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GENERALIZED CLOSED SET AND GENERALIZED
CONTINUITY IN FUZZY M-SPACE

ANJANA BHATTACHARYYA

Abstract. This paper deals with a generalized version of fuzzy
closed sets in fuzzy m-spaces [2]. Using this concept as a basic tool,
we introduce a generalized version of closed and open functions in fuzzy
m-spaces. Several characterizations of these functions are proved.
Moreover, a generalized version of continuity in fuzzy m-space is in-
troduced and studied. Afterwards, several applications of this type of
function are given in the study of generalized versions of fuzzy reg-
ular, fuzzy normal and fuzzy compact spaces, in the setting of fuzzy
m-spaces.

1. Introduction

Alimohammady and Roohi in [1] introduced the notion of fuzzy
minimal structure (fuzzy m-structure, for short) as follows : A family
M of fuzzy sets in a non-empty set X is said to be fuzzy minimal
structure on X if alx € M for every o € [0, 1]. Afterwards, a more
general version of fuzzy minimal structure (in the sense of Chang) was
introduced in [4, 7] as follows : A family F of fuzzy sets in a non-empty
set X is a fuzzy minimal structure on X if Ox € F and 1x € F. In
this paper, we use the notion of fuzzy minimal structure in the sense

of Chang.
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2. Preliminaries

In [9], Zadeh introduced the concept of a fuzzy set A which is a
mapping from a non-empty set X into the closed interval I = [0, 1],
i.e., A € I*. The support [9] of a fuzzy set A, denoted by suppA and
is defined by suppA = {x € X : A(z) # 0}. The fuzzy set with the
singleton support {z} C X and the value t (0 < ¢ < 1) will be denoted
by x;. Ox and 1x are the constant fuzzy sets taking values 0 and 1
respectively in X. The complement [9] of a fuzzy set A in X is denoted
by 1x \ A and is defined by (1x \ A)(z) =1 — A(z), for each x € X.
For any two fuzzy sets A, B in X, A < B means A(z) < B(z), for all
x € X [9] while A¢gB means A is quasi-coincident (q-coincident, for
short) [8] with B, i.e., there exists € X such that A(z) + B(x) > 1.
The negation of these two statements will be denoted by A £ B and
A /gB respectively. For a fuzzy point z, and a fuzzy set A in X,
To € A means z, < A, ie., Ax) > a.

3. fgm-Closed Set and fgm-Closure Operator

Let X be a non-empty set and m C IX be a fuzzy minimal
structure on X. Then (X,m) is called a fuzzy minimal space (fuzzy
m-space, for short) [2]. The members of m are called fuzzy m-open
sets [2]. The complement of a fuzzy m-open set in a fuzzy m-space is
called a fuzzy m-closed set.

Definition 3.1 [2]. Let (X, m) be a fuzzy m-space and A € IX.
Then the fuzzy m-closure and fuzzy m-interior of A, denoted by mclA
and mintA respectively, are defined as follows :

mclAz/\{F:ASF,lX\FEm}

mintA:\/{D:DgA,DEm}

It is to be noted that given a fuzzy minimal structure m on X, if
A € I*, then mintA may not be an element of m. But if m satisfies
M-condition (i.e., m is closed under arbitrary union) [2], then mintA
is an element of m and mclA is fuzzy m-closed.

Proposition 3.2 [2]. Let (X, m) be a fuzzy m-space. Then for
any A € I, a fuzzy point z, € mclA if and only if for any U € m
with xz,qU, UqA.
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Lemma 3.3 [2]. Let (X,m) be a fuzzy m-space. For A, B € I,
the following statements are true:
(i) A < B = mintA < mintB, mclA < mclB,
(11) mmtOX = OX, mmth = 1)(, mclOX = Ox, mcllX = 1)(,
(iii) mintA < A < mclA,
(iv) mclA=Aif 1x \ A€ m, mintA= A, if A€ m,
(v) mel(1x \ A) = 1x \ mintA, mint(1x \ A) = 1x \ mclA,
(vi) mel(mclA) = mclA and mint(mintA) = mintA.

Lemma 3.4 [2]. For A, B € I where (X, m) is a fuzzy m-space,
(i) mel A\ melB < mcl(A\/ B)
(i) mint(A A\ B) < mintA \ mintB.

Now we introduce generalized version of fuzzy m-closed set.

Definition 3.5. Let (X,m) be a fuzzy m-space and A € I¥.
Then A is called fuzzy generalized m-closed ( fgm-closed, for short) if
mclA < U whenever A < U € m. The complement of an fgm-closed
set in X is called fgm-open set in X.

Remark 3.6. It is clear that every fuzzy m-closed set is fgm-
closed, but converse need not be true as it seen from the following
example.

Example 3.7. Let X = {a,b}, m = {0x,1x,A} where
A(a) = 0.5, A(b) = 0.6. Then (X, m) is a fuzzy m-space. Consider
the fuzzy set B defined by B(a) = 0.5, B(b) = 0.3. Then B < A € m.
Now melB = 1x \ A < A= Bis fgm-closed in X, though B is not
fuzzy m-closed in X.

Definition 3.8. Let (X, m) be a fuzzy m-space and A € IX. Then
fuzzy generalized m-closure of A, denoted by fgmcl(A), is defined by
fgmcl(A) = N{F : A< F and F is fgm-closed in X }.

Note 3.9. It is clear that for any A € I*, A < fgmcl(A). If
A is fgm-closed, then A = fgmcl(A). But fgmcl(A) may not be
fgm-closed follows from the next example.

Example 3.10. Let X = {a,b}, m = {0x,1x,A, B} where
A(a) = 0.5,A(b) = 0.4,B(a) = 0.4,B(b) = 0.5. Then (X,m) is
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a fuzzy m-space. Consider two fuzzy sets C' and D defined by
C(a) = 04,C(b) = 0.6,D(a) = 0.6,D(b) = 0.4. Then 1x is the
only fuzzy m-open set containing C' as well as D and so C and D
are fgm-closed in X. Let E = C AD. Then E(a) = E(b) = 0.4.
Then £ < A € m. Now mclE = (1x \ A)A(1x \ B) = F where
F(a) = F(b) = 0.5 and so F £ A = FE is not fgm-closed in X. This
shows that the intersection of two fgm-closed sets need not be so.
Hence the proof.

Proposition 3.11. Le (X,m) be a fuzzy m-space and A € IX.
Then for a fuzzy point z, in X, z, € fgmclA if and only if every
fgm-open set U, x,qU implies UgA.

Proof. Let x, € fgmclA and U be fgm-open set in X with z,qU.
Then U(z) + o > 1 = x, & 1x \ U which is fgm-closed in X. As
To € fgmclA, x, € F, for all fgm-closed set F' containing A. So
A L 1x \ U = there is y € X such that A(y) > 1—U(y) = AqU.

Conversely, let for every fgm-open set U in X, z,qU imply
UqA. We have to prove that z, € F, for all fgm-closed set F
in X containing A. If possible, let xz, ¢ F where F is fgm-
closed set containing A. Then x,q(1x \ F) which is fgm-open
in X. By hypothesis, (1x \ F)gA = there is y € X such that
1—F(y)+ A(y) > 1 = A(y) > F(y) which contradicts the fact that
F> A

Theorem 3.12. Let (X,m) be a fuzzy m-space and A, B € I¥.
Then the following statements are true :
i) fgmel(Ox) = Ox,

(i
(i) fgmel(1x) = 1y,

(iii) if A < B, then fgmecl(A) < fgmcl(B),

(iv) fgmcl(AV B) = fgmcl(A) fgmel(B),

(v) fgmcl(ANB) < fgmcl(A) N\ fgmcl(B), equality does not hold,
in general, follows from Example 3.10,

(vi) fgmel(fgmel(A)) = fgmcl(A).

Proof. (i), (ii) and (iii) are obvious.

(iv) By (iii), fgmecl(A)V fgmel(B) < fgmcl(A\ B).

To prove the converse, let z; € fgmcl(A\ B). Then for any fgm-
open set U in X, 2,qU implies Uq(A\/ B). Then there exists y € X
such that U(y) + maxz{A(y), B(y)} > 1 = either U(y) + A(y) > 1 or
U(y) + B(y) > 1 = either UgA or UgB = either z; € fgmcl(A) or

xy € fgmel(B) = xy € fgmcl(A)\ fgmel(B).
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(v) Follows from (iii).
(vi) From (iii) as A < fgmcl(A), fgmcl(A) < fgmel(fgmcl(A)).
Conversely, let z, € fgmel(fgmcl(A)) = fgmecl(B) where
= fgmcl(A). Let U be any fgm-open set in X with z,qU.
Then UgB = there exists y € X such that U(y) + B(y) > 1.
Let Bly) = s. Then ys € B = fgmcl(A). Now y,qU where
U is fgm-open in X and so UgA = xz; € fgmcl(A) and so
fagmel(fgmel(A)) < fgmel(A). Hence the proof.

Definition 3.13. Let (X,m) be a fuzzy m-space and A € IX.
Then fuzzy generalized m-interior of A, denoted by fgmint(A), is
defined by fgmint(A) = \/{G: G < A and G is fgm-open in X}.

Remark 3.14. For every fuzzy set A in a fuzzy m-space (X, m),
fgmint(A) < A. But if A is fgm-open, then fgmint(A) = A. In
general, fgmint(A) may not by fgm-open follows from Example
3.10. Indeed, here 1x \ C' and 1x \ D are fgm-pen sets in X. Then
(1x\ C)V(1x \ D) = G (say) where G(a) = G(b) = 0.6. If we show
that 1x \ G is not fgm-closed, then G is not fgm-open in X. Now
Ix\G<Aem. But mel(lx \G) = (1x \ A) A(lx \ B) = H (say)
where H(a) = H(b) = 0.5 and so H £ A implies that 1x \ G is not
fgm-closed in X. Consequently, G is not fgm-open in X.

Lemma 3.15. In a fuzzy m-space (X, m) and A € I*, the follow-
ing statements hold:
(i) fgmel(1x \ A) = 1x \ fgmint(A)
(i) fgmint(1x \ A) = 1x \ fgmcl(A).
Proof (i). Let z; € fgmcl(1x \ A). If possible, let z; &€ 1x
fgmint(A). Then 1 — (fgmint(A))(xz) < t = [fgmint(A)](z) +t
1 = fgmint(A)qr, = there exists at least one fgm-open set F <
with z,qF = x1qA. Asx; € fgmel(1x\ A), Fq(1x \ A) = Aq(1x\ A),
a contradiction. Hence

fgmel(1x \ A) < 1x\ fgmint(A)...(1)

Conversely, let z; € 1x \ fgmint(A). Then 1 — [(fgmint(A)](z) >
t = x; g(fgmint(A)) = x; GF where F is fgm-open set contained
in A .. (2).

Let U be any fgm-closed set in X such that 1x \ A < U. Then
1x \U < A. Now 1x \ U is fgm-open set in X contained in A. By
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(2), z f(Ax\U) =2, € U = a2, € fgmel(lx \ A) and so
Ix \ fgmint(A) < fgmel(1x \ A)...(3).

Combining (1) and (3), (i) follows.

(ii) Putting 1x \ A for A in (i), we get fgmcl(A) =
Ix \ fgmint(1x \ A) = fgmint(1x \ A) = 1x \ fgmcl(A).

4. fg(m, my)-Closed (fg(m,m;)-Open) Function : Some
Properties

We first recall the following definitions from [3].

Definition 4.1 [3]. A function f: (X, m) — (Y, m,) is called fuzzy
(m, my)-closed ( resp., fuzzy (m,my)-open) if f(U) is fuzzy m;-closed
(resp., fuzzy mi-open) set in Y for every fuzzy m-closed (resp., fuzzy
m-open) set U in X.

Definition 4.2 [3]|. A function f: (X, m) — (Y, my) is called fuzzy
(m, my)-continuous if f~1(U) is fuzzy m-open in X for every fuzzy
mq-open set U in Y.

Let us now introduce the following concept.

Definition 4.3. A function f : (X,m) — (Y, my) is called fuzzy
generalized (m,m;)-closed (fg(m,m;)-closed, for short) if f(F) is
fgm-closed set in Y for every fuzzy m-closed set F'in X.

Remark 4.4. Since every fuzzy m-closed set is fgm-closed, we can
easily conclude that fuzzy (m,m;)-closed function is fg(m, my)-closed
But the converse need not be true as it seen from the following
example.

Example 4.5. Let X = {a,b}, m = {0x,1x, B}, m; = {0x,1x, A}
where A(a) = 0.5, A(b) = 0.6, B(a) = 0.5, B(b) = 0.7. Then (X, m)
and (X,m;) are fuzzy m-spaces. Consider the identity function
i:(X,m)— (X,my) and the fuzzy set 1x \ B. Then 1x \ B € m°.
Now i(l1x \ B) = 1x \ B &€ m§ = i is not fuzzy (m,m;)-closed
function. Also 1x\ B < Aand mycl(1x\B)=1x\A< A= 1x\B
is fgmy-closed set in (X, my) = ¢ is fg(m,m)-closed function.
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Remark 4.6. Composition of two fg(m, my)-closed functions may
not be so as it seen from the following example.

Example 4.7. Let X = {a, b}, m = {Oxlx,A}, m; = {Ox,lx}7
me = {0x, lx, B} where A(a) = 0.5, A(b) = 0.6, B(a) = 0.5, B(b) =
0.4. Then (X,m) and (X,m;) are fuzzy m-spaces. Consider two
identity functions i : (X, m) — (X, my) and i5 : (X, m1) — (X, ma).
Clearly i1 and i5 are fg(m, mq)-closed and fg(my, msy)-closed functions
respectively. Now 1x \ A € m¢. Then (is0d;)(1x \ A) =1x \ A < B.
But macl(1x \ A) = 1x \ B £ B = 1x \ A is not fgms-closed set in
(X, mso) = ip 04y is not fg(m, my)-closed function.

Theorem 4.8. If f: (X,m) — (Y,my) is a fuzzy (m,m,)-closed
function and ¢ : (Y, my) — (Z,ms) is a fg(ms, ms)-closed function,
then go f: (X,m) — (Z,ms) is fg(m,msy)-closed function.

Proof. Let A be fuzzy m-closed in X. Then f(A) is fuzzy
my-closed in Y. By hypothesis, g(f(A)) = (g o f)(A) is fgma-closed
in Z = go fis fg(m,msy)-closed function.

Theorem 4.9. An injective function f : (X,m) — (Y,m,) is
fg(m,my)-closed if and only if for each S € IV and each fuzzy m-
open set U in X with f~(S) < U, there exists fgm-open set V in Y
such that S <V and f~1(V) < U.

Proof. Let f be fg(m,m;)-closed function. Let S € IY and U be
a fuzzy m-open set in X such that f~!(S) < U. Then 1x \ f~1(5) >
L \U = f(Ix\U) < f(Ix\f71(9)) = I\ f(f71(5)) = 1y \ S (as f is
injective). Now 1x\U is fuzzy m-closed in X. Then f(1x\U) is fgm-
closedin Y (as f is fg(m, m)-closed function). Let V' = 1y \ f(1x\U).
Then V is fgmi-open in Y. Now S < 1y \ f(lx \U) = V and
FUV) = £ F \ D) = 1y \ F (1 \ D) < 0.
Conversely, let F' be a fuzzy m-closed set in X and O be a fuzzy
m~open set in Y such that

Then f~ 1y \ f(F)) = 1x\ f 1 (f(F)) < 1x\F which is fuzzy m-open
in X. By hypothesis, there exists an fgmj-open set V in Y such that
Iy \ f(F) < V...(i1)

and
FUV) < 1x \ F...(idd)
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Therefore, FF < 1x \ f~(V) implies that
FF) < fAx \ fH(V)) = 1y \ Vo (iv)

(as f is injective). From (i), 1y \ O < 1y \ f(F), f'(1y \ O) <
Ay N A(F) < f7HV) (by (i) < 1x \ F' (by (iii)). Then
F<Ix\f7HV) S Ix\fTHIv \ () S Ix\ Iy \O) = f(F) <
P\ £ 1y \O)) = 1y \ (£ 1y \ 0)) = O (as f is injective).
As 1y \ V' is fgmy-closed in Y, micl(f(F)) < mycl(ly \ V) (by (iv))
=1y \V <O (as by (i) and (ii), Iy \V < f(F) <O = 1y \V < 0)
= mycl(f(F)) < O whenever f(F) < O = f(F) is fgmi-closed in
Y. Consequently, f is fg(m,m;)-closed function.

Theorem 4.10. If a function f : (X,m) — (Y,my) is fuzzy
(m, my)-continuous and fg(m, m;)-closed function and A is an
fgm-closed set in X, then f(A) is fgmi-closed set in Y.

Proof. Let O be a fuzzy mj-open set in Y with f(A) < O. Then
A < f71O) which is fuzzy m-open set in X as f is fuzzy (m,m;)-
continuous. Since A is fgm-closed, mclA < f~1O) = f(mclA) < O.
As f is  fg(m,my)-closed function, f(mclA) is fgmi-closed
in Y and so mycl(f(mclA)) < O. Since f(A) < f(mclA),
macl(f(A)) < mycl(f(melA)) <O = f(A) is fgmy-closed in Y.

Theorem 4.11. If h: (X, m) — (Y, my) is fg(m,my)-closed func-
tion where m satisfies M-condition, then fgmcl(h(A)) < h(mclA),
for all A € IX.

Proof. Let A € IX. Then mclA is fuzzy m-closed in X as m
satisfies M-condition. By hypothesis, h(mclA) is fgmi-closed in Y
and so fgmicl(h(A)) < fgmycl(h(mclA)) = h(mclA).

Definition 4.12. A function h : (X, m) — (Y, mq) is called fuzzy
generalized (m, my)-open ( fg(m,my)-open, for short) function if A(U)
is fgmy-open in Y for each fgm-open set U in X.

Theorem 4.13. For a bijective function h : (X,m) — (Y,m,)
where m-satisfies M-condition, the following statements are equiva-
lent:

(1) h is fg(m,ml)—open,
(i) h(mintA) < fgmyint(h(A)), for all A € IX,
(iii) for each fuzzy point z; in X and each fuzzy m-open set U in X

containing x;, there exists an fgmj-open set V' containing h(x;) such
that V < h(U).
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Proof (i) = (ii). Let A € I*. Then mintA is fuzzy m-open
in X (as m satisfies M-condition). By (i), h(mintA) is fgms-open
in Y. Since mintA < A, h(mintA) < h(A) and fgmqint(h(A))
is the union of all fgmi-open sets contained in h(A), we have
h(mintA) < fgmyint(h(A)).

(ii) = (i). Let U be a fuzzy m-open set in X. Then h(U) is fuzzy
my-open in Y and so h(U) = h(mintU) < fgmyint(h(U)) (by (ii))
= h(U) is fgmi-open set in Y.

(ii) = (iii). Let x; be a fuzzy point in X and U, a fuzzy m-open
set in X such that x; € U. Then h(x;) € h(U) = h(mintU) <
fgmyint(h(U)). Then h(U) is fgm-open in Y. Let V = f(U). Then
h(zy) € Vand V < f(U).

(iii) = (i). Let U be any fuzzy m-open set in X and y; be
any fuzzy point in A(U), ie, y € h(U). Then there ex-
ists © € X such that h(z) = y (as h is bijective). Then
R(D](y) >t = Uh(y) >t = U@®) >t =z € U. By
(iii), there exists an fgmi-open set V' in Y such that h(z;) € V and
V < h(U). Then h(z;) € V = fgmyint(V) < fgmyint(h(U)). Since
x; is taken arbitrarily and h(U) is the union of all fuzzy points in
h(U), h(U) < fgmyint(h(U)) = h(U) is fgmi-open in Y = h is

fg(m,my)-open function.

Theorem 4.14. If h : (X,m) — (Y, mq) is fg(m, mq)-open func-
tion where m satisfies M-condition, then the following statements are
true :

(i) for each fuzzy point z; in X and each fuzzy m-open set U in X with
xqU, there exists fgm-open set V with h(x;)qV such that V < h(U),
(i) h=(fgmycl(B)) < mcl(h=Y(B)), for all B € IY.

Proof (i). Let z; be any fuzzy point in X and U be any
fuzzy m-open set in X with z,qU = mintU = h(z;)qgh(mintU) <
fgmyint(h(U)) (by Theorem 4.13) = h(x;)qfgmyint(h(U)) = there
exists an fgmq-open set V in Y such that h(x;)qV and V < h(U).
(ii) Let z; be any fuzzy point in X such that z; & mcl(h=!(B)) for
any B € IY. Then there exists a fuzzy m-open set U in X with z,qU,
U 4h~(B). Now

Bz )gh(D)-..(3)
where h(U) is fgmi-open set in Y (as h is fg(m, m;)-open function).
Now h™}(B) < 1x\U = B < h(lx \U) < 1y \ W(U) = B 4h(U).
Let V' = 1y \ h(U). Then V is fgmi-closed set in Y with B < V.
We claim that h(z;) ¢ V. If possible, let h(z;) € V = 1y \ h(U).
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Then 1 — [h(U)](h(z)) > t = h(U) /qh(x:), contradicts (i). So
hz) €V = hlz) & fgmic(B) = x & h™'(fgmicl(B)) =
h=Y(fgmicl(B)) < mcl(h™'(B)).

Theorem 4.15. If b : (X,m) — (Y, my) is injective, fg(m,mq)-
open function, B € IY and F is a fuzzy m-closed set in X with
h='(B) < F, there exists an fgm;-closed set V in Y such that B <V
and h™ (V) < F.

Proof. Let B € IY and F be a fuzzy m-closed set in X with
h=Y(B) < F. Then 1x \ h™'(B) > 1x \ F where 1x \ F is fuzzy m-
open in X = h(lx \ F) < h(lx \ h™'(B)) <1y \ B (as h is injective)
where h(1x \ F) is fgmi-open in Y. Let V = 1y \ h(1x \ F'). Then
V is fgmy-closed in Y such that B < 1y \ h(lx \ F') = V. Now
(V) = ho 1y \ Alx \ F)) = 1 \ b ((Lx \ F)) < F.

5. fg(m,m;)-Continuous Function

Definition 5.1. A function f : (X,m) — (Y, my) is called fuzzy
generalized (m,m,)-continuous (fg(m,m;)-continuous, for short)
function if f~(F) is fuzzy m-closed in X for every fuzzy my-closed
set Flin Y.

Theorem 5.2. Let h : (X,m) — (Y, my) be a function where m,
satisfies M-condition. Then the following statements are equivalent:
(i) h is fg(m,mq)-continuous,

(ii) for each fuzzy point z; in X and each fuzzy mj-open set V in Y
containing h(z;), there exists an fgm-open set U in X containing x;
such that A(U) <V,

(iii) A(fgmcl(A)) < mycl(h(A)), for all A € T,

(iv) fgmel(h~Y(B)) < h=Y(mclB), for all B € IY.

Proof (i) = (ii). Let z; be a fuzzy point in X and V be any
fuzzy mi-open set in Y with h(z;) € V. Then 2, € h™*(V). Let
U = h (V). Then U is fgm-open in X (by (i)) with z; € U and
hU) < V.

(ii) = (i). Let A be any fuzzy ms-open set in Y and x; be a fuzzy
point in X such that z, € h™*(A). Then h(z,) € A. By (ii), there
exists an fgm-open set U in X with x; € U such that h(U) < A. Then
r, € U < h™1(A). Then 2, € U = fgmint(U) < fgmint(h=(A)).
Since z; is taken arbitrarily and h~'(U) is the union of all fuzzy
points in h™1(A), h "1 (A) < fgmint(h~'(A)) = h™1(A) is fgm-open

in X = his fg(m,my)-continuous function.
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(i) = (iii). Let A € I*. Since m; satisfies M-condition, then
mycl(h(A)) is fuzzy my-closed set in Y. Now A < h71(h(A)) <
h=Y(mycl(h(A))) which is fgm-closed in X (by (i)) and so
fgmcl(A) < h~Y(mycl(h(A))) = h(fgmcl(A)) < mycl(h(A)).

(iii) = (i). Let V be a fuzzy mi-closed set in Y. Put U = h=1(V).
By (iii), h(fgmcl(U)) < mycl(h(U)) = mycl(h(h71(V))) < myclV =
V = fgmc(U) < h"' (V) = U = U is fgm-closed in X = h is
fg(m, my)-continuous function.

(iii) = (iv). Let B € IY and A = h™'(B). Then A € I*.
By (ifi), h(fgmcl(A)) < macl(h(A)) = h(fgmel(h"(B))) <
mycl(h(h™Y(B))) < myclB = fgmecl(h 1( )) < h™ (mlclB)

(iv) = (iii). Let A € I¥, en h(A) € IV, By
(iv), fgmel(h(h(A))) < - (m1cl(h(A)) = fgmcl(4) <
fgmel(h='(n(A))) < fH(macl(h(A))) = h(fgmcl(4)) <
mycl(h(A)).

Theorem 5.3. If h : (X,;m) — (Y,my) is fuzzy (m,m;)-closed,
fg(m,my)-continuous, injective function where m; satisfies M-
condition, then h=1(B) is fgm-closed in X for every fgm;-closed set
BinY.

Proof. Let B be fgmi-closed set in Y and let h™'(B) < U
where U is fuzzy m-open set in X. As h is fuzzy (m,mq)-closed,
injective function, by Theorem 4.9, there exists a fuzzy m;j-open
set V in Y with B < V and h(V) < U. As B is fgm;-closed
set in Y, mcdB <V = h™'(micdB) < h™Y(V) < U. Since my
satisfies M-condition, myclB is fuzzy mj-closed set in Y. Then
as h is fg(m my)-continuous, h~(myclB) is fgm-closed set in
X = mcl(h YmyclB)) < U = mcl(h™*(B)) < mcl(h™'(miclB)) <
U= h'(B)is fgm-closed in X.

Remark 5.4. Composition of two fg(m,m;)-continuous functions
need not be so, as it seen from the following example.

Example 5.5. Let X = a0}, mi = {0x,1x,A},
me = {Ox,1x}, mg = {Ox,1x, B} where A(a) = 0.5, A(b) = 04,
B(a) = 0.5, B(b) = 0.6. Then (X, my), (X, mg) and (X, ms) are fuzzy
m-spaces. Consider two identity functions i; : (X, m;) — (X, ms2)
and iy @ (X,mq) — (X,ms). Clearly iy and iy are fg(mq, mo)-
continuous and fg(ms, mg)-continuous functions respectively. Now
1X\B € mg, (22 Oil)il(lx\B) = 1x\B < A € m;. But
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micl(lx \ B) = 1x \A £ A = 1x \ B is not fgm-closed in

(X, mq) = ip 04y is not fg(mq, m3)-continuous function.

Theorem 5.6. If h : (X,m) — (Y,my) is fg(m,mq)-continuous
and ¢ : (Y,mq) — (Z, mg) is fuzzy (my, my)-continuous function, then
go f:(X,m1)— (Z,ms) is fg(m,ms)-continuous.

Proof. Obvious.

Theorem 5.7. If h : (X,;m) — (Y,mq) is fg(m,m;)-continuous
and fuzzy (m,m;)-closed injective function and g : (Y, my) — (Z, ms2)
is fg(mq, mg)-continuous function where m; satisfies M-condition,
then go h: (X, m) — (Z,my) is fg(m, my)-continuous.

Proof. Let F be a fuzzy mo-closed set in Z. Then g }(F) is
fgmy-closed in Y. By Theorem 5.3, h™'(g7'(F)) = (g o h)"'(F) is
fgm-closed in X = go his fg(m,msy)-continuous.

6. fgm-Regular, fgm-Normal and fgm-Compact Spaces and
Application of fg(m,m;)-Continuous Function

Let us now recall the following definitions from [3] for ready
references.

Definition 6.1 [3]. A fuzzy m-space (X, m) is said to be fuzzy
m-regular space if for any fuzzy point z, in X and each fuzzy
m-closed set F’ with z, € F, there exist two fuzzy m-open sets U,V
in X such that z, € U, F <V and U 4V.

Definition 6.2 [3]. A fuzzy m-space (X, m) is said to be fuzzy
m-normal if for each pair of fuzzy m-closed sets A, B in X with A 4B,
there exist two fuzzy m-open sets U,V in X such that A< U, B <V
and U 4V.

Let us now introduce the following concept.

Definition 6.3. A fuzzy set A in a fuzzy m-space (X, m) is called
a fuzzy generalized m-open g-nbd (fgm-open g-nbd, for short) of a
fuzzy point x,, if there is a fuzzy m-open set U in X such that x,qU.

Definition 6.4. A fuzzy m-space (X,m) is said to be fuzzy
generalized m-regular (fgm-regular, for short) space if for any fuzzy
point z; in X and each fgm-closed set F' with x; &€ F, there exist two
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fuzzy m-open sets U,V in X such that z; e U F <V and U 4V.

Theorem 6.5. In a fuzzy m-space (X,m) where m satisfies

M-condition, then the following statements are equivalent:

(i) X is fgm-regular,

(ii) for each fuzzy point z; in X and any fgm-open g-nbd U of
x¢, there exists a fuzzy m-open set V in X such that z; € V and
mclV < U,

(iii) for each fuzzy point z; in X and each fgm-closed set A of X
with z; € A, there exists a fuzzy m-open set U in X with x; € U such
that mclU fgA.

Proof (i) = (ii). Let 2y be a fuzzy point in X and U, any
fgm-open g-nbd of x;. Then z,qU = U(x)+t > 1= 2, & 1x \ U
which is fgm-closed in X. By (i), there exist two fuzzy m-open
sets VW in X such that z; € V,1x \U < W and V' gW. Then
V<Ix\W=mcdV <mc(1x \W)=1x \W < U.

(ii) = (ili). Let x; be a fuzzy point in X and A, an fgm-closed
set in X with z;, ¢ A. Then A(x) < t = x4q9(1x \ A) which is
fgm-open set in X and so 1x \ A is fgm-open ¢-nbd of z;,. By
(ii), there exists a fuzzy m-open set V in X such that z; € V and
melV < 1x \ A= mclV gA.

(iii) = (i). Let x; be a fuzzy point in X and F' be any fgm-closed
set in X with z; ¢ F. Then by (iii), there exists a fuzzy m-open set
U in X such that z; € U and mclU gF = F < 1x \ mclU (=W,
say). Then W is fuzzy m-open in X (as m satisfies M-condition) and
U gW (as U 4(1x \ mclU)) and so X is fgm-regular space.

Remark 6.6. It is clear from definitions that fgm-regular space is
fuzzy m-regular.

Theorem 6.7. Let h: (X, m) — (Y, mq) be fg(m, m;)-continuous,
fuzzy (m,mq)-open, bijective function from an fgm-regular space X
onto Y. Then Y is fuzzy m-regular.

Proof. Let y, be any fuzzy point in Y and F be any fuzzy
my-closed set in Y with y, € F'. Then there exists unique x € X such
that h(z) = y (as h is bijective). Now x, & h™'(F) where h=(F) is
fgm-closed set in X as h is fg(m,m)-continuous function. As X is
fgm-regular, there exist two fuzzy m-open sets U,V in X such that
T, €U, WY (F) <V and U 4V. As his fuzzy (m, m;)-open function,
h(U) and h(V) are fuzzy mi-open sets in Y. Then h(z,) € h(U),
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h(h™'(F)) = F (as h is bijective) < (V) and h(U) /qh(V) which
shows that Y is fuzzy m-regular.

Definition 6.8. A fuzzy m-space (X, m) is called fuzzy generalized
m-normal (fgm-normal, for short) if for each pair of fgm-closed sets
A, B with A 4B, there exist two fuzzy m-open sets U,V in X such
that A< U,B<Vand U 4V.

Remark 6.9. It is clear that fgm-normal space is fuzzy m-normal.

Theorem 6.10. A fuzzy m-space (X, m) is fgm-normal where m
satisfies M-condition if and only if for every fgm-closed set F' and
fgm-open set G with F' < G, there exists a fuzzy m-open set H in X
such that ' < H < mclH < G.

Proof. Let X be fgm-normal. Let F' be fgm-closed set and G
be fgm-open set with F' < G. Then F¢(lx \ G) where 1x \ G is
fgm-closed in X. By hypothesis, there exist two fuzzy m-open sets
H, T in X such that F < H,1x \ G < T and H¢T'. Then H <
Ix\T = mclH <mc(1x\T)=1x\T <G=F < H <meclH <G.

Conversely, let A, B be two fgm-closed sets in X with A¢B.
Then A < 1x \ B. By hypothesis, there exists a fuzzy m-
open set H in X such that A < H < mcH < 1x \ B. So
B < 1x \ mclH = mint(1x \ H)(= U, say). Then as m satisfies
M-condition, U is fuzzy m-open in X. So A < H,B < U and HqU
(as H¢(1x \ mclH)). Hence X is fgm-normal.

Theorem 6.11. Let h : (X,m) — (Y,m;) be an fg(m,mq)-
continuous, fuzzy (m,m;)-open, bijective function from an fgm-
normal space X onto Y. Then Y is fuzzy m-normal.

Proof. Let A, B be two fuzzy m-closed sets in Y with A 4B. As
h is fg(m,m;)-continuous function, h='(A),h~'(B) are fgm-closed
sets in X with h=*(A) 4h~'(B). Since X is fgm-normal, there exist
two fuzzy m-open sets U,V in X such that h~'(A) < U A (B) <V
and U /qV. As h is fuzzy (m,m;)-open function, h(U),h(V) are
fuzzy ma-open sets in Y. Then A < h(U),B < h(V) (as h is bi-
jective) and h(U) 4h(V') which proves that Y is fuzzy m-normal space.

Let us now introduce fuzzy generalized m-irresolute function under
which fgm-regularity and fgm-normality remain invariant.
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Definition 6.12. A function f : (X,m) — (Y, m;) is said to be
fuzzy generalized (m,mq)-irresolute (fg(m,mq)-irresolute, for short)
if f~1(V)is fgm-closed in X for all fgm;-closed set V in Y.

We now state the following two theorems the proofs of which are
similar to that of Theorem 6.7 and Theorem 6.11 respectively.

Theorem 6.13. Let h : (X,m) — (Y,m;) be an fg(m,m)-
irresolute, fuzzy (m, ms)-open, bijective function from an fgm-regular
space X onto Y. Then Y is fgm-regular.

Theorem 614. Let h : (X,m) — (Y,mq) be an fg(m,m)-
irresolute, fuzzy (m, mq)-open, bijective function from an fgm-normal
space X onto Y. Then Y is fgm-normal.

Remark 6.15. It is clear that fg(m,m;)-irresolute function is
fg(m,my)-continuous function, but not conversely follows from the
following example.

Example 6.16. fg(m,m;)-continuity # fg(m, m;)-irresoluteness

Let X = {a,b}, m = {0x,1x,A}, m;i = {0x,1lx} where
A(a) = 0.5,A(b) = 04. Then (X,m) and (X,m,) are fuzzy
m-spaces. Consider the identity function i : (X,m) — (X, mq).
Then as Ox and 1y are the only fuzzy m-closed sets in (X, m;), i
is clearly fg(m,m;)-continuous function. Now A is fgmi-closed in
(X,my). i'(A) =A< Aem ButmdA=1x\A L A= Ais
not fgm-closed in (X, m). Consequently, i is not fg(m,m;)-irresolute.

Definition 6.17 [5]. Let A be a fuzzy set in a non-empty set
X. A collection U of fuzzy sets in X is called a fuzzy cover of A if
sup{U(z) : U € U} = 1, for each x € suppA. If, in addition, A = 1x,
we get the definition of fuzzy cover of X.

Definition 6.18 [5, 6]. A fuzzy cover U of a fuzzy set A in a
non-empty set X is said to have a finite subcover Uy, if U, is a finite
subcollection of U such that (JUy > A. If, in particular, A = 1y,
then the requirement on Uy is |JUy = 1x.

Definition 6.19 [3]. A fuzzy set A in a fuzzy m-space (X, m)
is said to be fuzzy m-compact if every fuzzy covering U of A by
fuzzy m-open sets of X has a finite subcovering Uy. In particular, if
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A = 1y, we get the definition of fuzzy m-compact space.
Let us now introduce the following concept.

Definition 6.20. A fuzzy set A in a fuzzy m-space (X, m) is said
to be fuzzy generalized m-compact (fgm-compact, for short) if every
fuzzy covering U of A by fgm-open sets of X has a finite subcovering
Uy. In particular, if A = 1y, we get the definition of fgm-compact
space.

Remark 6.21. It is clear from definitions that fgm-compact space
is fuzzy m-compact. But as fgm-open set may not be fuzzy m-open,
the converse may not hold, in general.

Theorem 6.22. Every fgm-closed set in an fgm-compact space
is fgm-compact.

Proof. Let A be an fgm-closed set in an fgm-compact space
(X,m). Let U be a fuzzy cover of A by fgm-open sets of X.
Then U |J(1x \ A) (=V, say) is an fgm-open cover of X. As X is
fgm-compact space, there exists a finite subcollection V;, of V which
also covers X. If V), contains 1x \ A, we omit it and get a finite
subcovering of A. Consequently, A is fgm-compact.

Theorem 6.23. Let h : (X,m) — (Y,m;) be an fg(m,m,)-
continuous function. If a fuzzy set A is fgm-compact relative to X,
then h(A) is fuzzy mi-compact relative to Y.

Proof. Let U = {U, : @ € A} be a fuzzy cover of h(A) by fuzzy
mi-open sets of Y. Then h(A) < UUC“ = A < h’l(UUa) =

acl acl
Jn " (Ua). Let V= {h7"(Us) : @ € A}. Then Vis a fuzzy cover of A

a€cl
by fgm-open sets of X (as h is fg(m, m;)-continuous function). Since

Ais fgm-compact relative to X, there exists a finite subset Ay of A
such that Vo = {h™}(U,) : @ € Ay} is again a fuzzy cover of A. Then

A< Ur' W) = mA) < h(|Jr (L) = (Jub(U) <

a€lg a€lg a€lg
U U,) which shows that h(A) is fuzzy m-compact set relative to Y.

aclNg

In a similar manner we can prove the following theorem easily.
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Theorem 6.24. Let h : (X,m) — (Y,my) be an fg(m,mq)-

irresolute function. If a fuzzy set A is fgm-compact relative to X,
then h(A) is fgm,-compact relative to Y.
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