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SOME TOPOLOGICAL ASPECTS IN m-METRIC
SPACES

SUSHANTA KUMAR MOHANTA AND DEEP BISWAS

Abstract. In this paper, we introduce a new class of open balls in
an m-metric space (X,µ) which will form a base for a Hausdorff topol-
ogy on X. This will facilitate the initiation of open and closed sets,
neighbourhoods and other allied notions in m-metric spaces. More-
over, we discuss the regularity and first countability properties of m-
metric spaces and prove Cantor’s intersection theorem, Baire’s cate-
gory theorem, Urysohn’s lemma in the setting of m-metric spaces.

1. Introduction

It is well known that convergence of sequences and continuity of
functions are two important concepts in real or complex analysis. Our
main task in metric spaces is to introduce an abstract formulation of
the notion of distance between two points of an arbitrary nonempty
set. It is interesting to note that most of the central concepts of real or
complex analysis can be generalized in metric spaces. Several authors
successfully extended the notion of metric spaces in different directions
such as G-metric space [9, 15], cone metric space [4, 16], b-metric space
[2, 3], C∗-algebra valued metric space [10, 11].
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In 1994, Matthews [12] introduced the concept of partial metric
spaces as a generalization of metric spaces and proved the well-known
Banach contraction theorem in this setting. Afterwards, a lot of ar-
ticles have been dedicated to the improvement of fixed point theory
in partial metric spaces(see [5, 6, 7] and references therein). Very re-
cently, Asadi et al. [1] extended the notion of partial metric spaces to
m-metric spaces and established Banach and Kannan fixed point theo-
rems in this new framework. They showed that every partial metric is
an m-metric, but the converse may not be hold, in general. Moreover,
they introduced a class of open balls which generates a topology. Some
fixed point results in m-metric spaces have been very recently obtained
in [8, 13, 17]. In this work, we introduce a new class of open balls in
an m-metric space (X,µ) which will generate a Hausdorff topology on
X. We shall establish some topological properties of m-metric spaces
and prove Cantor’s intersection theorem, Baire’s category theorem,
Urysohn’s lemma in the setting of m-metric spaces. We also prove
that every m-metric space is a first countable topological space and
hence continuity is equivalent to sequential continuity.

2. Some Basic Concepts

We begin with some basic notations, definitions, and necessary re-
sults in m-metric spaces.

Definition 2.1. [12] A partial metric on a nonempty set X is a
function p : X ×X → R+ such that for all x, y, z ∈ X:

(p1) p(x, x) = p(y, y) = p(x, y)⇐⇒ x = y,
(p2) p(x, x) ≤ p(x, y),
(p3) p(x, y) = p(y, x),
(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

A partial metric space is a pair (X, p) such that X is a nonempty set
and p is a partial metric on X.

Definition 2.2. [1] Let X be a nonempty set. A function µ : X ×
X → R+ is called an m-metric if the following conditions are satisfied:

(m1) µ(x, x) = µ(y, y) = µ(x, y)⇐⇒ x = y,
(m2) mxy ≤ µ(x, y),
(m3) µ(x, y) = µ(y, x),
(m4) (µ(x, y)−mxy) ≤ (µ(x, z)−mxz) + (µ(z, y)−mzy),
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where mxy := min {µ(x, x), µ(y, y)}. Then the pair (X,µ) is called an
m-metric space. The following notation is useful in the sequel:

Mxy := max {µ(x, x), µ(y, y)}.
Example 2.3. [1] Let X := [0,∞). Then µ(x, y) = x+y

2
on X is

an m-metric.

It is valuable to note that µ is not a partial metric on X. In fact, if
x = 4, y = 2 then µ(x, x) > µ(x, y).

Example 2.4. Let X := [0,∞). Then µ(x, y) = x2+y2

2
on X is an

m-metric.

Example 2.5. [1] Let (X, d) be a metric space. Then µ(x, y) =
ad(x, y) + b where a, b > 0 is an m-metric on X.

Remark 2.6. [1] For every x, y ∈ X,

1. 0 ≤Mxy +mxy = µ(x, x) + µ(y, y);
2. 0 ≤Mxy −mxy =| µ(x, x)− µ(y, y) |;
3. Mxy −mxy ≤ (Mxz −mxz) + (Mzy −mzy).

Lemma 2.7. [1] Every p-metric is an m-metric.

3. Open Balls and Topology

In this section, we first introduce a new class of open balls in m-
metric spaces which will generate a topology τµ on (X,µ).

Definition 3.1. Let (X,µ) be an m-metric space, x ∈ X and r > 0.
Then the set B(x, r) = {y ∈ X : µ(x, y) < 2mxy−Mxy+r} is called an
open ball with centered at x and radius r. A closed ball with centered
at x and radius r is defined by the set B[x, r] = {y ∈ X : µ(x, y) ≤
2mxy −Mxy + r}.

Theorem 3.2. Let B = {B(x, r) : x ∈ X, r > 0}. Then B is a
base for a topology τµ on (X,µ).

Proof. Clearly, X =
⋃
x∈X

B(x, r). Let B(x1, r1), B(x2, r2) ∈ B and

u ∈ B(x1, r1) ∩ B(x2, r2). Then, µ(x1, u) < 2mx1u −Mx1u + r1 and
µ(x2, u) < 2mx2u − Mx2u + r2. Let 0 < r < min{2mx1u − Mx1u +
r1 − µ(x1, u), 2mx2u −Mx2u + r2 − µ(x2, u)}. We consider the open
ball B(u, r). It is sufficient to show that B(u, r) ⊆ B(x1, r1)∩B(x2, r2).

Let z ∈ B(u, r). Then, µ(u, z) < 2muz −Muz + r.
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By using (m4) and Remark 2.6, we have

µ(x1, z)− 2mx1z +Mx1z = (µ(x1, z)−mx1z) + (Mx1z −mx1z)

≤ (µ(x1, u)−mx1u + µ(u, z)−muz)

+(Mx1u −mx1u +Muz −muz)

< µ(x1, u)− 2mx1u +Mx1u + r

< µ(x1, u)− 2mx1u +Mx1u

+2mx1u −Mx1u + r1 − µ(x1, u)

= r1.

This shows that z ∈ B(x1, r1). By an argument similar to that used
above, it follows that z ∈ B(x2, r2). Consequently, z ∈ B(x1, r1) ∩
B(x2, r2). Therefore, B(u, r) ⊆ B(x1, r1) ∩B(x2, r2). �

Remark 3.3. The elements of τµ are called open sets and their
complements in X are called closed sets. Obviously, a nonempty subset
G of X is open if and only if it is a union of open balls.

We now visualise the open balls in some particular cases.

Example 3.4. Let X := [0, 1] and µ(x, y) = min{x, y} on X.
Then (X,µ) is an m-metric space. In this case for r > 0, we have

B(x, r) = {y ∈ X : µ(x, y) < 2mxy −Mxy + r}
= {y ∈ X : Mxy −mxy < r}
= {y ∈ X :| µ(x, x)− µ(y, y) |< r}
= {y ∈ X :| y − x |< r}
= (x− r, x+ r) ∩X.

Example 3.5. Let X := [0,∞) and µ(x, y) = x+y
2

on X. Then
(X,µ) is an m-metric space. In this case for r > 0, we have

B(x, r) = {y ∈ X : µ(x, y) < 2mxy −Mxy + r}

= {y ∈ X :
x+ y

2
−mxy +Mxy −mxy < r}

= {y ∈ X :| x− y
2
| + | x− y |< r}

= {y ∈ X :| y − x |< 2

3
r}

= (x− 2

3
r, x+

2

3
r) ∩X.

Theorem 3.6. A closed ball B[x, r] in an m-metric space (X,µ) is
a closed set.
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Proof. It is sufficient to show that X \ B[x, r] is open. Let y ∈ X \
B[x, r]. Then µ(x, y) > 2mxy −Mxy + r. Put ry = µ(x, y) − 2mxy +
Mxy − r > 0 and consider the open ball B(y, ry). Let z ∈ B(y, ry). So
µ(y, z) < 2myz −Myz + ry. By using (m4) and Remark 2.6, we have

µ(x, y)− 2mxy +Mxy = (µ(x, y)−mxy) + (Mxy −mxy)

≤ (µ(x, z)−mxz) + (µ(z, y)−mzy)

+(Mxz −mxz) + (Mzy −mzy)

< µ(x, z)− 2mxz +Mxz + ry

= µ(x, z)− 2mxz +Mxz

+µ(x, y)− 2mxy +Mxy − r
which gives that µ(x, z) > 2mxz −Mxz + r and so, z ∈ X \ B[x, r].
This proves that y ∈ B(y, ry) ⊆ X \B[x, r]. As y runs over X \B[x, r],

we have X \ B[x, r] ⊆
⋃

y∈X\B[x,r]

B(y, ry) ⊆ X \ B[x, r]. This implies

that X \ B[x, r] =
⋃

y∈X\B[x,r]

B(y, ry). Consequently, it follows that

X \B[x, r] is open. �

Theorem 3.7. If U ∈ τµ and x ∈ U , then there exists r > 0 such
that B(x, r) ⊆ U .

Proof. Since U is an open set containing x, there exists an open ball,
say B(y, ε) such that x ∈ B(y, ε) ⊆ U . Then µ(x, y) < 2mxy−Mxy+ε.
Let us choose 0 < r < 2mxy−Mxy−µ(x, y) + ε and consider the open
ball B(x, r). Then it is easy to verify that B(x, r) ⊆ B(y, ε) ⊆ U . �

Theorem 3.8. (X, τµ) is a Hausdorff space.

Proof. Let (X,µ) be an m-metric space and let x, y ∈ X with x 6= y.
Then, µ(x, y)−2mxy +Mxy > 0. Otherwise, µ(x, y)−2mxy +Mxy = 0
which gives that µ(x, y) − mxy = 0 and Mxy − mxy = 0. Therefore,
µ(x, y) = mxy and | µ(x, x)−µ(y, y) |= 0 i.e., µ(x, x) = µ(y, y). Thus,
we get µ(x, y) = mxy = µ(x, x) = µ(y, y) which implies that x = y, a
contradiction.

We choose ε = 1
3
(µ(x, y)− 2mxy +Mxy) > 0 and consider the open

balls B(x, ε) and B(y, ε). We shall show that B(x, ε) ∩B(y, ε) = ∅. If
possible, suppose that B(x, ε)∩B(y, ε) 6= ∅. Let z ∈ B(x, ε)∩B(y, ε).
Then, µ(x, z) < 2mxz −Mxz + ε and µ(y, z) < 2myz −Myz + ε.
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By using (m4) and Remark 2.6, we have

3ε = µ(x, y)− 2mxy +Mxy

= (µ(x, y)−mxy) + (Mxy −mxy)

≤ (µ(x, z)−mxz) + (µ(z, y)−mzy)

+(Mxz −mxz) + (Mzy −mzy)

= (µ(x, z)− 2mxz +Mxz) + (µ(z, y)− 2mzy +Mzy)

< 2ε

which gives that 3 < 2, a contradiction. �

Remark 3.9. Let (X,µ) be an m-metric space, (xn) be a sequence
in X and x ∈ X. Then (xn) converges to x with respect to(w.r.t.)
τµ if and only if lim

n→∞
(µ(xn, x)−mxnx) = 0 and lim

n→∞
(Mxnx−mxnx) = 0.

Let xn → x w.r.t. τµ and ε > 0. Then there exists a natural number
n0 such that xn ∈ B(x, ε) for all n ≥ n0. This gives that (µ(xn, x) −
mxnx)+(Mxnx−mxnx) < ε for all n ≥ n0. Since (µ(xn, x)−mxnx) ≥ 0
and (Mxnx −mxnx) ≥ 0, it follows that

| µ(xn, x)−mxnx |< ε and |Mxnx −mxnx) |< ε for all n ≥ n0.

This proves that

lim
n→∞

(µ(xn, x)−mxnx) = 0 and lim
n→∞

(Mxnx −mxnx) = 0.

Conversely, suppose that lim
n→∞

(µ(xn, x)−mxnx) = 0 and lim
n→∞

(Mxnx−
mxnx) = 0. We shall show that xn → x w.r.t. τµ. Let U ∈ τµ and
x ∈ U . Then there exists ε > 0 such that x ∈ B(x, ε) ⊆ U . We note
that

µ(xn, x)− 2mxnx +Mxnx = (µ(xn, x)−mxnx) + (Mxnx −mxnx).

By hypotheses, it follows that

lim
n→∞

(µ(xn, x)− 2mxnx +Mxnx) = 0.

So, there exists n0 ∈ N such that µ(xn, x) − 2mxnx + Mxnx < ε for
all n ≥ n0. This ensures that xn ∈ B(x, ε) for all n ≥ n0 and hence
xn ∈ U for all n ≥ n0. Therefore, (xn) converges to x w.r.t. τµ on X.

In view of the above remark, we propose the following definitions of
convergence of a sequence and m-Cauchy sequence in m-metric spaces
instead of that introduced by Asadi et al. [1].

Definition 3.10. Let (X,µ) be an m-metric space. Then:
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1. A sequence (xn) in an m-metric space (X,µ) converges to a
point x ∈ X if (xn) converges to x w.r.t. τµ i.e., if
lim
n→∞

(µ(xn, x)−mxnx) = 0 and lim
n→∞

(Mxnx −mxnx) = 0.

2. A sequence (xn) in an m-metric space (X,µ) is called an m-
Cauchy sequence if lim

n,m→∞
(µ(xn, xm)−mxnxm) = 0 and

lim
n,m→∞

(Mxnxm −mxnxm) = 0.

3. An m-metric space (X,µ) is said to be complete if every m-
Cauchy sequence (xn) in X converges to a point x ∈ X w.r.t.
τµ.

4. Main Results

Definition 4.1. Let (X,µ) be an m-metric space and A ⊆ X. The
interior of A, denoted by A0 or Int(A) is the union of all open sets
contained in A. Clearly, Int(A) is always an open set. Moreover, A
is open if and only if A = Int(A).

Definition 4.2. Let (X,µ) be an m-metric space and A ⊆ X. The
closure of A, denoted by A or cl(A) is the intersection of all closed
subsets of X which contains A. Clearly, cl(A) is always a closed set.
Moreover, A is closed if and only if A = A.

Theorem 4.3. Let (X,µ) be an m-metric space, τµ be the topology
defined above and A be any nonempty subset of X. Then,

(i) A is closed if and only if for any sequence (xn) in A which
converges to x, we have x ∈ A;

(ii) for any x ∈ A and for any ε > 0, we have B(x, ε) ∩ A 6= ∅.

Proof. (i) Suppose that A is a closed subset of X. Let (xn) be
a sequence in A such that xn → x as n → ∞. We shall show
that x ∈ A. If possible, suppose that x 6∈ A. So x ∈ X \ A and
X \ A is open. Then there exists ε > 0 such that B(x, ε) ⊆ X \ A.
Therefore, B(x, ε) ∩ A = ∅. Since xn → x as n → ∞, we have
lim
n→∞

(µ(xn, x) − mxnx) = 0 and lim
n→∞

(Mxnx − mxnx) = 0. Thus,

lim
n→∞

(µ(xn, x) − 2mxnx + Mxnx) = 0. So for ε > 0, there exists

n0 ∈ N such that µ(xn, x) − 2mxnx + Mxnx < ε, for all n ≥ n0.
So, xn ∈ B(x, ε), for all n ≥ n0. Hence xn ∈ B(x, ε) ∩ A, for all
n ≥ n0, which leads to a contradiction that B(x, ε)∩A = ∅. So, x ∈ A.

Conversely, assume that the condition holds i.e., for any se-
quence (xn) in A which converges to x, we have x ∈ A. Let us
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prove that A is closed. In fact, we have to show that X \ A is
open. So for any x ∈ X \ A, we need to prove that there ex-
ists ε > 0 such that B(x, ε) ⊆ X \ A i.e., B(x, ε) ∩ A = ∅. If
possible, suppose that for any ε > 0, we have B(x, ε) ∩ A 6= ∅.
So for any n ≥ 1, choose xn ∈ B(x, 1

n
) ∩ A. Then xn ∈ A for

all n ≥ 1 and µ(xn, x) − 2mxnx + Mxnx < 1
n

for all n ≥ 1 i.e.,

0 ≤ µ(xn, x) − mxnx <
1
n

and 0 ≤ Mxnx − mxnx <
1
n

for all n ≥ 1.
Therefore, lim

n→∞
(µ(xn, x)−mxnx) = 0 and lim

n→∞
(Mxnx−mxnx) = 0 i.e.,

xn → x as n → ∞ in (X,µ). Hence, by assumption x ∈ A, which is
a contradiction. So for any x ∈ X \ A, there exists ε > 0 such that
B(x, ε) ⊆ X \ A i.e., X \ A is open and hence A is closed in X.

(ii) It follows from definition that A is the smallest closed subset
which contains A. Set
A∗ = {x ∈ X : for any ε > 0, ∃ a ∈ A such that µ(x, a) < 2mxa −
Mxa + ε}. Obviously, A ⊆ A∗. Next we prove that A∗ is closed.
Let (xn) be a sequence in A∗ such that xn → x as n → ∞. We
have to prove that x ∈ A∗. Since xn → x as n → ∞, we have
lim
n→∞

(µ(xn, x) − mxnx) = 0 and lim
n→∞

(Mxnx − mxnx) = 0. Therefore,

lim
n→∞

(µ(xn, x)− 2mxnx +Mxnx) = 0.

Let ε > 0 be given. Then there exists n0 ∈ N such that µ(xn, x) −
2mxnx + Mxnx <

ε
2
, for all n ≥ n0. As xn ∈ A∗, there exists an ∈ A

such that µ(xn, an) < 2mxnan −Mxnan + ε
2
. Hence,

µ(x, an)− 2mxan +Mxan ≤ (µ(x, xn)−mxxn) + (µ(xn, an)−mxnan)

+(Mxxn −mxxn) + (Mxnan −mxnan)

<
ε

2
+
ε

2
= ε, for all n ≥ n0.

In particular, µ(x, an0)− 2mxan0
+Mxan0

< ε, which implies that x ∈
A∗. Therefore, by part (i), it follows that A∗ is closed and contains A.
The definition of A assures that A ⊆ A∗, which implies the conclusion
of (ii). �

Theorem 4.4. Every closed subset of a complete m-metric space
is complete.

Proof. Let (X,µ) be a complete m-metric space and Y be a closed
subset of X. Let (yn) be an m-Cauchy sequence in (Y, µY ), where
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µY : Y × Y → R+ is defined by µY (u, v) = µ(u, v) for all u, v ∈ Y .
Then (yn) is also an m-Cauchy sequence in (X,µ). As (X,µ) is a
complete m-metric space, there exists x ∈ X such that yn → x as
n → ∞. By applying Theorem 4.3, it follows that x ∈ Y . Thus
(yn) converges in (Y, µY ). So, (Y, µY ) becomes a complete m-metric
space. �

Theorem 4.5. x ∈ A iff every open set U containing x intersects
A.

Proof. We shall show that
x 6∈ A ⇐⇒ there exists an open set U containing x which does not
intersect A.
If x 6∈ A, then the set U = X \ A is an open set containing x that
does not intersect A, as desired.

Conversely, if there exists an open set U containing x which does
not intersect A, then X \U is a closed set containing A. By definition
of A, it must be the case that A ⊆ X \ U . Therefore, x can not be in
A. �

Definition 4.6. Let (X,µ) be an m-metric space, A ⊆ X and
x ∈ X. Then µ(x,A) is defined as follows:

µ(x,A) = inf {µ(x, a)− 2mxa +Mxa : a ∈ A}.
Obviously, µ(x,A) ≥ 0 and µ(x,A) = 0 if x ∈ A.

Theorem 4.7. Let (X,µ) be an m-metric space, A ⊆ X and x ∈ X.
Then µ(x,A) = 0 if and only if x ∈ A.

Proof. Let µ(x,A) = 0 and U ∈ τµ, x ∈ U . Then there exists ε > 0
such that B(x, ε) ⊆ U . Since µ(x,A) = 0, there exists xε ∈ A such
that µ(x, xε) − 2mxxε + Mxxε < ε. Therefore, xε ∈ B(x, ε) ⊆ U and
xε ∈ A. Hence, U ∩ A 6= ∅. The last theorem ensures that x ∈ A.

Conversely, suppose that x ∈ A and ε > 0 is arbitrary. Then,
A ∩ B(x, ε) 6= ∅. Let a ∈ A ∩ B(x, ε). So, µ(x,A) ≤ µ(x, a)− 2mxa +
Mxa < ε, for arbitrary ε > 0. Hence µ(x,A) = 0. �

We now prove the regularity property of m-metric spaces.

Theorem 4.8. Let (X,µ) be an m-metric space. Then for each
x ∈ X and each open neighbourhood U of x, there is an open set V
such that x ∈ V ⊆ V ⊆ U .
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Proof. Since U ∈ τµ and x ∈ U , there exists r > 0 such that B(x, r) ⊆
U . Let us put V = B(x, r

2
). Then V is open and x ∈ V . As B[x, r

2
] is

a closed set containing V , it follows that V ⊆ B[x, r
2
] ⊆ B(x, r) ⊆ U .

Thus, x ∈ V ⊆ V ⊆ U . �

Next we prove the property of first countability of m-metric spaces.

Theorem 4.9. Let (X,µ) be an m-metric space and x ∈ X be
arbitrary. Then there exists a countable collection {Bn}∞n=1 of open
neighbourhoods of x such that for any neighbourhood U of x, there
exists m ∈ N with Bm ⊆ U .

Proof. For each n ∈ N, we consider Bn = B(x, 1
n
). Clearly, {Bn : n ∈

N} is a countable family of open balls centered at x. Let U be any
neighbourhood of x. Then there exists r > 0 such that B(x, r) ⊆ U .
We choose m ∈ N such that 1

m
< r. Then, Bm = B(x, 1

m
) ⊆ B(x, r) ⊆

U . �

Definition 4.10. An m-metric space (X,µ) is said to be second
countable if it has a countable open base.

Definition 4.11. An m-metric space (X,µ) is said to be separable
if there exists a countable subset A of X such that A = X.

Theorem 4.12. Every separable m-metric space (X,µ) is second
countable.

Proof. Let (X,µ) be a separable m-metric space. So there exists a
countable subset A of X such that A = X. We consider the collection
B = {B(x, r) : x ∈ A, r ∈ Q, r > 0}. Then B becomes a countable
collection of open sets in (X,µ). We now show that B is a base for
the topology τµ. Let U ∈ τµ and x ∈ U . Then there exists r ∈ Q
with r > 0 such that B(x, r) ⊆ U . Since A = X, it follows that
B(x, r

2
) ∩ A 6= ∅. Suppose that a ∈ B(x, r

2
) ∩ A. Then a ∈ A and

a ∈ B(x, r
2
). Let us put B = B(a, r

2
). Clearly, B ∈ B. We prove that

x ∈ B ⊆ U . As a ∈ B(x, r
2
), we have µ(x, a) < 2mxa −Mxa + r

2
which

shows that x ∈ B(a, r
2
) = B. If y ∈ B, then µ(a, y) < 2may−May + r

2
.

Therefore by (m4), we get

µ(x, y)− 2mxy +Mxy ≤ (µ(x, a)−mxa) + (µ(a, y)−may)

+(Mxa −mxa) + (May −may)

<
r

2
+
r

2
= r
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which implies that y ∈ B(x, r) ⊆ U .

Thus for a given open set U and any x ∈ U , there exists Bx(say) ∈ B
such that x ∈ Bx ⊆ U . As x runs over U , we have U =

⋃
x∈U

Bx. This

shows that every open set U of (X,µ) is expressible as a union of some
members of B. Hence B is a countable open base for τµ. This proves
that X is second countable. �

Definition 4.13. Let (X,µ) be an m-metric space and A ⊆ X.
The diameter of A, denoted by diam(A), is defined by

diam(A) = sup {µ(x, y)− 2mxy +Mxy : x, y ∈ A}.
Clearly, 0 ≤ diam(A) ≤ ∞. The subset A is said to be bounded if
diam(A) is finite. Otherwise, A is said to be unbounded.

It follows from the above definition that if A ⊆ B, then diam(A) ≤
diam(B). Hence, it is worth mentioning that diam(A) ≤ diam(A).
However, we have the following result.

Theorem 4.14. Let (X,µ) be an m-metric space and A ⊆ X. Then
diam(A) = diam(A).

Proof. It is sufficient to prove that diam(A) ≤ diam(A). Let x, y ∈ A
be arbitrary and ε > 0 be given. Then, B(x, ε

2
) ∩ A 6= ∅ and

B(y, ε
2
) ∩ A 6= ∅. Let x1 ∈ B(x, ε

2
) ∩ A and y1 ∈ B(y, ε

2
) ∩ A. So,

µ(x, x1)− 2mxx1 +Mxx1 <
ε
2

and µ(y, y1)− 2myy1 +Myy1 <
ε
2
.

By using (m4) and Remark 2.6, we have

µ(x, y)− 2mxy +Mxy ≤ (µ(x, x1)−mxx1) + (µ(x1, y)−mx1y)

+(Mxx1 −mxx1) + (Mx1y −mx1y)

<
ε

2
+ (µ(x1, y1)−mx1y1) + (µ(y1, y)−my1y)

+(Mx1y1 −mx1y1) + (My1y −my1y)

< ε+ (µ(x1, y1)− 2mx1y1 +Mx1y1)

≤ ε+ diam(A).

Since x, y ∈ A are arbitrary,

diam(A) ≤ ε+ diam(A).

Since ε > 0 is arbitrary, it follows that diam(A) ≤ diam(A). �

We now prove Cantor’s intersection theorem in m-metric spaces.
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Theorem 4.15. An m-metric space (X,µ) is complete if and only if
every descending sequence (An) of nonempty closed sets with diam(An)

→ 0 as n → ∞, the intersection A =
∞⋂
n=1

An consists of exactly one

point.

Proof. Let (X,µ) be a completem-metric space and (An) be a descend-
ing sequence of nonempty closed sets with diam(An)→ 0 as n→∞.
As each An is nonempty, we choose a point xn ∈ An, for each n ∈ N.
We shall show that (xn) is m-Cauchy in (X,µ). For m, n ∈ N with
m > n, we have Am ⊆ An which gives that xm, xn ∈ An. Therefore,

µ(xn, xm)−mxnxm ≤ µ(xn, xm)− 2mxnxm +Mxnxm ≤ diam(An)→ 0,

as n→∞, that is, lim
n,m→∞

(µ(xn, xm)−mxnxm) = 0.

Moreover,

Mxnxm −mxnxm ≤ µ(xn, xm)− 2mxnxm +Mxnxm ≤ diam(An)→ 0,

as n→∞, that is, lim
n,m→∞

(Mxnxm −mxnxm) = 0.

This shows that (xn) is an m-Cauchy sequence in (X,µ). Then
by hypothesis, there exists x ∈ X such that xn → x as n → ∞
i.e., lim

n→∞
(µ(xn, x) − mxnx) = 0 and lim

n→∞
(Mxnx − mxnx) = 0 which

imply that lim
n→∞

(µ(xn, x) − 2mxnx + Mxnx) = 0. We prove that

x ∈
∞⋂
n=1

An. Let U ∈ τµ and x ∈ U . Then there exists ε > 0 such

that B(x, ε) ⊆ U . As lim
n→∞

(µ(xn, x) − 2mxnx + Mxnx) = 0, there

exists n0 ∈ N such that µ(xn, x) − 2mxnx + Mxnx < ε, for all n ≥ n0.
Therefore, xn ∈ B(x, ε) ⊆ U , for all n ≥ n0. Again, xm ∈ An, for all
m ≥ n as xm ∈ Am ⊆ An, for all m ≥ n. So, U ∩ An 6= ∅, for all
n ∈ N. This proves that x ∈ An = An, ∀ n, An being closed. Hence

x ∈
∞⋂
n=1

An.

Now, let y ∈
∞⋂
n=1

An with y 6= x. Then for each n ∈ N, we have

x, y ∈ An. Therefore,

0 ≤ µ(x, y)− 2mxy +Mxy ≤ diam(An)→ 0 as n→∞
which gives that µ(x, y)−2mxy+Mxy = 0. Since µ(x, y)−mxy ≥ 0 and
Mxy −mxy =| µ(x, x)− µ(y, y) |≥ 0, it follows that µ(x, y)−mxy = 0
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and Mxy − mxy =| µ(x, x) − µ(y, y) |= 0. This shows that
µ(x, x) = µ(y, y) = mxy = µ(x, y) and so, x = y, a contradiction.
This proves that A contains exactly one point.

Conversely, suppose that the given condition holds. Let (xn) be an
m-Cauchy sequence in (X,µ). For each n ∈ N, we define

An = range of the sequence {xn, xn+1, · · · }.
Then, A1 ⊇ A2 ⊇ A3 ⊇ · · · and so A1 ⊇ A2 ⊇ A3 ⊇ · · · . As (xn) is m-
Cauchy, we have lim

n,m→∞
(µ(xn, xm)−mxnxm) = 0 and lim

n,m→∞
(Mxnxm −

mxnxm) = 0. Therefore, lim
n,m→∞

(µ(xn, xm) − 2mxnxm + Mxnxm) = 0.

This implies that diam(An)→ 0 as n→∞ and hence diam(An)→ 0

as n → ∞. Our assumption ensures that
∞⋂
n=1

An consists of exactly

one point x, say in X. Since x, xn ∈ An, we have

µ(xn, x)− 2mxnx +Mxnx ≤ diam(An)→ 0 as n→∞.
Consequently, it follows that lim

n→∞
(µ(xn, x) − mxnx) = 0 and

lim
n→∞

(Mxnx − mxnx) = 0. Hence (xn) converges to x, proving that

(X,µ) is complete. �

Definition 4.16. A subset A of an m-metric space (X,µ) is said
to be nowhere dense if Int(A) = ∅.

Theorem 4.17. A subset A of an m-metric space (X,µ) is nowhere
dense if and only if every nonempty open set U contains a nonempty
open set V such that V ∩ A = ∅.
Proof. Suppose that A is nowhere dense and U is any nonempty open
set in X. Since Int(A) = ∅, U 6⊆ A and hence U ∩ (X \ A) 6= ∅. Let
us put V = U ∩ (X \ A). Then V is a nonempty open set contained
in U such that V ∩ A = ∅.

Conversely, let U be any nonempty open set in X. By hypothesis,
there exists a nonempty open set V such that V ⊆ U and V ∩A = ∅.
Therefore, A ⊆ X \ V which implies that A ⊆ X \ V = X \ V and
hence V ⊆ X \ A.

Now, (X \ A) ∩ U ⊇ U ∩ V = V 6= ∅. This shows that U 6⊆
A. Therefore, A contains no nonempty open set and so Int(A) = ∅.
Consequently, A becomes nowhere dense. �
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Definition 4.18. A subset A of an m-metric space (X,µ) is said
to be

(i) a set of the first category if A is expressible as a union of
countably many nowhere dense sets.

(ii) a set of the second category if it is not a set of the first category.

We now prove analogue of Baire’s category theorem in m-metric
spaces.

Theorem 4.19. Every complete m-metric space (X,µ) is a set of
second category.

Proof. Let (X,µ) be a complete m-metric space and Y be a set of
first category in X. It is sufficient to show that Y 6= X. As Y is a

set of the first category, we can write Y =
∞⋃
n=1

Pn, where each Pn is

nowhere dense in X. Let U be any nonempty open set in X. Since
P1 is nowhere dense, there exists a nonempty open set V such that
V ⊆ U and V ∩ P1 = ∅. As V 6= ∅, there exists p1 ∈ V and then
by regularity property, there exists r1 with 0 < r1 < 1 such that
B(p1, r1) = U1(say) ⊆ U1 ⊆ V . Again, P2 being nowhere dense
and U1 6= ∅, there exists a nonempty open set V1 ⊆ U1 such that
V1 ∩ P2 = ∅. V1 being nonempty, there exists p2 ∈ V1 and a positive
real number r2 <

1
2

such that B(p2, r2) = U2(say) ⊆ U2 ⊆ V1.

Now, U2 ⊆ V1 ⊆ U1 ⊆ U1 =⇒ U2 ⊆ U1 and diam(U1) = diam(U1) ≤
2r1 < 2, diam(U2) = diam(U2) ≤ 2r2 < 2.1

2
. Moreover, U1 ∩ P1 ⊆

V ∩ P1 = ∅, U2 ∩ P2 ⊆ V1 ∩ P2 = ∅. Proceeding in this way, we
obtain a descending sequence (Un) of nonempty closed sets such that
diam(Un) < 2. 1

2n−1 → 0 as n → ∞. Since (X,µ) is complete, by

Cantor’s intersection theorem, ∃ q ∈
∞⋂
n=1

Un. As Un ∩ Pn = ∅ for each

n, q 6∈
∞⋃
n=1

Pn = Y and so Y 6= X. �

Definition 4.20. Let (X,µ1) and (Y, µ2) be two m-metric spaces.
A function f : (X,µ1) → (Y, µ2) is said to be continuous at a point
a ∈ X, if corresponding to every ε > 0, ∃ δ > 0 such that

x ∈ Bµ1(a, δ) =⇒ f(x) ∈ Bµ2(f(a), ε).

f is said to be continuous on X if it is continuous at each point of X.
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Obviously, the concept of continuity of a real valued function on an
m-metric space turns out to be a special case of the above definition
by considering Y = R and µ2(y, z) =| y − z | for all y, z ∈ R. For
such real valued functions on an m-metric space, we can prove the
following theorem, as exact duplicates of the corresponding proofs for
real valued continuous functions on a metric space.

Theorem 4.21. Let f and g be real valued functions on an m-
metric space (X,µ). If f and g are continuous at a point a ∈ X and
g(x) 6= 0 for all x ∈ X, then so are f ± g, fg, αf (for any α ∈
R) and f

g
.

Theorem 4.22. Let (X,µ1) and (Y, µ2) be two m-metric spaces.
Then a function f : (X,µ1)→ (Y, µ2) is continuous at a point a ∈ X
if and only if for each sequence (xn) in X converging to a in (X,µ1),
the sequence (f(xn)) in Y converges to f(a) in (Y, µ2).

Proof. Suppose that f is continuous at a ∈ X. Then for a given ε > 0,
∃ δ > 0 such that

x ∈ Bµ1(a, δ) =⇒ f(x) ∈ Bµ2(f(a), ε).

Since (xn) converges to a in (X,µ1), we have lim
n→∞

(µ1(xn, a) −
mxna) = 0 and lim

n→∞
(Mxna − mxna) = 0. Therefore,

lim
n→∞

(µ1(xn, a) − 2mxna + Mxna) = 0. So, there exists n0 ∈ N
such that µ1(xn, a) − 2mxna + Mxna < δ, for all n ≥ n0.
This shows that xn ∈ Bµ1(a, δ), for all n ≥ n0. By hy-
pothesis, it follows that f(xn) ∈ Bµ2(f(a), ε), for all n ≥ n0.
Then µ2(f(xn), f(a)) − 2mf(xn)f(a) + Mf(xn)f(a) < ε, for all
n ≥ n0. This gives that µ2(f(xn), f(a)) − mf(xn)f(a) < ε and
Mf(xn)f(a) − mf(xn)f(a) < ε, for all n ≥ n0. Consequently,
it follows that lim

n→∞
(µ2(f(xn), f(a)) − mf(xn)f(a)) = 0 and

lim
n→∞

(Mf(xn)f(a) − mf(xn)f(a)) = 0. Therefore, (f(xn)) converges

to f(a) in (Y, µ2).

Conversely, suppose the condition holds but f is not continuous at
a ∈ X. Then there exists ε > 0 such that for each δ > 0, ∃ xδ ∈ X
with xδ ∈ Bµ1(a, δ) but f(xδ) 6∈ Bµ2(f(a), ε). In particular, for each
n ∈ N, ∃ xn ∈ X with xn ∈ Bµ1(a,

1
n
) but f(xn) 6∈ Bµ2(f(a), ε).

It then follows that xn → a but µ2(f(xn), f(a)) − 2mf(xn)f(a) +
Mf(xn)f(a) ≥ ε, for all n ∈ N i.e., (f(xn)) does not converge to f(a) in
(Y, µ2). This contradicts the assumed hypothesis. �
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Theorem 4.23. Let A be a subset of an m-metric space (X,µ).
Then the function f : (X,µ) → R, defined by f(x) = µ(x,A), is a
continuous function.

Proof. Let x0 ∈ X be arbitrary and ε > 0 be given. We shall show
that

x ∈ Bµ(x0,
ε

2
) =⇒| µ(x,A)− µ(x0, A) |< ε.

Suppose x ∈ Bµ(x0,
ε
2
) and a ∈ A be arbitrary. Then, µ(x0, x) −

2mx0x +Mx0x <
ε
2
. By using (m4) and Remark 2.6, we have

µ(x, a)− 2mxa +Mxa ≤ (µ(x, x0)−mxx0) + (µ(x0, a)−mx0a)

+(Mxx0 −mxx0) + (Mx0a −mx0a)

<
ε

2
+ (µ(x0, a)− 2mx0a +Mx0a).

This gives that

inf
a∈A
{µ(x, a)− 2mxa +Mxa} ≤

ε

2
+ inf

a∈A
{µ(x0, a)− 2mx0a +Mx0a}.

i.e., µ(x,A) ≤ ε
2

+ µ(x0, A). Interchanging the roles of x and x0, we
get µ(x0, A) ≤ ε

2
+µ(x,A). Thus, we have | µ(x,A)−µ(x0, A) |≤ ε

2
<

ε. �

We now present Urysohn’s lemma in m-metric spaces.

Theorem 4.24. For any two nonempty disjoint closed subsets U, V
of an m-metric space (X,µ), there exists a continuous function f :
X → R such that f(U) = {0}, f(V ) = {1} and 0 ≤ f(x) ≤ 1 for all
x ∈ X.

Proof. For A ⊆ X and x ∈ X, we use the notation µA(x) for the

function µ(x,A). We now show that the function f(x) = µU (x)
µU (x)+µV (x)

is the desired function. If µU(x) + µV (x) = 0 for some x ∈ X, then
µU(x) = µV (x) = 0 and hence x ∈ U = U and x ∈ V = V , which
contradicts the fact that U ∩ V = ∅. Therefore, f is well defined.
Moreover, it follows from Theorems 4.21 and 4.23 that f is continuous.
Obviously, 0 ≤ f(x) ≤ 1 for all x ∈ X. Now, x ∈ U =⇒ µU(x) =
0 =⇒ f(x) = 0 and x ∈ V =⇒ µV (x) = 0 =⇒ f(x) = 1. �
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