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fǧ-CLOSED SETS IN A FUZZY SET TOPOLOGY

ANJANA BHATTACHARYYA

Abstract. This paper deals with a new type of fuzzy generalized
version of closed sets, called fǧ-closed sets, which is already defined
in [16]. Again the mutual relationships of this class of sets with other
classes defined in [3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16] are estab-
lished. Then a new type of closure operator, called fǧ-closure opera-
tor, is introduced and it is proved that this is an idempotent operator.
With the help of this operator, fǧ-open, fǧ-closed, fǧ-continuous and
fǧ-irresolute functions are introduced and characterized. Afterwards,
fǧ-regular, fǧ-normal, fǧ-compact, fǧ-T2-spaces are introduced and
characterized. Lastly, applications of the above mentioned functions
on these spaces are given.

1. Introduction

In [3], the notion of fuzzy generalized closed set has been introduced.
Afterwards, dif and only iferent types of generalized versions of fuzzy
closed sets are introduced and studied. In this context we have to
mention [5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16]. Here we also introduce
a new type of generalized version of fuzzy closed sets, which implies
other generalized version of fuzzy closed sets, but not conversely. With
the help of this notion a new type of separation axioms are introduced
and studied.
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2. Preliminaries

Throughout this paper, by (X, τ) or simply by X we shall mean a
fuzzy topological space (fts, for short) in the sense of Chang [20]. A
fuzzy set [35] A in an fts X, denoted by A ∈ IX , is defined to be a
mapping from a non-empty set X into the closed interval I = [0, 1].
The support [35] of a fuzzy set A, denoted by suppA [35] and is defined
by suppA = {x ∈ X : A(x) 6= 0}. The fuzzy set with the singleton
support {x} ⊆ X and the value t (0 < t ≤ 1) will be denoted by
xt [35]. 0X and 1X are the constant fuzzy sets taking values 0 and
1 respectively in X. The complement [35] of a fuzzy set A in X is
denoted by 1X \A and is defined by (1X \A)(x) = 1−A(x), for each
x ∈ X. For any two fuzzy sets A,B in X, A ≤ B means A(x) ≤ B(x),
for all x ∈ X [35] while AqB means A is quasi-coincident (q-coincident,
for short) [32] with B, i.e., there exists x ∈ X such that A(x)+B(x) >
1. The negation of these two statements will be denoted by A 6≤ B
and A /qB respectively. For a fuzzy set A, clA and intA will stand for
fuzzy closure [20] and fuzzy interior [20] respectively. A fuzzy set A
in an fts X is called fuzzy regular open [2] if A = intclA. A fuzzy set
A is called a fuzzy neighbourhood (nbd, for short) of a fuzzy point xt
if there exists a fuzzy open set G in X such that xt ≤ G ≤ A [32]. If,
in addition, A is open, then A is called a fuzzy open nbd [32] of xt. A
fuzzy set A in X is called a q-neighbourhood (q-nbd, for short) [32] of
a fuzzy point xt if there is a fuzzy open set U in X such that xtqU ≤ A.
If, in addition, A is fuzzy open (resp., fuzzy regular open), then A is
called fuzzy open q-nbd [32] (resp., fuzzy regular open q-nbd [2]) of xt.
A fuzzy point xα is said to be a fuzzy δ-cluster point of a fuzzy set A in
an fts X if every fuzzy regular open q-nbd U of xα is q-coincident with
A [24]. The union of all fuzzy δ-cluster points of A is called the fuzzy
δ-closure of A, denoted by δclA [24]. A fuzzy set A is called fuzzy
δ-closed if A = δclA [24] and the complement of a fuzzy δ-closed set is
called fuzzy δ-open [24]. The union of all fuzzy δ-open sets contained
in a fuzzy set A is called fuzzy δ-interior of A and is denoted by δintA
[24]. For a fuzzy set A in an fts (X, τ), δcl(1X \A) = 1X \ δintA [24].
A fuzzy set A in an fts X is called fuzzy semiopen [2] (respectively,
fuzzy β-open [23]) if A ≤ clintA (respectively, A ≤ clintclA). The
complement of a fuzzy semiopen (respectively, fuzzy β-open) set is
called fuzzy semiclosed [2] (respectively, fuzzy β-closed [23]). The
intersection of all fuzzy semiclosed (respectively, fuzzy β-closed) sets
containing a fuzzy set A is called fuzzy semiclosure [2] (respectively,
fuzzy β-closure [23]) of A, denoted by sclA (respectively, βclA). The
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collection of all fuzzy semiopen (respectively, fuzzy β-open, fuzzy δ-
open) sets in an fts X is denoted by FSO(X) (respectively, FβO(X),
FδO(X)) and that of fuzzy semiclosed (respectively, fuzzy β-closed,
fuzzy δ-closed) sets is denoted by FSC(X) (respectively, FβC(X),
FδC(X)).

3. fǧ-Closed Set : Some Properties

In this section we first introduce the class of fǧ-closed sets which is
strictly larger than the class of fuzzy closed sets. Then some important
properties of this class of sets are established here and its mutual rela-
tionships with dif and only iferent types of generalized version of fuzzy
closed sets, which are defined in [5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16],
are investigated.

Definition 3.1. Let (X, τ) be an fts and A ∈ IX . Then A is called
fǧ-closed set in X if clA ≤ U whenever A ≤ U ∈ FSO(X).

The complement of fǧ-closed set is called fǧ-open set.

Remark 3.2. It is clear from definition that every fuzzy closed
set is an fǧ-closed set. But the converse is not true, in general, as it
follows from the following example.

Example 3.3. fǧ-closed set 6⇒ fuzzy closed set
Let X = {a, b}, τ = {0X , 1X}. Then (X, τ) is an fts. Consider the
fuzzy set A, defined by A(a) = A(b) = 0.5. Then 1X is the only
fuzzy semiopen set in X containing A and so clA = 1X ≤ 1X ⇒ A is
fǧ-closed set in X. But A 6∈ τ c.

Definition 3.4. Let (X, τ) be an fts and xα be a fuzzy point in X.
Then A(∈ IX) is called an fǧ-neighbourhood (fǧ-nbd, for short) of
xα if there exists an fǧ-open set U in X such that xα ≤ U ≤ A. If, in
addition, A is fǧ-open set in X, then A is called an fǧ-open nbd of xα.

Definition 3.5. Let (X, τ) be an fts and xα be a fuzzy point in
X. Then A(∈ IX) is called an fǧ-open quasi neighbourhood (fǧ
q-nbd, for short) of xα if there is an fǧ-open set U in X such that
xαqU ≤ A. If, in addition, A is fǧ-open set in X, then A is called an
fǧ-open q-nbd of xα.
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Note 3.6. It is to be noted that arbitrary union of fǧ-closed sets
is fǧ-closed. But intersection of two fǧ-closed sets need not be so, as
it follows from the following example.

Example 3.7. Let X = {a, b}, τ = {0X , 1X , A} where
A(a) = 0.5, A(b) = 0.4. Then (X, τ) is an fts. Now
FSO(X) = {0X , 1X , U} where A ≤ U ≤ 1X \ A. Consider
the fuzzy sets C and D defined by C(a) = 0.5, C(b) = 0.6 and
D(a) = 0.6, D(b) = 0.5. Then 1X is the only fuzzy semiopen set in
(X, τ) such that C < 1X and D < 1X and so clC = 1X ≤ 1X and
clD = 1X ≤ 1X . Consequently, C and D are fǧ-closed sets in X. Put
E = C

∧
D. Then E(a) = E(b) = 0.5. Now E ≤ E ∈ FSO(X). But

clE = 1X \ A 6≤ E ⇒ E is not an fǧ-closed set in X.

Remark 3.8. From the above discussion we can conclude that the
collection of all fǧ-open sets does not form a fuzzy topology.

Theorem 3.9. If A(∈ IX) is fǧ-closed set in X and B ∈ IX is
such that A ≤ B ≤ clA, then B is also fǧ-closed set in X.

Proof. Let U ∈ FSO(X) be such that B ≤ U . Then by
hypothesis, A ≤ B ≤ U . As A is fǧ-closed set in X, clA ≤ U and so
A ≤ B ≤ clA ≤ U ⇒ clA ≤ clB ≤ cl(clA) = clA ≤ U ⇒ clB ≤ U .
Consequently, B is fǧ-closed set in X.

Theorem 3.10. Let (X, τ) be an fts and A,B ∈ IX . If
intA ≤ B ≤ A and A is fǧ-open set in X, then B is also fǧ-open set
in X.

Proof. intA ≤ B ≤ A⇒ 1X \A ≤ 1X \B ≤ 1X \ intA = cl(1X \A)
where 1X \ A is fǧ-closed set in X. By Theorem 3.9, 1X \ B is
fǧ-closed set in X ⇒ B is fǧ-open set in X.

Theorem 3.11. Let (X, τ) be an fts and A ∈ IX . Then A is
fǧ-open set in X if and only if K ≤ intA whenever K ≤ A and
K ∈ FSC(X).

Proof. Let A(∈ IX) be fǧ-open set in X and K ≤ A
where K ∈ FSC(X). Then 1X \ A ≤ 1X \ K where
1X \ A is fǧ-closed set in X and 1X \ K ∈ FSO(X). So
cl(1X \ A) ≤ 1X \K ⇒ 1X \ intA ≤ 1X \K ⇒ K ≤ intA.

Conversely, let K ≤ intA whenever K ≤ A, K ∈ FSC(X). Then
1X \A ≤ 1X \K ∈ FSO(X). Now 1X \ intA ≤ 1X \K ⇒ cl(1X \A) ≤
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1X \K ⇒ 1X \ A is fǧ-closed set in X ⇒ A is fǧ-open set in X.

Theorem 3.12. Let (X, τ) be an fts and A(∈ IX) ∈ FSO(X). If
A is fǧ-closed set in X, then A is fuzzy closed set in X.

Proof. Now A ≤ A ∈ FSO(X). By hypothesis,
clA ≤ A⇒ A = clA⇒ A is a fuzzy closed set in X.

In a similar manner we can state the following theorem easily.

Theorem 3.13. Let (X, τ) be an fts and A(∈ IX) ∈ FRO(X). If
A is a fǧ-closed set in X, then A is a fuzzy closed set in X.

Theorem 3.14. Let (X, τ) be an fts and A(∈ IX) be an fǧ-closed
set and F , a fuzzy closed set in with X A 6 qF . Then clA 6 qF .

Proof. Now A 6 qF ⇒ A ≤ 1X \F ∈ τ and hence 1X \F ∈ FSO(X).
By assumption, clA ≤ 1X \ F ⇒ clA 6 qF .

The converse may not be true, in general, as it seen from the
following example.

Example 3.15. Let X = {a, b}, τ = {0X , 1X , A,B} where
A(a) = 0.5, A(b) = 0.6, B(a) = 0.4, B(b) = 0.5. Then (X, τ) is an fts.
Now FSO(X, τ) = {0X , 1X , U, V } where U ≥ A, B ≤ V ≤ 1X \ B.
Consider the fuzzy set C defined by C(a) = C(b) = 0.4. Then
C 6 q(1X \ A) ∈ τ c (∈ FSC(X) also) and clC = (1X \ A) 6 q(1X \ A).
Now C ≤ B ∈ FSO(X) and clC = 1X \ A 6≤ B ⇒ C is not fǧ-closed
set in X.

Definition 3.16. Let (X, τ) be an fts and A ∈ IX .
Then fǧ-kernel of A, denoted by fǧ-ker(A) is defined by fǧ-
ker(A) =

∧
{U ∈ FSO(X) : A ≤ U}.

Remark 3.17. The following example shows that the intersection
of any two fuzzy semiopen sets may not be fuzzy semiopen, shown in
the next example and as a result, fǧ-ker(A) is not fuzzy semiopen
set in an fts X, in general.

Example 3.18. Let X = {a, b}, τ = {0X , 1X , A,B,C,D}
where A(a) = 0.5, A(b) = 0.6, B(a) = 0.6, B(b) = 0.2, C(a) =
0.5, C(b) = 0.2, D(a) = D(b) = 0.6. Then (X, τ) is an fts.
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Now FSO(X, τ) = {0X , 1X , U, V,W} where A ≤ U ≤ 1X \ C,
C ≤ V ≤ 1X \ A, W ≥ B. Here the fuzzy sets S, T defined by
S(a) = 0.5, S(b) = 0.7 and T (a) = 0.6, T (b) = 0.5 are fuzzy semiopen
sets in X. But M = S

∧
T , defined by M(a) = M(b) = 0.5 is not

fuzzy semiopen set in X.

Theorem 3.19. If a fuzzy set A in an fts (X, τ) is fǧ-closed, then
clA ≤ fǧ-ker(A).

Proof. Let A(∈ IX) be fǧ-closed set in X and xα ∈ clA be any
fuzzy point in X. If possible, let xα 6∈ fǧ-ker(A). Then there exists
V ∈ FSO(X) with A ≤ V and xα 6∈ V . As A is fǧ-closed set in X,
clA ≤ V ⇒ xα ∈ V , a contradiction.

Let us now recall some definitions from [3, 5, 9, 12, 13, 14] for ready
references.

Definition 3.20. Let (X, τ) be an fts and A ∈ IX . Then A is
called
(i) fg-closed set [3] if clA ≤ U whenever A ≤ U ∈ τ ,
(ii) fgs-closed set [5] if sclA ≤ U whenever A ≤ U ∈ τ ,
(iii) fsg-closed set [5] if sclA ≤ U whenever A ≤ U ∈ FSO(X),
(iv) fgp-closed set [5] if pclA ≤ U whenever A ≤ U ∈ τ ,
(v) fpg-closed set [5] if pclA ≤ U whenever A ≤ U ∈ FPO(X),
(vi) fgpr-closed set [5] if pclA ≤ U whenever A ≤ U ∈ FRO(X),
(vii) fgα-closed set [5] if αclA ≤ U whenever A ≤ U ∈ τ ,
(viii) fαg-closed set [5] if αclA ≤ U whenever A ≤ U ∈ FαO(X),
(ix) fgβ-closed set [5] if βclA ≤ U whenever A ≤ U ∈ τ ,
(x) fgδp-closed set [12] if δpclA ≤ U whenever A ≤ U ∈ τ ,
(xi) fδpg-closed set [13] if δpclA ≤ U whenever A ≤ U ∈ FδPO(X),
(xii) fgδ-semiclosed set [14] if δsclA ≤ U whenever A ≤ U ∈ τ ,
(xiii) fgs∗-closed set [9] if sclA ≤ U whenever A ≤ U where U is
fg-open set in X, where the complement of an fg-closed set is called
an fg-open set.

Remark 3.21. It is clear from definitions that every fǧ-closed
set is fg-closed, fgs-closed, fsg-closed, fgp-closed, fgα-closed,
fαg-closed, fgpr-closed, fgβ-closed, fgδp-closed and fδpg-closed.
But the converses are not true, in general, as the following examples
show.
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Example 3.22. fgp-closed set (fgβ-closed set, fgpr-closed set,
fgα-closed set, fαg-closed set) 6⇒ fǧ-closed set
Let X = {a, b}, τ = {0X , 1X , A} where A(a) = 0.4, A(b) = 0.7.
Then (X, τ) is an fts. Here FSO(X) = {0X , 1X , U} where U ≥ A.
Consider the fuzzy set B, defined by B(a) = B(b) = 0.4. Then
B ≤ A ∈ FSO(X). But clB = 1X 6≤ A ⇒ B is not fǧ-closed set in
X.
Now FPC(X) = {0X , 1X , V } where V 6≥ A. Now B ≤ A ∈ τ and
pclB = B ≤ A⇒ B is fgp-closed set in X.
Again, B ∈ FβC(X) (as int(cl(intB)) = 0X < B) and so
βclB = B ≤ A⇒ B is fgβ-closed set in X.
Now 1X ∈ FRO(X) only containing B and so pclB ≤ 1X ⇒ B is
fgpr-closed set in X.
Also as δintB = 0X , cl(δintB) = 0X < B, B is fuzzy δ-preclosed set
in X and as a result, B is fgδp-closed set in X.
Now consider the fuzzy set C defined by C(a) = 0.4, C(b) = 0.3.
Then cl(int(clC)) = cl(int(1X \ A)) = 0X < C ⇒ C is fuzzy α-closed
set in X and so C is fgα-closed set in X. But C < A ∈ FSO(X)
and clC = 1X \ A 6≤ A⇒ C is not fǧ-closed set in X.
Now FαO(X) = {0X , 1X , U} where U ≥ A and so FαC(X) =
{0X , 1X , 1X \U} where 1X \U ≤ 1X \A. Now C ≤ A ∈ FαO(X) and
αclC = C ≤ A⇒ C is fαg-closed set in X.

Example 3.23. fgs-closed set, fsg-closed set, fg-closed set
6⇒ fǧ-closed set
Let X = {a, b}, τ = {0X , 1X , A} where A(a) = 0.5, A(b) = 0.4.
Then (X, τ) is an fts. Now FSO(X) = FSC(X) = {0X , 1X , U}
where A ≤ U ≤ 1X \ A. Consider the fuzzy set B defined by
B(a) = B(b) = 0.5. Then 1X is the only fuzzy open set in X
containing B and so clB ≤ 1X ⇒ B is fg-closed set in X. Since
sclB ≤ clB, sclB ≤ 1X ⇒ B is fgs-closed set in X. Now
B ∈ FSO(X)⇒ B ≤ B and so sclB = B ≤ B ⇒ B is fsg-closed set
in X. But clB = 1X \ A 6≤ B ⇒ B is not fǧ-closed set in X.

Remark 3.24. (i) fǧ-closedness and fpg-closedness are indepen-
dent concepts,
(ii) fǧ-closedness and fgδ-semiclosedness are independent concepts,
(iii) fǧ-closedness and fuzzy semiclosedness are independent concepts.

The following examples clarify Remark 3.24.
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Example 3.25 fǧ-closed set 6⇒ fpg-closed set
Consider Example 3.23 and the fuzzy set C defined by
C(a) = 0.6, C(b) = 0.5. Then 1X is the only fuzzy M ∈ FSO(X)
such that C < M and so clC ≤ 1X , hence C is an fǧ-closed set in
X. Now as int(clC) = 1X ≥ C ⇒ C ∈ FPO(X) and so C ≤ C. But
cl(intC) = clA = 1X \ A 6≤ C ⇒ C 6∈ FPC(X) ⇒ pclC 6≤ C ⇒ C is
not an fpg-closed set in X.

Example 3.26. fpg-closed set 6⇒ fǧ-closed set
Consider Example 3.22. Here FPO(X) = {0X , 1X , 1X \ V } where
1X \ V 6≤ 1X \ A. So B ∈ FPO(X) with B ≤ B. Also as B 6≥ A,
B ∈ FPC(X). So pclB = B ≤ B ⇒ B is an fpg-closed set in X.
But B is not an fǧ-closed set in X.

Example 3.27. fgδ-semiclosed set 6⇒ fǧ-closed set
Consider Example 3.23. Consider the fuzzy set D defined by
D(a) = D(b) = 0.5. Then 1X is the only fuzzy open set in X contain-
ing D and so D is fgδ-semiclosed set in X. Now D ∈ FSO(X) and
so D ≤ D. But clD = 1X \A 6≤ D ⇒ D is not an fǧ-closed set in X.

Example 3.28. fǧ-closed set 6⇒ fgδ-semiclosed set
Let X = {a, b}, τ = {0X , 1X , A} where A(a) = 0.5, A(b) = 0.6.
Then (X, τ) is an fts. Consider the fuzzy set B defined by
B(a) = 0.5, B(b) = 0.4. Then as B = 1X \ A ∈ τ c, B is an fǧ-closed
set in X. Now B ≤ A ∈ τ . Now δsclB = 1X 6≤ A ⇒ B is not an
fgδ-semiclosed set in X.

Example 3.29. fǧ-closed set 6⇒ fuzzy semiclosed set
Let X = {a, b}, τ = {0X , 1X , A} where A(a) = A(b) = 0.4.
Then (X, τ) is an fts. Here FSO(X) = FSC(X) = {0X , 1X , U}
where A ≤ U ≤ 1X \ A. Consider the fuzzy set B, defined by
B(a) = 0.6, B(b) = 0.7. Then 1X is the only fuzzy semiopen set in
X containing B and so clB ≤ 1X ⇒ B is fǧ-closed set in X. But
B 6∈ FSC(X).

Example 3.30. Fuzzy semiclosed set 6⇒ fǧ-closed set
Consider Example 3.23. Here B is not an fǧ-closed set. But
B ∈ FSC(X).
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Definition 3.31. A fuzzy set A is called an fǧ neighbourhood
(fǧ-nbd, for short) of a fuzzy point (resp., fuzzy set) xα (resp., B)
in an fts (X, τ) if there exists an fǧ-open set U in X such that
xα ≤ U ≤ A (resp., B ≤ U ≤ A).

Remark 3.32. An fǧ-nbd of a fuzzy point in an fts need not be
fǧ-open set follows from the following example.

Example 3.33. Consider Example 3.23 and the fuzzy point a0.5.
Here the fuzzy set B is not an fǧ-open set in X. But a0.5 ∈ A ≤ B
where A being a fuzzy open set in X is fǧ-open in X ⇒ B is an
fǧ-nbd of a0.5.

Note 3.34. Every fuzzy nbd of a fuzzy point is an fǧ-nbd of
it. But the converse may not be true, as it seen from the following
example.

Example 3.35. Consider Example 3.7 and the fuzzy point
a0.6. Let D be a fuzzy set defined by D(a) = 0.6, D(b) = 0.3.
Now (1X \ D)(a) = 0.4, (1X \ D)(b) = 0.7. Now 1X is the only
fuzzy semiopen set in (X, τ) containing 1X \ D and so clearly
1X \ D is fǧ-closed set in (X, τ). Consequently, D is an fǧ-open
set in (X, τ). So D is an fǧ-nbd of a0.6, but D is not a fuzzy nbd of a0.6.

Remark 3.36. An fǧ-open set is an fǧ-nbd of each of its points.

Theorem 3.37. Let (X, τ) be an fts and xt be a fuzzy point in X.
Let F (∈ IX) be an fǧ-closed set in X with xt ∈ 1X \ F . Then there
exists an fǧ-nbd G of xt such that G /qF .

Proof. Now xt ∈ 1X \F where F is an fǧ-closed set is X ⇒ 1X \F
being an fǧ-open set in an fǧ-nbd of xt. So by definition, there exists
an fǧ-open set G in X such that xt ∈ G ≤ 1X \ F ⇒ G /qF where G
is an fǧ-nbd of xt.

Definition 3.38. The set of all fǧ-nbds of a fuzzy point xt
(0 < t ≤ 1) in an fts (X, τ) is called the fǧ-nbd system at xt, denoted
by fǧ-N(xt).

Theorem 3.39. For a fuzzy point xt in an fts (X, τ), the following
statements hold :
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(i) fǧ-N(xt) 6= φ,
(ii) G ∈ fǧ-N(xt)⇒ xt ∈ G,
(iii) G ∈ fǧ-N(xt) and F ≥ G⇒ F ∈ fǧ-N(xt),
(iv) F,G ∈ fǧ-N(xt)⇒ F

∧
G ∈ fǧ-N(xt),

(v) G ∈ fǧ-N(xt)⇒ there exists F ∈ fǧ-N(xt) such that F ≤ G and
F ∈ fǧ-N(yt′) for every yt′ ∈ F .

Proof. (i) Since 1X being an fǧ-open set is an fǧ-nbd of xt
(0 < t ≤ 1), fǧ-N(xt) 6= φ.
(ii) and (iii) are obvious.
(iv) Since every intersection of two fǧ-open sets is fǧ-open, (iv) is
obvious.
(v) Follows from Remark 3.36 and Definition 3.38.

Theorem 3.40. Let xt be a fuzzy point in an fts (X, τ). Let
fǧ-N(xt) be a non-empty collection of fuzzy sets in X satisfying the
following conditions :
(1) G ∈ fǧ-N(xt)⇒ xt ∈ G,
(2) F,G ∈ fǧ-N(xt)⇒ F

∧
G ∈ fǧ-N(xt).

Let τ consist of 0X and all those non-empty fuzzy sets G of X having
the property that xt ∈ G ⇒ there exists an F ∈ fǧ-N(xt) such that
xt ∈ F ≤ G. Then τ is a fuzzy topology on X.

Proof. (i) By hypothesis, 0X ∈ τ .
(ii) It is clear from the given property of τ that 1X ∈ τ as 1X ∈ fǧ-
N(xt) for any fuzzy point xt (0 < t ≤ 1) in an fts X (by (1)).
(iii) Let G1, G2 ∈ τ . If G1

∧
G2 = 0X , then by construction of τ ,

G1

∧
G2 ∈ τ . Suppose G1

∧
G2 6= 0X . Let xt ∈ G1

∧
G2 where

0 < t ≤ 1. Then G1(x) ≥ t, G2(x) ≥ t. Since G1, G2 ∈ τ , by
definition of τ , there exist F1, F2 ∈ fǧ-N(xt) such that xt ∈ F1 ≤ G1,
xt ∈ F2 ≤ G2. Then xt ∈ F1

∧
F2 ≤ G1

∧
G2. By (2), F1

∧
F2 ∈ fǧ-

N(xt) and so G1

∧
G2 ∈ τ by construction of τ .

(iv) Let G = {Gα : α ∈ Λ} where Gα ∈ τ , for each α ∈ Λ. Let

xt ∈
∨
α∈Λ

Gα. Then there exists β ∈ Λ such that xt ∈ Gβ. By definition

of τ , there exists Fβ ∈ fǧ-N(xt) such that xt ∈ Fβ ≤ Gβ ≤
∨
α∈Λ

Gα ⇒∨
α∈Λ

Gα ∈ τ .

It follows that τ is a fuzzy topology on X.
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4. fǧ-Closure Operator and fǧ-Open and fǧ-Closed
Functions

In this section we first introduce the notion of fǧ-closure operator,
which is an idempotent operator. Using this concept as a basic tool,
we introduce and characterize fǧ-open and fǧ-closed functions.

Definition 4.1. Let (X, τ) be an fts and A ∈ IX . Then fǧ-closure
and fǧ-interior of A, denoted by fǧcl(A) and fǧint(A), are defined
as follow:
fǧcl(A) =

∧
{F : A ≤ F, F is fǧ-closed set in X},

fǧint(A) =
∨
{G : G ≤ A,G is fǧ-open set in X}.

Remark 4.2. It is obvious that for any A ∈ IX ,
A ≤ fǧcl(A) ≤ clA. If A is fǧ-closed set in an fts X, then
A = fǧcl(A). Similarly, intA ≤ fǧint(A) ≤ A. If A is fǧ-open set
in an fts X, then A = fǧint(A). It follows from Example 3.7 that
fǧcl(A) may not be an fǧ-closed set in an fts X. Similarly, fǧint(A)
may not by an fǧ-open set in an fts X.

Result 4.3. Let (X, τ) be an fts and A ∈ IX . Then for a fuzzy
point xt in X, xt ∈ fǧcl(A) if and only if every fǧ-open q-nbd U of
xt, UqA.

Proof. Let xt ∈ fǧcl(A) for any fuzzy set A in an fts X and F
be any fǧ-open q-nbd of xt. Then xtqF ⇒ xt 6∈ 1X \ F which is
fǧ-closed set in X. Then by Definition 4.1, A 6≤ 1X \ F ⇒ there
exists y ∈ X such that A(y) > 1− F (y)⇒ AqF .

Conversely, let for every fǧ-open q-nbd F of xt, FqA. Assume
that xt 6∈ fǧcl(A). Then by Definition 4.1, there exists an fǧ-closed
set U in X with A ≤ U , xt 6∈ U . Then xtq(1X \ U) which being
an fǧ-open set in X is an fǧ-open q-nbd of xt. By assumption,
(1X \ U)qA⇒ (1X \ A)qA, a contradiction.

Theorem 4.4. Let (X, τ) be an fts and A,B ∈ IX . Then the
following statements are true:
(i) fǧcl(0X) = 0X ,
(ii) fǧcl(1X) = 1X ,
(iii) A ≤ B ⇒ fǧcl(A) ≤ fǧcl(B),
(iv) fǧcl(A

∨
B) = fǧcl(A)

∨
fǧcl(B),

(v) fǧcl(A ∧ B) ≤ fǧcl(A) ∧ fǧcl(B), equality does not hold, in
general, follows from Example 3.7,
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(vi) fǧcl(fǧcl(A)) = fǧcl(A).
Proof. (i), (ii) and (iii) are obvious.

(iv) From (iii), fǧcl(A)
∨
fǧcl(B) ≤ fǧcl(A

∨
B).

To prove the converse, let xα ∈ fǧcl(A
∨
B). Then by Result 4.3, for

any fǧ-open set U in X with xαqU , Uq(A
∨
B)⇒ there exists y ∈ X

such that U(y) + max{A(y), B(y)} > 1 ⇒ either U(y) + A(y) > 1 or
U(y) + B(y) > 1 ⇒ either UqA or UqB ⇒ either xα ∈ fǧcl(A) or
xα ∈ fǧcl(B)⇒ xα ∈ fǧcl(A)

∨
fǧcl(B).

(v) Follows from (iii).
(vi) As A ≤ fǧcl(A), for any A ∈ IX , fǧcl(A) ≤ fǧcl(fǧcl(A)) (by
(iii)).

Conversely, let xα ∈ fǧcl(fǧcl(A)) = fǧcl(B) where B = fǧcl(A).
Let U be any fǧ-open set in X with xαqU . Then UqB im-
plies that there exists y ∈ X such that U(y) + B(y) > 1.
Let B(y) = t. Then ytqU and yt ∈ B = fǧcl(A) ⇒ UqA
⇒ xα ∈ fǧcl(A) ⇒ fǧcl(fǧcl(A)) ≤ fǧcl(A). Consequently,
fǧcl(fǧcl(A)) = fǧcl(A).

Theorem 4.5. Let (X, τ) be an fts and A ∈ IX . Then the following
statements hold:
(i) fǧcl(1X \ A) = 1X \ fǧint(A)
(ii) fǧint(1X \ A) = 1X \ fǧcl(A).

Proof (i). Let xt ∈ fǧcl(1X \ A) for a fuzzy set A in an fts (X, τ).
If possible, let xt 6∈ 1X \ fǧint(A). Then 1 − (fǧint(A))(x) < t ⇒
[fǧint(A)](x) + t > 1 ⇒ fǧint(A)qxt ⇒ there exists at least one fǧ-
open set F ≤ A with xtqF ⇒ xtqA. As xt ∈ fǧcl(1X \ A), F q(1X \
A)⇒ Aq(1X \ A), a contradiction. Hence

fǧcl(1X \ A) ≤ 1X \ fǧint(A)...(1)

Conversely, let xt ∈ 1X \ fǧint(A). Then 1− [(fǧint(A)](x) ≥ t⇒
xt 6 q(fǧint(A)) ⇒ xt 6 qF for every fǧ-open set F contained in A ...
(2).
Let U be any fǧ-closed set in X such that 1X \ A ≤ U . Then 1X \
U ≤ A. Now 1X \ U is fǧ-open set in X contained in A. By (2),
xt 6 q(1X \ U)⇒ xt ∈ U ⇒ xt ∈ fǧcl(1X \ A) and so

1X \ fǧint(A) ≤ fǧcl(1X \ A)...(3).

Combining (1) and (3), (i) follows.
(ii) Putting 1X \A for A in (i), we get fǧcl(A) = 1X \fǧint(1X \A)⇒
fǧint(1X \ A) = 1X \ fǧcl(A).
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Let us now recall the following definition from [34] for ready
references.

Definition 4.6 [34]. A function f : X → Y is called fuzzy open
(resp., fuzzy closed) if f(U) is fuzzy open (resp., fuzzy closed) set in
Y for every fuzzy open (resp., fuzzy closed) set in X.

Let us now introduce the following concept.

Definition 4.7. A function h : X → Y is called fǧ-open function
if f(U) is fǧ-open set in Y for every fuzzy open set U in X.

Remark 4.8. It is clear that every fuzzy open function is an
fǧ-open function. But the converse need not be true, as it seen from
the following example.

Example 4.9. fǧ-open function 6⇒ fuzzy open function
Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X} where
A(a) = A(b) = 0.5. Then (X, τ1) and (X, τ2) are fts’s. Con-
sider the identity function i : (X, τ1)→ (X, τ2). Since every fuzzy set
in (X, τ2) is an fǧ-open set in (X, τ2), clearly i is fǧ-open function.
But A ∈ τ1, i(A) = A 6∈ τ2 ⇒ i is not a fuzzy open function.

Theorem 4.10. For a bijective function h : X → Y , the following
statements are equivalent:
(i) h is fǧ-open,
(ii) h(intA) ≤ fǧint(h(A)), for all A ∈ IX ,
(iii) for each fuzzy point xα in X and each fuzzy open set U in X
containing xα, there exists an fǧ-open set V containing h(xα) such
that V ≤ h(U).

Proof (i) ⇒ (ii). Let A ∈ IX . Then intA is fuzzy open in X.
By (i), h(intA) is fǧ-open set in Y . Since h(intA) ≤ h(A) and
fǧint(h(A)) is the union of all fǧ-open sets contained in h(A), we
have h(intA) ≤ fǧint(h(A)).
(ii) ⇒ (i). Let U be any fuzzy open set in X. Then
h(U) = h(intU) ≤ fǧint(h(U)) (by (ii)) ⇒ h(U) is fǧ-open
set in Y ⇒ h is fǧ-open function.
(ii) ⇒ (iii). Let xα be a fuzzy point in X, and U , a fuzzy open set in
X such that xα ∈ U . Then h(xα) ∈ h(U) = h(intU) ≤ fǧint(h(U))
(by (ii)). Then h(U) is fǧ-open set in Y . Let V = h(U). Then
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h(xα) ∈ V and V ≤ h(U).
(iii) ⇒ (i). Let U be an arbitrary fuzzy open set in X and yα
any fuzzy point in h(U), i.e., yα ∈ h(U). Then there exists a
unique x ∈ X such that h(x) = y (as h is bijective). Then
[h(U)](y) ≥ α ⇒ U(h−1(y)) ≥ α ⇒ U(x) ≥ α ⇒ xα ∈ U . By
(iii), there exists an fǧ-open set V in Y such that h(xα) ∈ V and
V ≤ h(U). Then h(xα) ∈ V = fǧint(V ) ≤ fǧint(h(U)). Since yα is
taken arbitrarily and h(U) is the union of all fuzzy points in h(U),
h(U) ≤ fǧint(f(U)) ⇒ h(U) is fǧ-open set in Y ⇒ h is an fǧ-open
function.

Theorem 4.11. If h : X → Y is fǧ-open, bijective function, then
the following statements are true:
(i) for each fuzzy point xα in X and each fuzzy open q-nbd U of xα,
there exists an fǧ-open q-nbd V of h(xα) in Y such that V ≤ h(U),
(ii) h−1(fǧcl(B)) ≤ cl(h−1(B)), for all B ∈ IY .
Proof (i). Let xα be a fuzzy point in X and U be any fuzzy open q-
nbd of xα in X. Then xαqU = intU ⇒ h(xα)qh(intU) ≤ fǧint(h(U))
(by Theorem 4.10 (i)⇒(ii)) implies that there exists at least one fǧ-
open q-nbd V of h(xα) in Y with V ≤ h(U)..
(ii) Let xα be any fuzzy point in X such that xα 6∈ cl(h−1(B)) for any
B ∈ IY . Then there exists a fuzzy open q-nbd U of xα in X such that
U /qh−1(B). Now

h(xα)qh(U)...(1)

where h(U) is fǧ-open set in Y . Now h−1(B) ≤ 1X \ U which is
a fuzzy closed set in X ⇒ B ≤ h(1X \ U) (as h is injective) and
h(1X \ U) ≤ 1Y \ h(U)⇒ B /qh(U). Let V = 1Y \ h(U). Then B ≤ V
which is fǧ-closed set in Y . We claim that h(xα) 6∈ V . If possible, let
h(xα) ∈ V = 1Y \ h(U). Then 1 − [h(U)](h(x)) ≥ α ⇒ h(U) /qh(xα),
contradicting (1). So h(xα) 6∈ V ⇒ h(xα) 6∈ fǧcl(B) ⇒ xα 6∈
h−1(fǧcl(B))⇒ h−1(fǧcl(B)) ≤ cl(h−1(B)).

Theorem 4.12. An injective function h : X → Y is fǧ-open if
and only if for each B ∈ IY and F , a fuzzy closed set in X with
h−1(B) ≤ F , there exists an fǧ-closed set V in Y such that B ≤ V
and h−1(V ) ≤ F .
Proof. Let B ∈ IY and F , a fuzzy closed set in X with h−1(B) ≤ F .
Then 1X \ h−1(B) ≥ 1X \ F where 1X \ F is a fuzzy open set in
X ⇒ h(1X \ F ) ≤ h(1X \ h−1(B)) ≤ 1Y \ B (as h is injective) where



fǧ-CLOSED SETS IN A FUZZY SET TOPOLOGY 19

h(1X\F ) is an fǧ-open set in Y . Let V = 1Y \h(1X\F ). Then V is fǧ-
closed set in Y such that B ≤ V . Now h−1(V ) = h−1(1Y \h(1X \F )) =
1X \ h−1(h(1X \ F )) ≤ F .

Conversely, let F be a fuzzy open set in X. Then 1X \ F is a fuzzy
closed set in X. We have to show that h(F ) is an fǧ-open set in
Y . Now h−1(1Y \ h(F )) ≤ 1X \ F . By assumption, there exists an
fǧ-closed set V in Y such that

1Y \ h(F ) ≤ V...(1)

and h−1(V ) ≤ 1X \ F . Therefore, F ≤ 1X \ h−1(V ) implies that

h(F ) ≤ h(1X \ h−1(V )) ≤ 1Y \ V...(2)

(as h is injective). Combining (1) and (2), h(F ) = 1Y \ V which is an
fǧ-open set in Y .

Definition 4.13. A function h : X → Y is called an fǧ-closed
function if h(A) is fǧ-closed set in Y for each fuzzy closed set A in X.

Remark 4.14. It is obvious that every fuzzy closed function
is fǧ-closed function, but the converse may not be true as it
follows from Example 4.9. Here every fuzzy set in (X, τ2) is fǧ-
closed set in (X, τ2) and so clearly i is an fǧ-closed function. But
1X \A ∈ τ c1 , i(1X \A) = 1X \A 6∈ τ c2 ⇒ i is not a fuzzy closed function.

Theorem 4.15. A bijective function h : X → Y is fǧ-closed if
and only if fǧcl(h(A)) ≤ h(clA), for all A ∈ IX .

Proof. Let us suppose that h : X → Y is an fǧ-closed function and
A ∈ IX . Then h(cl(A)) is fǧ-closed set in Y . Since h(A) ≤ h(clA)
and fǧcl(h(A)) is the intersection of all fǧ-closed sets in Y containing
h(A), we have fǧcl(h(A)) ≤ h(clA).

Conversely, let for any A ∈ IX , fǧcl(h(A)) ≤ h(clA). Let U be any
fuzzy closed set in X. Then h(U) = h(clU) ≥ fǧcl(h(U)) ⇒ h(U) is
an fǧ-closed set in Y ⇒ h is an fǧ-closed function.

Theorem 4.16. If h : X → Y is an fǧ-closed bijective function,
then the following statements hold:
(i) for each fuzzy point xα in X and each fuzzy closed set U in X
with xα 6 qU , there exists an fǧ-closed set V in Y with h(xα) 6 qV such
that V ≥ h(U),
(ii) h−1(fǧint(B)) ≥ int(h−1(B)), for all B ∈ IY .
Proof (i). Let xα be a fuzzy point in X and U be any fuzzy closed
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set in X with xα 6 qU = clU ⇒ h(xα) 6 qh(clU) ≥ fǧcl(h(U)) (by
Theorem 4.15) ⇒ h(xα) 6 qV for some fǧ-closed set V in Y with
V ≥ h(U).
(ii). Let B ∈ IY and xα be any fuzzy point in X such
that xα ∈ int(h−1(B)). Then there exists a fuzzy open
set U in X with U ≤ h−1(B) such that xα ∈ U . Then
1X \U ≥ 1X \h−1(B)⇒ h(1X \U) ≥ h(1X \h−1(B)) where h(1X \U) is
an fǧ-closed set in Y . Let V = 1Y \h(1X\U). Then V is an fǧ-open set
in Y and V = 1Y \h(1X \U) ≤ 1Y \h(1X \h−1(B)) ≤ 1Y \(1Y \B) = B
(as h is injective). Now U(x) ≥ α⇒ xα 6 q(1X\U)⇒ h(xα) 6 qh(1X\U)
⇒ h(xα) ≤ 1Y \ h(1X \ U) = V ⇒ h(xα) ∈ V = fǧint(V ) ≤
fǧint(B) ⇒ xα ∈ h−1(fǧint(B)). Since xα is taken arbitrarily,
int(h−1(B)) ≤ h−1(fǧint(B)), for all B ∈ IY .

Remark 4.17. A composition of two fǧ-closed (resp., fǧ-open)
functions need not be so, as it is seen from the following example.

Example 4.18. Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X},
τ3 = {0X , 1X , B} where A(a) = A(b) = 0.5, B(a) = 0.5, B(b) = 0.4.
Then (X, τ1), (X, τ2) and (X, τ3) are fts’s. Consider two iden-
tity functions i1 : (X, τ1) → (X, τ2) and i2 : (X, τ2) → (X, τ3).
Clearly i1 and i2 are fǧ-open and fǧ-closed functions. Let
i3 = i2 ◦ i1 : (X, τ1) → (X, τ3). Now A = 1X \ A. So A ∈ τ1

as well as A ∈ τ c1 . Then i3(A) = A ≤ A ∈ FSO(X, τ3) and
clτ3(A) = 1X \ B 6≤ A ⇒ A is not an fǧ-open and A is not an
fǧ-closed set in (X, τ3) ⇒ i3 is not nor an fǧ-open, neither an
fǧ-closed function.

Theorem 4.19. If h1 : X → Y is a fuzzy closed (resp., fuzzy open)
function and h2 : Y → Z is an fǧ-closed (resp., fǧ-open) function,
then h2 ◦ h1 : X → Z is fǧ-closed (resp., fǧ-open) function.

5. fǧ-Regular, fǧ-Normal and fǧ-Compact Spaces

In this section two new types of separation axioms are introduced
and studied. Afterwards, a new type of compact space is introduced.

Definition 5.1. An fts (X, τ) is said to be an fǧ-regular space
if for any fuzzy point xt in X and each fǧ-closed set F in X with
xt 6∈ F , there exist U, V ∈ FSO(X) such that xt ∈ U, F ≤ V and
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U /qV .

Theorem 5.2. In an fts (X, τ), the following statements are
equivalent:
(i) X is fǧ-regular,
(ii) for each fuzzy point xt in X and any fǧ-open q-nbd U of xt, there
exists V ∈ FSO(X) such that xt ∈ V and sclV ≤ U ,
(iii) for each fuzzy point xt in X and each fǧ-closed set A of X with
xt 6∈ A, there exists U ∈ FSO(X) with xt ∈ U such that sclU /qA.

Proof (i) ⇒ (ii). Let xt be a fuzzy point in X and U , any fǧ-
open q-nbd of xt. Then xtqU ⇒ U(x) + t > 1 ⇒ xt 6∈ 1X \ U
which is an fǧ-closed set in X. By (i), there exist
V,W ∈ FSO(X) such that xt ∈ V, 1X \ U ≤ W and V /qW .
Then V ≤ 1X \W ⇒ sclV ≤ scl(1X \W ) = 1X \W ≤ U .
(ii) ⇒ (iii). Let xt be a fuzzy point in X and A an fǧ-closed set in
X with xt 6∈ A. Then A(x) < t⇒ xtq(1X \ A), where (1X \ A), being
an fǧ-open set in X, is fǧ-open q-nbd of xα. So by (ii), there exists
V ∈ FSO(X) such that xt ∈ V and sclV ≤ 1X \ A. Then sclV /qA.
(iii) ⇒ (i). Let xt be a fuzzy point in X and F be any fǧ-closed set
in X with xt 6∈ F . Then by (iii), there exists U ∈ FSO(X) such that
xt ∈ U and sclU /qF . Then F ≤ 1X \ sclU (=: V ). So V ∈ FSO(X)
and V /qU as U /q(1X \ sclU). Consequently, X is an fǧ-regular space.

Definition 5.3. An fts (X, τ) is called fǧ-normal space if for
each pair of fǧ-closed sets A,B in X with A 6 qB, there exist
U, V ∈ FSO(X) such that A ≤ U,B ≤ V and U 6 qV .

Theorem 5.4. An fts (X, τ) is an fǧ-normal space if and only if
for every fǧ-closed set F and fǧ-open set G with F ≤ G, there exists
H ∈ FSO(X) such that F ≤ H ≤ sclH ≤ G.

Proof. Let X be an fǧ-normal space and let F be fǧ-closed set and
G be fǧ-open set in X with F ≤ G. Then F /q(1X \ G) where 1X \ G
is fǧ-closed set in X. By hypothesis, there exist H,T ∈ FSO(X)
such that F ≤ H, 1X \ G ≤ T and H /qT . Then H ≤ 1X \ T ≤ G.
Therefore, F ≤ H ≤ sclH ≤ scl(1X \ T ) = 1X \ T ≤ G.

Conversely, let A,B be two fǧ-closed sets in X with A /qB. Then
A ≤ 1X \ B. By hypothesis, there exists H ∈ FSO(X) such that
A ≤ H ≤ sclH ≤ 1X \ B ⇒ A ≤ H,B ≤ 1X \ sclH (=: V ).
Then V ∈ FSO(X) and so B ≤ V . Also as H /q(1X \ sclH), H /qV .
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Consequently, X is an fǧ-normal space.

Definition 5.5. Let (X, τ) be an fts and A ∈ IX . A collection
U of fuzzy sets in X is called a fuzzy cover of A if

⋃
U ≥ A [25].

If each member of U is fuzzy open (resp., fuzzy regular open, fuzzy
semiopen) in X, then U is called a fuzzy open [25] (resp., fuzzy
regular open [2], fuzzy semiopen [28]) cover of A. If, in particu-
lar, A = 1X , we get the definition of fuzzy cover of X as

⋃
U = 1X [20].

Definition 5.6. Let (X, τ) be an fts and A ∈ IX . Then a fuzzy
cover U of A (resp., of X) is said to have a finite subcover U0 if U0 is
a finite subcollection of U such that

⋃
U0 ≥ A [25]. If, in particular

A = 1X , we get
⋃
U0 = 1X [20].

Definition 5.7. Let (X, τ) be an fts and A ∈ IX . Then A is called
fuzzy compact [20] (resp., fuzzy almost compact [21], fuzzy nearly
compact [29], fuzzy semicompact [19]) set if every fuzzy open (resp.,
fuzzy open, fuzzy regular open, fuzzy semiopen) cover U of A has

a finite subcollection U0 such that
⋃
U0 ≥ A (resp.,

⋃
U∈U0

clU ≥ A,⋃
U0 ≥ A,

⋃
U0 ≥ A). If, in particular, A = 1X , we get the definition

of fuzzy compact [20] (resp., fuzzy almost compact [21], fuzzy nearly
compact [22], fuzzy semicompact [28]) space as

⋃
U0 = 1X (resp.,⋃

U∈U0

clU = 1X ,
⋃
U0 = 1X ,

⋃
U0 = 1X).

Let us now introduce the following concept.

Definition 5.8. Let (X, τ) be an fts and A ∈ IX . Then A is called
fǧ-compact if every fuzzy cover U of A by fǧ-open sets of X has a
finite subcover. If, in particular, A = 1X , we get the definition of
fǧ-compact space X.

Theorem 5.9. Every fǧ-closed set in an fǧ-compact space X is
fǧ-compact.

Proof. Let A(∈ IX) be an fǧ-closed set in an fǧ-compact space
X. Let U be a fuzzy cover of A by fǧ-open sets of X. Then
V = U

⋃
(1X \ A) is a fuzzy cover of X by fǧ-open sets of X. As X

is fǧ-compact space, V has a finite subcollection V0 which also covers
X. If V0 contains 1X \ A, we omit it and get a finite subcover of A.
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Hence A is fǧ-compact set.

Remark 5.10. It is clear from definitions that every fǧ-compact
space is fuzzy compact (resp., fuzzy almost compact, fuzzy nearly
compact).

6. fǧ-Continuous and fǧ-Irresolute Functions

In this section we first introduce and study fǧ-continuous function.
The collection of all fǧ-continuous functions is strictly larger than
the collection of all fuzzy continuous functions defined between
two fts’s. It is shown that the image of an fǧ-continuous function
from an fǧ-regular (resp., fǧ-normal, fǧ-compact) space is fuzzy
regular [27] (resp., fuzzy normal [26], fuzzy compact [20], fuzzy
nearly compact [22], fuzzy almost compact [21]). Afterwards, the
notion of fǧ-irresolute function is introduced and it is shown that the
family of all fǧ-irresolute functions is strictly smaller than that of
fǧ-continuous function, and also that fǧ-irresolute function and fuzzy
continuous function are independent concepts. Lastly, we establish
that an fǧ-regular (resp., fǧ-normal, fǧ-compact) space remains
invariant under fǧ-irresolute functions.

We first recall the following definition for ready references.

Definition 6.1 [20]. A function h : X → Y is said to be a fuzzy
continuous function if h−1(V ) is fuzzy open set in X for every fuzzy
open set V in Y .

Definition 6.2. A function h : X → Y is said to be an fǧ-
continuous function if h−1(V ) is fǧ-open set in X for every fuzzy
open set V in Y .

Remark 6.3. Since every fuzzy open set in an fts X is fǧ-open, we
can conclude that every fuzzy continuous function is fǧ-continuous
function. But the converse need not be true, as it seen from the
following example.

Example 6.4. fǧ-continuous function 6⇒ fuzzy continuous func-
tion
Let X = {a, b}, τ1 = {0X , 1X}, τ2 = {0X , 1X , A} where
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A(a) = A(b) = 0.5. Then (X, τ1) and (X, τ2) are fts’s. Con-
sider the identity function i : (X, τ1) → (X, τ2). Since every fuzzy
set in (X, τ1) is fǧ-open set in (X, τ1), so clearly i is fǧ-continuous
function. But A ∈ τ2, i−1(A) = A 6∈ τ1 ⇒ i is not a fuzzy continuous
function.

Theorem 6.5. Let h : (X, τ) → (Y, σ) be a function. Then the
following statements are equivalent:
(i) h is fǧ-continuous function,
(ii) for each fuzzy point xα in X and each fuzzy open nbd V of h(xα)
in Y , there exists an fǧ-open nbd U of xα in X such that h(U) ≤ V ,
(iii) h(fǧcl(A)) ≤ cl(h(A)), for all A ∈ IX ,
(iv) fǧcl(h−1(B)) ≤ h−1(clB), for all B ∈ IY .

Proof (i) ⇒ (ii). Let xα be a fuzzy point in X and V any fuzzy
open nbd of h(xα) in Y . Then xα ∈ h−1(V ) which is fǧ-open in X
(by (i)). Let U = h−1(V ). Then h(U) = h(h−1(V )) ≤ V .
(ii) ⇒ (i). Let A be any fuzzy open set in Y and let xα be
a fuzzy point in X such that xα ∈ h−1(A). Then h(xα) ∈ A
where A is a fuzzy open nbd of h(xα) in Y . By (ii), there ex-
ists an fǧ-open nbd U of xα in X such that h(U) ≤ A. Then
xα ∈ U ≤ h−1(A) ⇒ xα ∈ U = fǧint(U) ≤ fǧint(h−1(A)). Since
xα is taken arbitrarily and h−1(A) is the union of all fuzzy points
in h−1(A), h−1(A) ≤ fǧint(h−1(A)) ⇒ h−1(A) is an fǧ-open set in
X ⇒ h is an fǧ-continuous function.
(i) ⇒ (iii). Let A ∈ IX . Then cl(h(A)) is a fuzzy closed
set in Y . By (i), h−1(cl(h(A))) is an fǧ-closed set in X.
Now A ≤ h−1(h(A)) ≤ h−1(cl(h(A))) and so fǧcl(A) ≤
fǧcl(h−1(cl(h(A)))) = h−1(cl(h(A)))⇒ h(fǧcl(A)) ≤ cl(h(A)).
(iii) ⇒ (i). Let V be a fuzzy closed set in Y . Put U = h−1(V ). Then
U ∈ IX . By (iii), h(fǧcl(U)) ≤ cl(h(U)) = cl(h(h−1(V ))) ≤ clV =
V ⇒ fǧcl(U) ≤ h−1(V ) = U ⇒ U is an fǧ-closed set in X ⇒ f is an
fǧ-continuous function.
(iii) ⇒ (iv). Let B ∈ IY and A = h−1(B). Then A ∈ IX . By (iii),
h(fǧcl(A)) ≤ cl(h(A)) ⇒ h(fǧcl(h−1(B))) ≤ cl(h(h−1(B))) ≤ clB ⇒
fǧcl(h−1(B)) ≤ h−1(clB).
(iv) ⇒ (iii). Let A ∈ IX . Then h(A) ∈ IY . By (iv),
fǧcl(h−1(h(A))) ≤ h−1(cl(h(A))) ⇒ fǧcl(A) ≤ fǧcl(h−1(h(A))) ≤
h−1(cl(h(A)))⇒ h(fǧcl(A)) ≤ cl(h(A)).
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Remark 6.6. The composition of two fǧ-continuous functions
need not be so, as it is seen from the following example.

Example 6.7. Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X},
τ3 = {0X , 1X , B} where A(a) = 0.5, A(b) = 0.4, B(a) = 0.5, B(b) =
0.6. Then (X, τ1), (X, τ2) and (X, τ3) are fts’s. Consider two identity
functions i1 : (X, τ1) → (X, τ2) and i2 : (X, τ2) → (X, τ3). Then
clearly i1 and i2 are fǧ-continuous functions. Now 1X \ B ∈ τ c3 .
So (i2 ◦ i1)−1(1X \ B) = 1X \ B ≤ A ∈ FSO(X, τ1). But
clτ1(1X \ B) = 1X \ A 6≤ A ⇒ 1X \ B is not an fǧ-closed set in
(X, τ1)⇒ i2 ◦ i is not an fǧ-continuous function.

Theorem 6.8. If h1 : X → Y is an fǧ-continuous function and
h2 : Y → Z is a fuzzy continuous function, then h2 ◦ h1 : X → Z is
an fǧ-continuous function.

Proof. Obvious.

Let us now recall some definitions from [27, 26, 5, 33] for ready
references.

Definition 6.9 [27]. An fts (X, τ) is called fuzzy regular space if
for any fuzzy point xα in X and any fuzzy closed set F in X with
xα 6∈ F , there exist fuzzy open sets U, V in X such that xα ∈ U ,
F ≤ V and U 6 qV .

Definition 6.10 [26]. An fts (X, τ) is called fuzzy normal space if
for each pair of fuzzy closed sets A,B in X with A 6 qB, there exist
fuzzy open sets U, V in X such that A ≤ U,B ≤ V and U 6 qV .

Definition 6.11 [5]. An fts (X, τ) is called fTs-space if every fuzzy
semiopen set in X is fuzzy open set in X.

Definition 6.12 [33]. A function f : X → Y is called fuzzy
presemiopen if h(U) ∈ FSO(Y ) for every U ∈ FSO(X).

Theorem 6.13. If a bijective function h : X → Y is fǧ-continuous,
fuzzy open function from an fǧ-regular, fTs-space X onto an fts Y ,
then Y is fuzzy regular space.

Proof. Let yα be a fuzzy point in Y and F , a fuzzy closed
set in Y with yα 6∈ F . As h is bijective, there exists unique
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x ∈ X such that h(x) = y. So h(xα) 6∈ F ⇒ xα 6∈ h−1(F )
where h−1(F ) is fǧ-closed set in X (as h is an fǧ-continuous
function). By hypothesis, there exist U, V ∈ FSO(X) such that
xα ∈ U, h−1(F ) ≤ V and U 6 qV . Then h(xα) ∈ h(U), F = h(h−1(F ))
(as h is bijective)≤ h(V ) and h(U) 6 qh(V ). Since X is fTs-space,
U, V are fuzzy open sets in X. Now as h is a fuzzy open function,
h(U), h(V ) are fuzzy open sets in Y with yα ∈ h(U), F ≤ h(V )
and h(U) 6 qh(V ) (Indeed, h(U)qh(V ) ⇒ there exists z ∈ Y such
that [h(U)](z) + [h(V )](z) > 1 ⇒ U(h−1(z)) + V (h−1(z)) > 1 as h
is bijective⇒ UqV , a contradiction). Hence Y is a fuzzy regular space.

In a similar manner we can state the following theorems easily.

Theorem 6.14. If a bijective function h : X → Y is fǧ-continuous,
fuzzy presemiopen function from an fǧ-regular (resp., fǧ-normal)
space X onto an fTs-space Y , then Y is fuzzy regular (resp., fuzzy
normal) space.

Theorem 6.15. If a bijective function h : X → Y is fǧ-continuous,
fuzzy open function from an fǧ-normal, fTs-space X onto an fts Y ,
then Y is fuzzy normal space.

Definition 6.16. A function h : X → Y is called fǧ-irresolute
function if h−1(U) is an fǧ-open set in X for every fǧ-open set U in Y .

We can state the following theorems easily. Their proofs are similar
to that of Theorem 6.13.

Theorem 6.17. If a bijective function h : X → Y is an fǧ-
irresolute, fuzzy presemiopen function from an fǧ-regular (resp.,
fǧ-normal) space X onto an fts Y , then Y is an fǧ-regular (resp.,
fǧ-normal) space.

Theorem 6.18. If a bijective function h : X → Y is an fǧ-
irresolute, fuzzy open function from an fǧ-regular (resp., fǧ-normal),
fTs-space X onto an fts Y , then Y is an fǧ-regular (resp., fǧ-normal)
space.

Theorem 6.19. A function h : X → Y is fǧ-irresolute function
if and only if for each fuzzy point xα in X and each fǧ-open nbd V
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in Y of h(xα), there exists an fǧ-open nbd U in X of xα such that
h(U) ≤ V .

Proof. Let h : X → Y be an fǧ-irresolute function. Let xα be a
fuzzy point in X and V be any fǧ-open nbd of h(xα) in Y . Then
h(xα) ∈ V ⇒ xα ∈ h−1(V ) which being an fǧ-open set in X is an
fǧ-open nbd of xα in X. Put U = h−1(V ). Then U is an fǧ-open
nbd of xα in X and h(U) = h(h−1(V )) ≤ V .

Conversely, let A be an fǧ-open set in Y and xα be any fuzzy
point in X such that xα ∈ h−1(A). Then h(xα) ∈ A. By hy-
pothesis, there exists an fǧ-open nbd U of xα in X such that
h(U) ≤ A⇒ xα ∈ U = fǧint(U) ≤ fǧint(h−1(A)). Since xα is taken
arbitrarily and h−1(A) is the union of all fuzzy points in h−1(A),
h−1(A) ≤ fǧint(h−1(A)) ⇒ h−1(A) = fǧint(h−1(A)) ⇒ h−1(A) is
fǧ-open set in X ⇒ h is an fǧ-irresolute function.

Theorem 6.20. Let h : X → Y be an fǧ-continuous function
from X onto an fts Y and A(∈ IX)be an fǧ-compact set in X. Then
h(A) is a fuzzy compact (resp., fuzzy almost compact, fuzzy nearly
compact) set in Y .

Proof. Let U = {Uα : α ∈ Λ} be a fuzzy cover of h(A)
by fuzzy open (resp., fuzzy open, fuzzy regular open) sets of Y .

Then h(A) ≤
⋃
α∈Λ

Uα ⇒ A ≤ h−1(
⋃
α∈Λ

Uα) =
⋃
α∈Λ

h−1(Uα). Then

V = {h−1(Uα) : α ∈ Λ} is a fuzzy cover of A by fǧ-open sets
of X as h is an fǧ-continuous function. As A is fǧ-compact
set in X, there exists a finite subcollection Λ0 of Λ such that

A ≤
⋃
α∈Λ0

h−1(Uα)⇒ h(A) ≤ h(
⋃
α∈Λ0

h−1(Uα) ≤
⋃
α∈Λ0

Uα ⇒ h(A) is fuzzy

compact (resp., fuzzy almost compact, fuzzy nearly compact) set in Y .

Now we can state the following theorems easily the proofs of which
are same as that of Theorem 6.20.

Theorem 6.21. Let h : X → Y be an fǧ-irresolute function from
X onto an fts Y and A(∈ IX) be an fǧ-compact set in X. Then h(A)
is fǧ-compact (resp., fuzzy compact, fuzzy almost compact, fuzzy
nearly compact) set in Y .

Theorem 6.22. Let h : X → Y be an fǧ-continuous function from
an fǧ-compact space X onto an fts Y . Then Y is a fuzzy compact
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(resp., fuzzy almost compact, fuzzy nearly compact) space.

Theorem 6.23. Let h : X → Y be an fǧ-irresolute function from
an fǧ-compact space X onto an fts Y . Then Y is fǧ-compact (resp.,
fuzzy compact, fuzzy almost compact, fuzzy nearly compact) space.

Remark 6.24. It is clear from definitions that fǧ-irresolute
function is fǧ-continuous. But the converse may not be true, as it
seen from the following example.

Example 6.25. fǧ-continuity 6⇒ fǧ-irresoluteness
Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X} where
A(a) = 0.5, A(b) = 0.4. Then (X.τ1) and (X, τ2) are fts’s. Consider the
identity function i : (X, τ1) → (X, τ2). Clearly i is an fǧ-continuous
function. Consider the fuzzy set B, defined by B(a) = B(b) = 0.5.
Then B is fǧ-closed set in (X, τ2) as every fuzzy set in (X, τ2) is
fǧ-closed set in (X, τ2). Now i−1(B) = B ≤ B ∈ FSO(X, τ1). But
clτ1B = 1X \ A 6≤ B ⇒ B is not fǧ-closed set in (X, τ1) ⇒ i is not
fǧ-irresolute function.

Remark 6.26. Fuzzy continuity and fǧ-irresoluteness are inde-
pendent concepts follows from the following examples.

Example 6.27. Fuzzy continuity 6⇒ fǧ-irresoluteness
Consider Example 6.21. Here i is clearly fuzzy continuous function.
But it is shown that i is not an fǧ-irresolute function.

Example 6.28. fǧ-irresoluteness 6⇒ fuzzy continuity
Let X = {a, b}, τ1 = {0X , 1X}, τ2 = {0X , 1X , A} where A(a) =
0.5, A(b) = 0.4. Then (X, τ1) and (X, τ2) are fts’s. Consider the iden-
tity function i : (X, τ1) → (X, τ2). Since every fuzzy set in (X, τ1) is
fǧ-closed set in (X, τ1), i is clearly fǧ-irresolute function. But A ∈ τ2,
i−1(A) = A 6∈ τ1 ⇒ i is not a fuzzy continuous function.

7. fǧ-T2-Space

In this section a new type of fuzzy separation axiom, viz., fǧ-
T2-space is introduced and it is shown that the inverse image of
fuzzy T2-space [27] under fǧ-continuous function is fǧ-T2-space.
Afterwards, one strong and one weak form of fǧ-continuous function
are introduced. It is shown that the image of fuzzy regular (resp.,
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fuzzy normal, fuzzy compact, fuzzy semicompact) space under these
functions is fǧ-regular (resp., fǧ-normal, fǧ-compact) space.

We first recall the following definition and theorem from [27, 29]
for ready references.

Definition 7.1 [27]. An fts (X, τ) is called fuzzy T2-space if
for any two distinct fuzzy points xα and yβ; when x 6= y, there
exist fuzzy open sets U1, U2, V1, V2 such that xα ∈ U1, yβqV1, U1 6 qV1

and xαqU2, yβ ∈ V2, U2 6 qV2; when x = y and α < β (say), there
exist fuzzy open sets U and V in X such that xα ∈ U, yβqV and U 6 qV .

Theorem 7.2 [29]. An fts (X, τ) is fuzzy T2-space if and only if
for any two distinct fuzzy points xα and yβ in X; when x 6= y, there
exist fuzzy open sets U, V in X such that xαqU , yβqV and U 6 qV ;
when x = y and α < β (say), xα has a fuzzy open nbd U and yβ has
a fuzzy open q-nbd V such that U 6 qV .

Definition 7.3. An fts (X, τ) is called fǧ-T2-space, if for any two
distinct fuzzy points xα and yβ in X; when x 6= y, there exist fǧ-open
sets U, V in X such that xαqU , yβqV and U 6 qV ; when x = y and
α < β (say), xα has an fǧ-open nbd U and yβ has an fǧ-open q-nbd
V such that U 6 qV .

Theorem 7.4. If an injective function h : X → Y is fǧ-continuous
function from an fts X onto a fuzzy T2-space Y , then X is fǧ-T2

space.
Proof. Let xα and yβ be two distinct fuzzy points in X. Then

h(xα) (= zα, say) and h(yβ)(= wβ, say) are two distinct fuzzy points
in Y .
Case I. Suppose x 6= y. Then z 6= w. Since Y is fuzzy T2-space, there
exist fuzzy open sets U, V in Y such that zαqU,wβqV and U 6 qV .
As h is fǧ-continuous function, h−1(U) and h−1(V ) are fǧ-open
sets in X with xαqh

−1(U), yβqh
−1(V ) and h−1(U) 6 qh−1(V ) [Indeed,

zαqU ⇒ U(z) + α > 1⇒ U(h(x)) + α > 1⇒ [h−1(U)](x) + α > 1⇒
xαqh

−1(U). Again, h−1(U)qh−1(V ) ⇒ there exists t ∈ X such that
[h−1(U)](t) + [h−1(V )](t) > 1 ⇒ U(h(t)) + V (h(t)) > 1 ⇒ UqV , a
contradiction].
Case II. Suppose x = y and α < β (say). Then z = w and
α < β. Since Y is fuzzy T2-space, there exist a fuzzy open nbd
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U of xα and a fuzzy open q-nbd V of wβ such that U 6 qV . Then
U(z) ≥ α ⇒ [h−1(U)](x) ≥ α ⇒ xα ∈ h−1(U), yβqh

−1(V ) and
h−1(U) 6 qh−1(V ) where h−1(U) and h−1(V ) are fǧ-open sets in X as
h is fǧ-continuous function. Consequently, X is fǧ-T2-space.

In a similar manner, we can prove the following theorems.

Theorem 7.5. If a bijective function h : X → Y is fǧ-irresolute
function from an fts X onto an fǧ-T2-space Y , then X is fǧ-T2-space.

Theorem 7.6. If a bijective function h : X → Y is fǧ-open
function from a fuzzy T2-space X onto an fts Y , then Y is fǧ-T2-space.

Definition 7.7. A function h : X → Y is called
(i) fǧ-strongly continuous if h−1(V ) is fuzzy open set in X for

every fǧ-open set V in Y ,
(ii) fǧ-weakly continuous if h−1(V ) ∈ FSO(X) for every fǧ-open

set V in Y .

Remark 7.8. It is clear from definitions that fǧ-strongly continu-
ous function is fǧ-weakly continuous function as well as fǧ-continuous
function and fǧ-irresolute function. But the converses are not true,
in general, as it follow from the following examples.

Example 7.9. fǧ-weakly continuity 6⇒ fǧ-strongly continuity
Let X = {a}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X , B} where
A(a) ≤ 0.3, B(a) ≤ 0.4. Then (X, τ1) and (X, τ2) are fts’s.
Consider the identity function i : (X, τ1) → (X, τ2). Now
FSO(X, τ1) = {0X , 1X , V } where 0 < V (a) ≤ 0.7 and
FSO(X, τ2) = {0X , 1X , U} where 0 < U(a) ≤ 0.6. The collec-
tion of all fǧ-closed sets in (X, τ2) is {0X , 1X , 1X \ B} and that of
fǧ-open sets is {0X , 1X , B}. Now consider any fuzzy set W defined
by W ≤ B, i.e., W (a) ≤ 0.4. Now i−1(W ) = W ∈ FSO(X, τ1) ⇒ i
is fǧ-weakly continuous function. But if we consider the fuzzy set
C defined by C(a) = 0.4, then C is fǧ-open set in (X, τ2). But
i−1(C) = C 6∈ τ1 ⇒ i is not fǧ-strongly continuous function.

Example 7.10. fǧ-continuity and fǧ-irresoluteness 6⇒ fǧ-strongly
continuity
Let X = {a}, τ1 = {0X , 1X}, τ2 = {0X , 1X , A} where A(a) = 0.6.
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Then (X, τ1) and (X, τ2) are fts’s. Consider the identity function
i : (X, τ1) → (X, τ2). Since every fuzzy set in (X, τ1) is fǧ-closed
as well as fǧ-open set in (X, τ1), i is fǧ-continuous as well as
fǧ-irresolute function. Now A ∈ τ2 is fǧ-open set in (X, τ2). But
i−1(A) = A 6∈ τ1 ⇒ i is not fǧ-strongly continuous function.

Remark 7.11. fǧ-weakly continuity and fǧ-irresoluteness are
independent concepts follow from the following examples.

Example 7.12. fǧ-irresoluteness 6⇒ fǧ-weakly continuity
Consider Example 7.10. Since every fuzzy set in (X, τ1)
is fǧ-open set in (X, τ1), i is fǧ-irresolute function. But
i−1(A) = A 6∈ FSO(X, τ1) ⇒ i is not fǧ-weakly continuous
function.

Example 7.13. fǧ-weakly continuity 6⇒ fǧ-irresoluteness
Consider Example 7.9. Here i is fǧ-weakly continuous function.
Consider the fuzzy set V defined by V (a) = 0.6. Then V ∈ τ c2 ⇒ V
is fǧ-closed set in (X, τ2). Now i−1(V ) = V ≤ V ∈ FSO(X, τ1). But
clV = D where D is defined by D(a) = 0.7 and so clV 6≤ V ⇒ V is
not fǧ-closed set in (X, τ1)⇒ i is not fǧ-irresolute function.

Let us now recall following two definitions from [6, 10] for ready
references.

Definition 7.14 [6]. An fts (X, τ) is called fuzzy s-regular if
for any fuzzy point xα in X and any fuzzy semiclosed set F in X
with xα 6∈ F , there exist fuzzy semiopen sets U, V in X such that
xα ∈ U, F ≤ V and U 6 qV .

Definition 7.15 [6]. An fts (X, τ) is called fuzzy s-normal if for
each pair of fuzzy semiclosed sets A,B in X with A 6 qB, there exist
fuzzy semiopen sets U, V in X such that A ≤ U,B ≤ V and U 6 qV .

Definition 7.16 [10]. An fts (X, τ) is called fuzzy semi-T2-space if
for any two distinct fuzzy points xα and yβ; when x 6= y, there exist
fuzzy semiopen sets U, V in X such that xαqU , yβqV and U 6 qV ;
when x = y and α < β (say), xα has a fuzzy semi-nbd U and yβ has
a fuzzy semi-q-nbd V in X such that U 6 qV .

Now we can state the following theorems easily the proofs of which
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are similar to that of Theorem 6.13, Theorem 6.14, Theorem 6.15,
Theorem 6.17, Theorem 6.18, Theorem 6.20, Theorem 6.21 and
Theorem 7.4.

Theorem 7.17. If a bijective function h : X → Y is an fǧ-strongly
continuous, fuzzy open function from a fuzzy regular (resp., fuzzy
normal) space X onto an fts Y , then Y is an fǧ-regular (resp.,
fǧ-normal) space.

Theorem 7.18. If a bijective function h : X → Y is an fǧ-weakly
continuous, fuzzy presemiopn function from a fuzzy s-regular (resp.,
fuzzy s-normal) space X onto an fts Y , then Y is an fǧ-regular (resp.,
fǧ-normal) space.

Theorem 7.19. If a bijective function h : X → Y is an fǧ-strongly
continuous (resp., fǧ-weakly continuous) function from X onto an
fǧ-T2-space Y , then X is a fuzzy T2-space (resp., fuzzy semi-T2-space).

Theorem 7.20. If a bijective function h : X → Y is an fǧ-strongly
(resp., fǧ-weakly) continuous function from a fuzzy compact (resp.,
fuzzy semicompact) space X onto an fts Y , then Y is an fǧ-compact
space.

8. Mutual Relationship Between Functions

In this section we first establish the mutual relation between
fǧ-closed function with the functions defined in [5, 9, 11, 12, 13, 14]
and then find the mutual relationship of fǧ-continuous function with
the functions defined in [5, 7, 9, 11, 12, 13, 14, 15].

We first recall the following definitions from [5, 9, 11, 12, 13, 14]
for ready references.

Definition 8.1. Let (X, τ1) and (Y, τ2) are fts’s and
h : (X, τ1)→ (Y, τ2) be a function. Then h is called an
(i) fg-closed function [5] if h(A) is fg-closed set in Y for every A ∈ τ c1 ,
(ii) fgp-closed function [5] if h(A) is fgp-closed set in Y for every
A ∈ τ c1 ,
(iii) fgβ-closed function [11] if h(A) is fgβ-closed set in Y for every
A ∈ τ c1 ,
(iv) fgα-closed function [5] if h(A) is fgα-closed set in Y for every
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A ∈ τ c1 ,
(v) fgpr-closed function [15] if h(A) is fgpr-closed set in Y for every
A ∈ τ c1 ,
(vi) fgδp-closed function [12] if h(A) is fgδp-closed set in Y for every
A ∈ τ c1 ,
(vii) fδpg-closed function [13] if h(A) is fδpg-closed set in Y for every
A ∈ τ c1 ,
(viii) fgδ-semiclosed function [14] if h(A) is fgδ-semiclosed set in Y
for every A ∈ τ c1 ,
(ix) fgs∗-closed function [9] if h(A) is fgs∗-closed set in Y for every
A ∈ τ c1 .

Note 8.2. It is clear from definitions that fǧ-closed function is fg-
closed, fgp-closed, fgβ-closed, fgα-closed, fgpr-closed, fgδp-closed
function. But the converses are not true, in general, follows from the
following example.

Example 8.3. fg-closed, fgp-closed, fgβ-closed, fgα-closed,
fgpr-closed, fgδp-closed function 6⇒ fǧ-closed function
Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X , B} where
A(a) = A(b) = 0.5, B(a) = 0.5, B(b) = 0.4. Then (X, τ1) and (X, τ2)
are fts’s. Consider the identity function i : (X, τ1) → (X, τ2).
Here A ∈ τ c1 . Now i(A) = A ≤ A ∈ FSO(X, τ2). But
clτ2A = 1X \ B 6≤ A ⇒ A is not fǧ-closed set in (X, τ2) ⇒ i
is not fǧ-closed function. Since 1X is the only fuzzy open set in
(X, τ2) containing A, we say that A is fg-closed set, fgp-closed
set, fgβ-closed set, fgα-closed set, fgpr-closed set, fgδp-closed set
in (X, τ2). Consequently, i is fg-closed, fgp-closed, fgβ-closed,
fgα-closed, fgpr-closed, fgδp-closed function.

Note 8.4. fǧ-closed function is independent concept of fδpg-closed
function, fgδ-semiclosed function and fgs∗-closed function, as it seen
from the following examples.

Example 8.5. fδpg-closed function, fgδ-semiclosed function
6⇒ fǧ-closed function
Consider Example 8.3. Here i is not fǧ-closed function. Since only
fuzzy δ-preopen set in (X, τ2) containing the fuzzy set A is 1X , so
clearly i is fδpg-closed function. Again 1X is the only fuzzy open set
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in (X, τ2) containing A and so clearly i is fgδ-semiclosed function.

Example 8.6. fǧ-closed function 6⇒ fgδ-semiclosed function
Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X , A,B}
where A(a) = 0.5, A(b) = 0.6, B(a) = 0.5, B(b) = 0.55.
Then (X, τ1) and (X, τ2) are fts’s. Consider the identity
function i : (X, τ1) → (X, τ2). Now 1X \ A ∈ τ c1 . So
i(1X \A) = 1X \A. Now FSO(X, τ2) = {0X , 1X , U} where U ≥ B. So
1X \A ≤ B ∈ FSO(X, τ2). Now clτ2(1X \A) = 1X \A ≤ B ⇒ 1X \A
is fǧ-closed set in (X, τ2) ⇒ i is fǧ-closed function. But
δsclτ2(1X \ A) = 1X 6≤ B, but 1X \ A ≤ B ∈ τ2 ⇒ 1X \ A is
not fgδ-semiclosed set in (X, τ2)⇒ i is not fgδ-semiclosed function.

Example 8.7. fǧ-closed function 6⇒ fδpg-closed function, fgs∗-
closed function
Let X = {a, b}, τ1 = {0X , 1X , B}, τ2 = {0X , 1X , A} where
A(a) = 0.5, A(b) = 0.2, B(a) = 0.4, B(b) = 0.7. Then
(X, τ1) and (X, τ2) are fts’s. Consider the identity function
i : (X, τ1) → (X, τ2). Now FSO(X, τ2) = {0X , 1X , C} where
A ≤ C ≤ 1X \ A, FδPO(X, τ2) = {0X , 1X , U, V } where
U ≤ A, V 6≤ 1X \ A and FδPC(X, τ2) = {0X , 1X , 1X \ U, 1X \ V }
where 1X \ U ≥ 1X \ A, 1X \ V 6≥ A. Now 1X \ B ∈ τ c1 .
Then i(1X \ B) = 1X \ B < 1X(∈ FSO(X, τ2)) only and so
clτ2(1X \ B) ≤ 1X ⇒ 1X \ B is an fǧ-closed set in (X, τ2) ⇒ i
is fǧ-closed function. Again 1X \ B ∈ FδPO(X, τ2). So
1X \ B ≤ 1X \ B. But δpclτ2(1X \ B) = C where C is defined
by C(a) = 0.6, C(b) = 0.8 ⇒ C 6≤ 1X \ B ⇒ 1X \ B is not an
fδpg-closed set in (X, τ2) ⇒ i is not fδpg-closed function. Also
the collection of all fg-open sets in (X, τ2) is {0X , 1X , V } where
V 6≥ 1X \ A. Now i(1X \ B) = 1X \ B ≤ 1X \ B which is fg-open
set in (X, τ2). But sclτ2(1X \ B) = 1X 6≤ 1X \ B ⇒ 1X \ B is not
fgs∗-closed set in (X, τ2)⇒ i is not fgs∗-closed function.

Example 8.8. fgs∗-closed function 6⇒ fǧ-closed function
Let X = {a, b}, τ1 = {0X , 1X , A,B}, τ2 = {0X , 1X , F} where A(a) =
0.4, A(b) = 0.55, B(a) = 0.5, B(b) = 0.6, F (a) = 0.4, F (b) = 0.5.
Then (X, τ1) and (X, τ2) are fts’s. Consider the identity function
i : (X, τ1) → (X, τ2). Here FSO(X, τ2) = FSC(X, τ2) = {0X , 1X , U}
where F ≤ U ≤ 1X \ F . Now as i(1X \ A) = 1X \ A ∈ FSC(X, τ2)
and i(1X \ B) = 1X \ B ∈ FSC(X, τ2), so i is clearly fgs∗-closed
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function. Now 1X \ B ≤ C ∈ FSO(X, τ2) where C is defined by
C(a) = C(b) = 0.5. But clτ2(1X \ B) = 1X \ F 6≤ C ⇒ 1X \ B is not
fǧ-closed set in (X, τ2)⇒ i is not fǧ-closed function.

Definition 8.9. Let (X, τ1) and (Y, τ2) are fts’s and
h : (X, τ1)→ (Y, τ2) be a function. Then h is called
(i) fg-continuous function [5] if h−1(V ) is fg-closed set in X for every
V ∈ τ c2 ,
(ii) fgp-continuous function [7] if h−1(V ) is fgp-closed set in X for
every V ∈ τ c2 ,
(iii) fpg-continuous function [7] if h−1(V ) is fpg-closed set in X for
every V ∈ τ c2 ,
(iv) fgα-continuous function [5] if h−1(V ) is fgα-closed set in X for
every V ∈ τ c2 ,
(v) fαg-continuous function [5] if h−1(V ) is fαg-closed set in X for
every V ∈ τ c2 ,
(vi) fgβ-continuous function [11] if h−1(V ) is fgβ-closed set in X for
every V ∈ τ c2 ,
(vii) fgpr-continuous function [15] if h−1(V ) is fgpr-closed set in X
for every V ∈ τ c2 ,
(viii) fgδp-continuous function [13] if h−1(V ) is fgδp-closed set in X
for every V ∈ τ c2 ,
(ix) fδpg-continuous function [13] if h−1(V ) is fδpg-closed set in X
for every V ∈ τ c2 ,
(x) fgδ-semiclosed function [14] if h−1(V ) is fgδ-semiclosed set in X
for every V ∈ τ c2 ,
(xi) fgs∗-continuous function [9] if h−1(V ) is fs∗g-closed set in X for
every V ∈ τ c2 .

Remark 8.10. It is clear from Remark 3.21 that fǧ-continuous
function is fg-continuous, fgp-continuous, fgα-continuous, fαg-
continuous, fgβ-continuous, fgpr-continuous, fgδp-continuous,
fδpg-continuous function. But the converses are not true, in general,
follow from the following example.

Example 8.11. fg-continuous, fgp-continuous, fgα-continuous,
fαg-continuous, fgβ-continuous, fgpr-continuous, fgδp-continuous,
fδpg-continuous function 6⇒ fǧ-continuous function
Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X , B} where
A(a) = 0.5, A(b) = 0.4, B(a) = B(b) = 0.5. Then (X, τ1) and (X, τ2)
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are fts’s. Consider the identity function i : (X, τ1) → (X, τ2). Now
1X \ B ∈ τ c2 . So i−1(1X \ B) = 1X \ B ≤ 1X \ B ∈ FSO(X, τ1). But
clτ1(1X \ B) = 1X \ A 6≤ 1X \ B ⇒ 1X \ B is not fǧ-closed set in
(X, τ1) ⇒ i is not fǧ-continuous function. But 1X is the only fuzzy
open as well as fuzzy regular open, fuzzy α-open, fuzzy δ-preopen set
in (X, τ1) containing 1X \B and so i is fg-continuous, fgp-continuous,
fgα-continuous, fαg-continuous, fgβ-continuous, fgpr-continuous,
fgδp-continuous, fδpg-continuous function.

Remark 8.12. The concept of fǧ-continuity is independent of
the concepts of fpg-continuity and fgδ-semicontinuity and fgs∗-
continuity follow from the following examples.

Example 8.13. fpg-continuity 6⇒ fǧ-continuity
Consider Example 8.10. Here 1X is the only fuzzy preopen set in
(X, τ1) containing 1X \ B, so clearly i is fpg-continuous function,
though i is not fǧ-continuous function.

Example 8.14. fǧ-continuity 6⇒ fpg-continuity, fgs∗-continuity
Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X , B} where
A(a) = 0.5, A(b) = 0.4, B(a) = 0.4, B(b) = 0.5. Then (X, τ1) and
(X, τ2) are fts’s. Consider the identity function i : (X, τ1) → (X, τ2).
Here 1X \ B ∈ τ c2 . So i−1(1X \ B) = 1X \ B < 1X(∈ FSO(X, τ1))
only and so clτ1(1X \ B) ≤ 1X ⇒ 1X \ B is fǧ-closed set in
(X, τ1) ⇒ i is fǧ-continuous function. Now 1X \ B ∈ FPO(X, τ1) as
intτ1(clτ1(1X \B)) = 1X > 1X \B. So 1X \B ≤ 1X \B ∈ FPO(X, τ1).
But pclτ1(1X \ B) = 1X 6≤ 1X \ B ⇒ 1X \ B is not an fpg-closed set
in (X, τ1) ⇒ i is not fpg-continuous function. Now the collection of
all fg-open sets in (X, τ1) is {0X , 1X , V } where V 6≥ 1X \ A. Now
i−1(1X \ B) = 1X \ B ≤ 1X \ B which is fg-open set in (X, τ1). But
sclτ1(1X \ B) = 1X 6≤ 1X \ B ⇒ 1X \ B is not fgs∗-closed set in
(X, τ1)⇒ i is not fgs∗-continuous function.

Example 8.15. fǧ-continuity 6⇒ fgδ-semicontinuity
Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X , B} where
A(a) = 0.5, A(b) = 0.6, B(a) = 0.5, B(b) = 0.7. Then (X, τ1) and
(X, τ2) are fts’s. Consider the identity function i : (X, τ1) → (X, τ2).
Now 1X \ B ∈ τ c2 , i−1(1X \ B) = 1X \ B < A ∈ FSO(X, τ1).
clτ1(1X \ B) = 1X \ A < A ⇒ 1X \ B is fǧ-closed set in
(X, τ1) ⇒ i is fǧ-continuous function. Now 1X \ B < A ∈ τ1.



fǧ-CLOSED SETS IN A FUZZY SET TOPOLOGY 37

But δsclτ1(1X \ B) = 1X 6≤ A ⇒ 1X \ B is not fgδ-semiclosed set in
(X, τ1)⇒ i is not fgδ-semicontinuous function.

Example 8.16. fgδ-semicontinuity 6⇒ fǧ-continuity
Consider Example 8.10. Here i is not fǧ-continuous function. Since
1X is the only fuzzy open set in (X, τ1) containing 1X \ B, so 1X \ B
is fgδ-semiclosed set in (X, τ1)⇒ i is fgδ-semicontinuous function.

Example 8.17. fgs∗-continuity 6⇒ fǧ-continuity
Consider Example 8.8. Here 1X \F ∈ τ c2 . Then i−1(1X \F ) = 1X \F .
Here the collection of all fg-open sets in (X, τ1) is {0X , 1X , V,W}
where 0.5 ≤ V (a) < 0.6, V (b) ≥ 0.5,W 6≥ 1X \ B. So 1X is the
only fg-open set in (X, τ1) containing 1X \ F and so clearly i is fgs∗-
continuous function. Again FSO(X, τ1) = {0X , 1X , U} where U ≥ A.
So 1X \ F ≤ D ∈ FSO(X, τ1) where D(a) = 0.6, D(b) = 0.55. But
clτ1(1X \ F ) = 1X 6≤ D ⇒ 1X \ F is not fǧ-closed set in (X, τ1)⇒ i is
not fǧ-continuous function.
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