ V , therefore, fn−m(U) ∩ V 6= φ.
Conversely, let f be transitive. Then there is a point x ∈ X such that
O+(x) is dense in X, i.e. X = O+(x) ∪ ω(x). Then by Lemma 3,
there is a y ∈ X such that f(y) = x. If y ∈ O+(x) then x is periodic
and ω(x) = X, otherwise y ∈ ω(x) and we know that σ(ω(x)) = ω(x),
so again x ∈ ω(x). Therefore, we have ω(x) = X.

2. Symbolic dynamical systems

Let A be a finite set called an alphabet and its elements as sym-

bols. We assign the discrete topology to A. Let AN denote the set of

all one sided sequences in A. Then AN is the space obtained with the
product topology and is called the full shift. A shift is a continuous

map σ : AN → AN given by σ(x)i = xi+1. The metric

d(x, y) =

{
0, if x = y

2−l, if x 6= y, where l = min{i : xi 6= yi}

generates the product topology on AN. It is well known that AN
is compact, perfect and totally disconnected with the given topology.

For x = (xi) ∈ AN and i, j ∈ N with i ≤ j define x[i,j] = xixi+1 · · ·xj.
The open ball B(x, 2−l) in AN is the symmetric cylinder
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C(x[0,l]) = {y ∈ AN : y[0,l] = x[0,l]}.
A block (or word) over A is a finite sequence of symbols from A.

For a block u over A we use |u| to denote the number of symbols
contained in u and it is called the length of u. The empty block λ
is the block with length 0. A k-block is simply a block of length k.
The set of all k-blocks over A is denoted by Ak and A∗ =

⋃∞
k=0Ak.

Two blocks u and v can be concatenated by writing u first and then
v, forming a new block uv. By convention, λu = uλ = u for all blocks
u. If n ≥ 1, then un denote the concatenation of n copies of u, and we
put u0 = λ. The point uuu · · · is denoted by u∞. We say a block u
is a subblock of v or u is contained (or occurs) in v if there are blocks
x, y such that v = xuy. We say a block u is a subblock or contained

or occuring in x ∈ AN if u = x[i,j] for some i, j ∈ N and i ≤ j.
Let F be a collection of blocks over A. For any such F , define XF
to be the set of all sequences in AN which do not contain any block

in F . A shift space is the subset X of a full shift AN such that
X = XF for some collection F of forbidden blocks over A. If F is
finite then X is called a shift space of finite type and if we cannot
find any finite set F such that X = XF then X is called shift space
of infinite type. With the restriction of the shift map σX = σ|X on
X, the system (X, σX) is called a symbolic dynamical system.

Let X ⊂ AN be any non-empty set, then Bn(X) denote the set of
all n-blocks that occured in points in X. The language of X is the
collection

B(X) =
∞⋃
n=0

Bn(X) ⊆ A∗.

A block u is said to be allowed or appearing in X if u ∈ B(X). For

an element x ∈ AN, we use B(x) to denote the collection of all blocks
contained in x. For a block u ∈ B(X), we define CX(u) = X ∩ C(u),

where C(u) = {x ∈ AN : x[o,l] = u} and l = |u| − 1. The following
proposition and results are easily derived from their respective defin-
ions and also from the results given in Lind and Marcus book [11].
For reader’s convenience we give proof of some of the results.

Proposition 5 ([11]). (1) Let X ⊆ AN be a shift space, and B(X)
be its language. If w ∈ B(X), then
(a) every subblock of w belongs to B(X), and
(b) there is a nonempty block v ∈ B(X) so that wv ∈ B(X).
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(2) If L is a collection of blocks over A, then L = B(X) for some
shift space X if and only if L satisfies condition (1).

(3) For any shift space X we have X = XB(X)c. Thus two shift
spaces are equal if and only if they have the same language.

Corollary 6. Let X ⊂ AN. Then X is a shift space if and only if

whenever x ∈ AN and each x[i,j] ∈ B(X) then x ∈ X.

Proof. Let X be a shift space then X = XB(X)c . So, if x ∈ AN and
each x[i,j] ∈ B(X) that is no subword in x is contained in B(X)c, that
means x ∈ XB(X)c .

Conversely, whenever x ∈ AN and each x[i,j] ∈ B(X) then x ∈ X. We
claim, X = XB(X)c .
If x ∈ X, then no subblock in x is in B(X)c, so x ∈ XB(X)c . If
x ∈ XB(X)c then each x[i,j] ∈ B(X). So, x ∈ X.

Lemma 7. X ⊆ AN is a shift space if and only if X is closed and
σ(X) ⊆ X.

Proof. First part easily follows.
Conversely, let X is closed and σ(X) ⊆ X.
We claim, X = XB(X)c . Let x ∈ XB(X)c .

Suppose, x ∈ AN\X then by closedness of X we can find k = k(x) ∈ N
such that the cylinder set C(u) ⊂ AN \X, where u = x[0,k].
We know u ∈ B(X), and therefore exist some y ∈ X such that y[l,m] =
u for some l,m ∈ N and l ≤ m. Using, σ(X) ⊆ X we have σl(y) ∈ X
and σl(y)[0,k] = u,i.e. σl(y) ∈ C(u) a contradiction and the rest follows
easily.
Suppose, x ∈ X, then each x[i,j] ∈ B(X),i.e. x ∈ B(X).

Proposition 8 ([11]). The dynamical system (X, σX) where X ⊆ AN
is transitive if and only if for any two non empty words u, v ∈ B(X)
there is a non empty word w ∈ B(X) so that uwv ∈ B(X).

Proof. Let (X, σX) be transitive. For u, v ∈ B(X), let |u| = l and
|v| = m and let U = X∩C(x[0,l] = u) and V = σ−lX (X∩C(x[0,m] = v)).
As X is shift space we can see that U and V are non empty open sets.
So, using transitivity of X we can find n ∈ Z+ such that there exist
y ∈ U ∩ σ−nX (V ). Let w 6= λ be such that y[0,k] = uwv. Converse part
is clear.

The following results follow in a straightforward manner from the
respective definitions.
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(1) A point x ∈ AN is recurrent if and only if for any k ∈ Z+, the
initial block x[0,k] is contained in x infinitely many times.

(2) A point x ∈ AN is almost periodic if and only if for any k ∈ Z+,
the initial block x[0,k] is contained in x infinitely many times
with bounded gaps.

(3) If X ⊆ AN and (X, σX) is a shift space, then (X, σX) is mixing
if and only if for any two non empty words u, v ∈ B(X) there is
a N ∈ Z+ such that for any n ≥ N there is a word wn ∈ Bn(X)
such that uwnv ∈ B(X).

(4) If x ∈ AN and X = O+(x), then B(X) = B(x).

(5) If x ∈ AN, then y ∈ ω(x) if and only if any initial block y[0,k]
is occured in x infinitely many times.

3. Chaos

The term chaos is one of the most frequently used term in the study
of dynamical systems. There are several different definitions of what
it means for a function f from a compact metric space X to itself
to be chaotic [5, 10, 8]. Most frequently used definition of a chaotic
dynamical system is Devaney’s [5]. A map f : X → X is said to be
Devaney chaotic on X if

(1) f is transitive,
(2) the periodic points of f are dense in X,
(3) f has sensitive dependence on initial conditions.

If X is an infinite metric space then the first two conditions implies
the third [1]. f is said to be Robinson chaotic if f is transitive and
sensitive dependent to initial condition. Following the definition on
[10], we define scrambled pairs as follows. Two points a, b ∈ X form a
chaotic pair (or a scrambled pair) for the map f , if a and b satisfy:

(1) limn→+∞ sup d(fn(a), fn(b)) > 0
(2) limn→+∞ inf d(fn(a), fn(b)) = 0.

A subset S ⊆ X is called a scrambled set, if for any a, b ∈ S, with
a 6= b, then (a, b) is a chaotic pair. We say f is Li-Yorke chaotic,
if there exists an uncountable, scrambled set; further, if S is dense in
X then we say (X, f) is densely Li-Yorke chaotic.

It is well-known that if XF ⊆ AN is a transitive shift space of finite
type, then XF contains countably many periodic points and they
are dense [9]. Existence of minimal and existence of non-minimal
shift spaces of infinite type are discussed in many papers [6, 7, 12].
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Very few studies have been published regarding the chaotic nature of
shift space of infinite type. So, it is quite an interesting area to be
analysed.
One of the most popular shift of infinite type is the even shift. Even

shift space X is the set of all sequences on {0, 1}N so that between
any two 1’s there is an even number of 0’s. Each even shift space
is Devaney chaotic and mixing. There exist shift spaces that are
Li-Yorke chaotic without being Devaney chaotic and such an example
is given below.

Theorem 9 ([8]). Assume that f : X → X is transitive with X
infinite and contains a periodic point. Then there is an uncountable
scrambled set for f . Moreover, if f is totally transitive, then f is
densely Li-Yorke chaotic. Particularly, chaos in the sense of Devaney
is stronger than that in the sense of Li-Yorke.

Example 1. Take B1 = 1 and Bn = Bn−10
n−1Bn−1, n ≥ 2 where

0n−1 is the concatenation of 0, n − 1 times. We construct a point

x = (xn) ∈ {0, 1}N inductively as x = B10B100B2 · · ·Bn0n+1Bn+1 · · · .
First few terms of x are

x = 10100101000101001010000 · · ·
x is a recurrent, non almost periodic point. The shift space X1 =
O+(x) = ω(x) is transitive and non minimal containing uncountably
many elements.

The shift space X1 has the following properties:

(1) X1 is a shift space of infinite type. If X1 is shift space of finite
type, then there is 2 ≤ N ∈ Z+ such that F is a collection
of forbidden N -blocks and X1 = XF . Then every N -block in
BN−10

NBN−10
∞ is allowed forcing it to be an element of X1,

which is not true.
(2) For any open sets U and V in X1 there is a k ∈ N such that

σn
X(U) ∩ σn

X(V ) 6= ∅ for all n ≥ k. In other words X1 is
somewhat more than weakly blending. Let U = CX1(u) and
V = CX1(v) be any two basic open sets in X1, then we can find
two words Bl and Bm such that Bl = x1uy1 and Bm = x2vy2 for
some x1, x2, y1, y2 ∈ B(X1). Then the open sets CX1(uy1) ⊂ U
and CX1(vy2) ⊂ V . Also we know that uy10

∞ ∈ CX1(uy1) and
vy20

∞ ∈ CX1(vy2), thus we can find some k ∈ N such that
σn
X1

(CX1(uy1)) ∩ σn
X1

(CX1(vy2)) 6= ∅.
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(3) 0∞ is the only periodic point contained in X1. Suppose that
u∞ is a periodic point contained in X1 different from 0∞.
Then u will contain at least one 1. Let Bl contain u such
that l is the smallest one. Take w = uu · · ·u, n-times for
some n ∈ Z+ such that n exceeds the number of 1 contained
in Bl+|u|, i.e, n > 2l+|u|−1. Also, if h = m + j, then Bh =
Bm0mBm0m+1Bm0mBm0m+2 · · · 0m+j−1Bm0mBm0m+1Bm0mBm

· · ·Bm and Bl+|u|+1 = Bl+|u|0l+|u|Bl+|u|, so w is not contained
in Bl+|u|+1.
Therefore, we can see that any Bk such that k > l + |u| will
not contain w. This contradicts the assumption that u∞ is
contained in X1.

(4) (X1, σX1) is mixing. Let u and v be any two blocks occur-
ing in B(X1). Since σX1 is transitive we can find b ∈ B(X1)
such that ubv ∈ B(X1), then ubv occurs in Bk for some
k ∈ N, and suppose aubvc = Bk. Now as we can see
x = Bk0kBk0k+10k+2Bk+2 · · · and
Bk+l = Bk0kBk0k+1Bk0kBk0k+2 · · · 0k+l−1Bk0kBk0k+1Bk0kBk

· · ·Bk, l = 1, 2 · · · . Thus for any m ≥ k,Bk0mBk ∈ B(X1).
Taking K = |bvc0kaub|, we have for any n ≥ K that there is a
wn ∈ Bn(X1) such that uwnv ∈ B(X1).

Therefore, we conclude that X1 is mixing.
(5) (X1, σX1) is densely Li-Yorke chaotic and Robinson chaotic.

Example 2. Take B1 = 1, B2 = 101, B3 = B200B2B
2
1 and

Bn = Bn−10
n−1Bn−1B

n−1
n−2 · · ·Bn−1

1 , n ≥ 3. Inductively we construct a

point in {0, 1}N as
x = B10B100B2B

2
1000B3B

3
2B

3
1 · · ·Bn−1B

n−1
n−2 · · ·Bn−1

1 0nBn · · · . First
few terms of x are
x = 101001011100010100101111011011011110000 · · · .
The shift space X2 = O+(x) = ω(x) is transitive and non minimal
containing uncountably many elements.

The shift space X2 possesses the following properties.

(1) X2 is a shift space of infinite type.
If X2 is a shift space of finite type, then there is 2 ≤ N ∈ Z+

such that F is a collection of forbidden N -blocks and X2 = XF .
Then every N -block in BN0∞ is allowed, forcing it to be an
element of X2, which is not true.

(2) X2 contains infinitely many periodic points. The set of periodic
points is dense in X2.



CONSTRUCTION OF SHIFT SPACES OF ... 87

If C(u)∩X2 is a nonempty basic open set, then u is a subblock
of Bk for some k ∈ Z+, therefore we can find x, y ∈ B(X2)
such that Bk = xuy. Also, we know that the periodic point
B∞k ∈ X2, and thus the periodic point σ|x|(B∞k ) = (uyx)∞

belongs to C(u) ∩X2. Therefore, X2 is chaotic in the sense of
Devaney.
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