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Abstract. In this paper, we propose an iterative algorithm, which
is based on the Krasnoselskii-Mann iterative algorithm for fixed point
problems of a finite family of demicontractive mappings in the setting
of real Banach spaces. We prove that the sequence generated by the
proposed method converges strongly to a common fixed point of a
finite family of demicontractive mappings which is also the solution of
a variational inequality. The iterative algorithm and results presented
in this paper generalize, unify and improve some previously known
results of this area.
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1. Introduction

Let H be a real Hilbert space, K be a nonempty subset of H. A
map T : K → K is said to be Lipschitz if there exists an L ≥ 0 such
that

(1.1) ‖Tx− Ty‖ ≤ L‖x− y‖, ∀x, y ∈ K,
if L < 1, T is called contraction and if L = 1, T is called nonexpansive.
We denote by Fix(T ) the set of fixed points of the mapping T, that
is Fix(T ) := {x ∈ D(T ) : x = Tx}. We assume that Fix(T ) is
nonempty. If T is nonexpansive mapping, it is well known Fix(T ) is
closed and convex (see, e.g., [3]). A map T is called quasi-nonexpansive
if ‖Tx−p‖ ≤ ‖x−p‖ holds for all x in K and p ∈ Fix(T ). The mapping
T : K → K is said to be firmly nonexpansive, if

‖Tx− Ty‖2 ≤ ‖x− y‖2 − ‖(x− y)− (Tx− Ty)‖2, ∀x, y ∈ K.
A mapping T : K → H is called k-strictly pseudo-contractive if there
exists k ∈ [0, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖x− y − (Tx− Ty)‖2, ∀x, y ∈ K.
If this inequality holds for k = 1 then T is called simply pseudocon-
tractive.

A map T is called k-demi-contractive if Fix(T ) 6= ∅ and for k ∈
[0, 1), we have

(1.2) ‖Tx− p‖2 ≤ ‖x− p‖2 + k‖x− Tx‖2, ∀x ∈ K, p ∈ Fix(T ).

We note that the following inclusions hold for the classes of the
mappings:

firmly nonexpansive ⊂ nonexpansive ⊂ quasi-nonexpansive ⊂
k-quasi-strictly pseudo-contractive ⊂ k-demicontractive.

The following example shows that there exists a k-demi-contractive
mapping which is not k-strictly pseudo-contractive mapping.

Example 1.1. Let H = R and K = [−1, 1]. Define T : K → K by

Tx =


2

3
x sin( 1

x
), x 6= 0

0 x = 0.

(1.3)
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Clearly Fix(T ) = {0}. For x ∈ K, we have

|Tx− 0|2 = |2
3
x sin(

1

x
)|2

≤ |2
3
x|2

≤ |x|2

≤ |x− 0|2 + k|x− Tx|2 ∀k ∈ [0, 1).

Thus T is k demi-contratcive for k ∈ [0, 1). To see that T is not k

strictly pseudo-contractive, choose x =
2

π
and y =

2

3π
, then

|Tx− Ty|2 > |x− y|2 + k|x− y − (Tx− Ty)|2.

Hence, T is not k strictly pseudo-contractive mapping for k ∈ [0, 1).

Example 1.2. (Example of a Demicontractive Function which is not
Quasi-nonexpansive and is not Pseudocontractive). Let f be a real
function defined by f(x) = −x2 − x; it can be seen that f : [−2, 1]→
[−2, 1]. This function is demicontractive on [−2, 1] and continuous.
It is not quasi-nonexpansive and is not pseudocontractive on [−2, 1]
(check for instance the condition of pseudocontractivity for x = −1.5
and y = −0.6).

For nonexpansive mappings with fixed points, Mann iterative
method [11] is a valuable tool to study them. However, only weak
convergence is guaranteed in infinite dimensional spaces. Thus a
natural question rises: could we obtain a strong convergence result by
using the well-known Krasnoselskii-Mann method for non-expansive
mappings? In this connection, in 1975, Genel and Lindenstrauss [7]
gave a counterexample. Hence the modification is necessary in order
to guarantee the strong convergence of Krasnoselskii-Mann’s method.
Lot of works have been done for the modification of the normal
Mann’s iteration so that strong convergence is guaranteed. See, e.g.,
[12, 13, 17, 9, 8] and the reference therein.

In 2010, Yonghong Yao and Yeol Je Cho [16], motivated by the
fact that Krasnoselskii-Mann algorithm method is remarkably useful
for finding fixed points of single-valued nonexpansive mapping, proved
the following theorem.

Theorem 1.3 (Yonghong Yao and Yeol Je Cho [16]). Let H be a real
Hilbert space T : H → H be a nonexpansive mapping with Fix(T ) 6= ∅.
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Let {λn} and {αn} be two sequences in (0, 1). Let {xn} be a sequence
defined iteratively from arbitrary x0 ∈ H by:

(1.4) xn+1 = αn(λnxn) + (1− αn)Txn.

Suppose the following conditions hold:

(i) lim
n→∞

αn = 0; (ii)
∞∑
n=0

|αn − αn+1| <∞

(iii) lim
n→∞

λn = 1,
∞∑
n=0

(1− λn)αn =∞, and
∞∑
n=0

|λn − λn+1| <∞

Then, the sequence {xn} generated by (1.4) converges strongly to x∗ ∈
Fix(T ).

Let E be a Banach space with norm ‖ · ‖ and dual E∗. For any x ∈ E
and p ∈ E∗, 〈p, x〉 is used to refer to p(x). Let ϕ : [0,+∞) → [0,∞)
be a strictly increasing continuous function such that ϕ(0) = 0 and
ϕ(t)→ +∞ as t→∞. Such a function ϕ is called gauge. Associed to
a gauge a duality map Jϕ : E → 2E

∗
defined by:

(1.5) Jϕ(x) := {p ∈ E∗ : 〈x, p〉 = ||x||ϕ(||x||), ||p|| = ϕ(||x||)}.
If the gauge is defined by ϕ(t) = t, then the corresponding duality
map is called the normalized duality map and is denoted by J . Hence
the normalized duality map is given by

J(x) := {p ∈ E∗ : 〈x, p〉 = ||x||2 = ||p||2}, ∀x ∈ E.
Notice that

Jϕ(x) =
ϕ(||x||)
||x||

J(x), x 6= 0.

Let E be a real normed space and let S := {x ∈ E : ‖x‖ = 1}. E is
said to be smooth if

lim
t→0+

‖x+ ty‖ − ‖x‖
t

exists for each x, y ∈ S. E is said to be uniformly smooth if it is
smooth and the limit is attained uniformly for each x, y ∈ S.
Let E be a normed space with dimE ≥ 2. The modulus of smoothness
of E is the function ρE : [0,∞)→ [0,∞) defined by

ρE(τ) := sup

{
‖x+ y‖+ ‖x− y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = τ

}
; τ > 0.

It is known that a normed linear space E is uniformly smooth if

lim
τ→0

ρE(τ)

τ
= 0.
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If there exists a constant c > 0 and a real number q > 1 such that
ρE(τ) ≤ cτ q, then E is said to be q-uniformly smooth. Typical ex-
amples of such spaces are the Lp, `p and Wm

p spaces for 1 < p < ∞
where,

Lp (or lp) or W
m
p is{

2− uniformly smooth and p− uniformly convex if 2 ≤ p <∞;
2− uniformly convex and p− uniformly smooth if 1 < p < 2.
(1.6)

Let Jq denote the generalized duality mapping from E to 2E
∗

defined
by

Jq(x) :=
{
f ∈ E∗ : 〈x, f〉 = ‖x‖q and ‖f‖ = ‖x‖q−1

}
.

J2 is called the normalized duality mapping and is denoted by J .
It is known that E is smooth if and only if each duality map Jϕ
is single-valued, that E is Frechet differentiable if and only if each
duality map Jϕ is norm-to-norm continuous in E, and that E is
uniformly smooth if and only if each duality map Jϕ is norm-to-norm
uniformly continuous on bounded subsets of E. Following Browder
[2], we say that a Banach space has a weakly continuous duality
map if there exists a gauge ϕ such that Jϕ is single-valued and is

weak-to-weak∗ sequentially continuous, i.e., if (xn) ⊂ E, xn
w−→ x,

then Jϕ(xn)
w∗
−→ Jϕ(x). It is known that lp (1 < p <∞) has a weakly

continuous duality map with gauge ϕ(t) = tp−1 (see e.g., [4] for more
details on duality maps).

Remark 1.4. Note also that a duality mapping exists in each Banach
space. We recall from [1] some of the examples of this mapping in
lp, Lp,W

m,p-spaces, 1 < p <∞.

(i) lp : Jx = ‖x‖2−p
lp

y ∈ lq, x = (x1, x2, · · · , xn, · · · ),
y = (x1|x1|p−2, x2|x2|p−2, · · · , xn|xn|p−2, · · · ),

(ii) Lp : Ju = ‖u‖2−p
Lp
|u|p−2u ∈ Lq,

(iii) Wm,p : Ju = ‖u‖2−p
Wm,p

∑
|α≤m|(−1)|α|Dα

(
|Dαu|p−2Dαu

)
∈

W−m,q,
where 1 < q <∞ is such that 1/p+ 1/q = 1.
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In [6], Chidume extended the condition (1.2) to arbitrary real Ba-
nach spaces X. If X is q-uniformly smooth, then the condition (1.2)
becomes

(1.7) 〈x−Tx, jq(x−p)〉 ≥
(1− k)q−1

2q−1
‖x−Tx‖q, x ∈ X, p ∈ Fix(T ).

Recently, Sow et al. [14] extended Theorem 1.3 from Hilbert spaces
to Banach spaces, by proving the following theorem.

Theorem 1.5 (Sow et al. [14]). Let E be a uniformly smooth real Ba-
nach space having a weakly continuous duality map and K a nonempty,
closed and convex cone of E. Let T : K → K be a nonexpansive map-
ping with Fix(T ) 6= ∅. Let {λn} and {αn} be two sequences in (0, 1).
Let {xn} be a sequence defined iteratively from arbitrary x0 ∈ K by:

(1.8) xn+1 = αn(λnxn) + (1− αn)Txn.

Suppose the following conditions hold:

(i) lim
n→∞

αn = 0; (ii)
∞∑
n=0

|αn − αn+1| <∞,

(iii) lim
n→∞

λn = 1,
∞∑
n=0

(1− λn)αn =∞, and
∞∑
n=0

|λn − λn+1| <∞.

Then, the sequence {xn} generated by (1.8) converges strongly to x∗ ∈
Fix(T ).

In this paper, motivated by above results, the fact that the
class of demicontractive mappings properly includes that of quasi-
nonexpansive, strictly pseudocontractive mappings and Krasnoselskii-
Mann algorithm is remarkably useful for solving fixed point problems,
we construct and study an explicit iterative method and prove strong
convergence theorems by using the Krasnoselskii-Mann iteration for
approximating a common fixed points of a finite family of demicon-
tractive mappings in the setting of a real Banach space without any
compactness assumption. Our technique of proof is of independent
interest.

2. Preliminaries

Let C be a nonempty subsets of a smooth real Banach space E. A
mapping QC : E → C is said to be sunny if

QC(QCx+ t(x−QCx)) = QCx

for each x ∈ E and t ≥ 0. A mapping QC : E → C is said to be a
retraction if QCx = x for each x ∈ C.
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Lemma 2.1. [8] Let C and D be nonempty subsets of a smooth real
Banach space E with D ⊂ C and QD : C → D a retraction from C
into D. Then QD is sunny and nonexpansive if and only if

〈z −QDz, J(y −QDz)〉 ≤ 0

for all z ∈ C and y ∈ D.

It is noted that Lemma 2.1 still holds if the normalized duality map
is replaced by the general duality map Jϕ, where ϕ is gauge function.

Remark 2.2. If K is a nonempty, closed convex subset of a Hilbert
space H, then the nearest point projection PK from H to K is the
sunny nonexpansive retraction.

Lemma 2.3 ( [12], Proposition 2.1 ). Assume K is a closed convex
subset of a Hilbert space H. Let T : K → K be a self-mapping of K.
If T is a k-demicontractive mapping, then the fixed point set Fix(T )
is closed and convex.

Theorem 2.4. [5] Let q > 1 be a fixed real number and E be a smooth
Banach space. Then the following statements are equivalent:
(i) E is q-uniformly smooth.
(ii) There is a constant dq > 0 such that for all x, y ∈ E

‖x+ y‖q ≤ ‖x‖q + q〈y , Jq(x)〉+ dq‖y‖q.

(iii) There is a constant c1 > 0 such that

〈x− y , Jq(x)− Jq(y)〉 ≤ c1‖x− y‖q ∀ x, y ∈ E.

Lemma 2.5. [12] Let K be a nonempty closed convex subset of a real
Hilbert space H and T : K → K be a mapping.
(i) If T is a k-strictly pseudo-contractive mapping, then T satisfies the
Lipschitzian condition

‖Tx− Ty‖ ≤ 1 + k

1− k
‖x− y‖.

(ii) If T is a k-quasi-strictly pseudo-contractive mapping, then the
mapping I − T is demiclosed at 0.

Lemma 2.6 ([10]). Assume that a Banach space E has a weakly con-
tinous duality mapping Jϕ with gauge ϕ.

(2.1) Φ(‖x+ y‖) ≤ Φ(‖x‖) + 〈y, Jϕ(x+ y)〉.
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For all x, y ∈ E, where Φ(t) =

∫ t

0

ϕ(σ)dσ, t ≥ 0. In particular,for the

normilized duality mapping, we have the important special version of
(2.1)

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, J(x+ y)〉,
for all x, y ∈ E.

Lemma 2.7 (Xu, [15]). Assume that {an} is a sequence of nonnegative
real numbers such that an+1 ≤ (1− αn)an + αnσn for all n ≥ 0, where
{αn} is a sequence in (0, 1) and {σn} is a sequence in R such that

(a)
∞∑
n=0

αn = ∞, (b) lim sup
n→∞

σn ≤ 0 or
∞∑
n=0

|σnαn| < ∞. Then

lim
n→∞

an = 0.

3. Main results

We now prove our main results.

Theorem 3.1. Let q > 1 be a fixed real number and E be a q-uniformly
smooth real Banach space having a weakly continuous duality map Jϕ
and K be a nonempty, closed convex cone of E. Let m ≥ 1 be a
fixed number, for i, 1 ≤ i ≤ m, Ti : K → K be a ki-demicontractive

mapping such that Γ :=
m⋂
i=1

Fix(Ti) 6= ∅. Let {xn} be a sequence defined

iteratively from arbitrary x0 ∈ K by: yn = λ0xn + λ1T1xn + · · ·+ λmTmxn,

xn+1 = αn(θnxn) + (1− αn)yn,
(3.1)

where λi ∈ (0, γ),

γ := min
1≤i≤m

{
1,
( qβq−1

i

2(m−1)qdq

) 1
q−1
}
, with βi =

1− ki
2

.

Suppose the following conditions hold:
{θn} and {αn} be sequences in (0, 1) satisfying:

(i) lim
n→∞

αn = 0; (ii)
∞∑
n=0

(1− θn)αn =∞,
m∑
i=0

λi = 1,

(iii) lim
n→∞

θn = 1.

Assume that I − Ti is demiclosed at the origin.
Then, the sequence {xn} generated by (3.1) converges strongly to x∗ ∈



A MODIFIED KRASNOSELSKII-MANN ALGORITHM 73

Γ, where x∗ = QΓ(0) with QΓ the sunny nonexpansive retraction of K
onto Γ.

Proof. We prove that the sequences {xn} and {yn} are bounded. Let
p ∈ Γ. Using (3.1), inequality (ii) of Theorem 2.4 and inequality (1.7),
we have

‖yn − p‖q =
∥∥∥λ0(xn − p) +

m∑
i=1

λi(Tixn − p)
∥∥∥q

=
∥∥∥λ0(xn − p) +

m∑
i=1

λi(Tixn − xn) +
m∑
i=1

λi(xn − p)
∥∥∥q

=
∥∥∥xn − p+

m∑
i=1

λi(Tixn − xn)
∥∥∥q.

Hence,
(3.2)

‖yn−p‖q ≤ ‖xn−p‖q−q
m∑
i=1

λiβ
q−1
i ‖xn−Tixn‖q+dq

∥∥∥ m∑
i=1

λi(Tixn−xn)
∥∥∥q.

Therefore,

(3.3)
∥∥∥ m∑
i=1

λi(Tixn − xn)
∥∥∥q ≤ 2(m−1)q

m∑
i=1

λqi

∥∥∥Tixn − xn∥∥∥q.
Combining inequalities (3.2) and (3.3), it then follows that :∥∥∥yn − p∥∥∥q ≤ ∥∥∥xn − p∥∥∥q − q m∑

i=1

λiβ
q−1
i

∥∥∥xn − Tixn∥∥∥q +

+ dq2
(m−1)q

m∑
i=1

λqi

∥∥∥Tixn − xn∥∥∥q.
=

∥∥∥xn − p∥∥∥q − m∑
i=1

λi

[
qβq−1

i − 2(m−1)qdqλ
q−1
i

]∥∥∥xn − Tixn∥∥∥q.(3.4)

Since qβq−1
i − 2(m−1)qdqλ

q−1
i > 0 ∀ i = 1, · · · ,m, we obtain,

(3.5) ‖yn − p
∥∥∥ ≤ ‖xn − p∥∥∥.
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By inequality (3.5) and (3.1), we have

‖xn+1 − p‖ = ‖αn(θnxn) + (1− αn)yn − p‖
≤ αnθn‖xn − p‖+ (1− αn)‖yn − p‖+ (1− θn)αn‖p‖
≤ αnθn‖xn − p‖+ (1− αn)‖xn − p‖+ (1− θn)αn‖p‖
≤ [1− (1− θn)αn]‖xn − p‖+ (1− θn)αn‖p‖
≤ max {‖xn − p‖, ‖p‖}.

By induction, it is easy to see that

‖xn − p‖ ≤ max {‖x0 − p‖, ‖p‖}, n ≥ 1.

Hence {xn} is bounded and {yn} is also bounded.
Consequently, using inequality (3.4), we obtain

‖xn+1 − p‖q = ‖αn(θnxn) + (1− αn)yn − p‖q = ‖yn − p+ αn((θnxn)− yn)‖q

≤ ‖yn − p‖q + qαn〈(θnxn)− yn, Jq(yn − p)〉+ dq

∥∥∥αn((θnxn)− yn)
∥∥∥q

≤ ‖yn − p‖q + qαn‖(θnxn)− yn‖‖yn − p‖q−1 + dqα
q
n

∥∥∥(θnxn)− yn
∥∥∥q

≤
∥∥∥xn − p∥∥∥q − m∑

i=1

λi

[
qβq−1

i − 2(m−1)qdqλ
q−1
i

]∥∥∥xn − Tixn∥∥∥q
+qαn‖(θnxn)− yn‖‖yn − p‖q−1 + dqα

q
n

∥∥∥(θnxn)− yn
∥∥∥q.

Thus, for every i, 1 ≤ i ≤ m, we get
m∑
i=1

λi

[
qβq−1

i − 2(m−1)qdqλ
q−1
i

]∥∥∥xn − Tixn∥∥∥q ≤ ∥∥∥xn − p∥∥∥q − ∥∥∥xn+1 − p
∥∥∥q

+qαn‖(θnxn)− yn‖‖yn − p‖q−1

+dqα
q
n‖(θnxn)− yn‖q.

Since {yn} and {(θnxn)} are bounded, then there exists a constant
C > 0 such that for every i, 1 ≤ i ≤ m,
(3.6)
m∑
i=1

λi

[
qβq−1

i −2(m−1)qdqλ
q−1
i

]
‖xn−Tixn‖q ≤ ‖xn−p‖q−‖xn+1−p‖q+αnC.

Now we prove that {xn} converges strongly to x∗.
We divide the proof into two cases.
Case 1. Assume that the sequence {‖xn − p‖} is monotonically de-
creasing. Then {‖xn − p‖} is convergent. Clearly, we have

‖xn − p‖q − ‖xn+1 − p‖q → 0.
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It then implies from (3.6) that

(3.7) lim
n→∞

m∑
i=1

λi

[
qβq−1

i − 2(m−1)qdqλ
q−1
i

]∥∥∥xn − Tixn∥∥∥q = 0.

Since qβq−1
i − 2(m−1)qdqλ

q−1
i > 0 ∀ i = 1, · · · ,m, we have

(3.8) lim
n→∞

∥∥∥xn − Tixn∥∥∥ = 0.

Next, we prove that lim sup
n→+∞

〈x∗, Jϕ(x∗ − xn)〉 ≤ 0. Since E is reflexive

and {xn} is bounded, there exists a subsequence {xnk
} of {xn} such

that xnk
converges weakly to a in K and

lim sup
n→+∞

〈x∗, Jϕ(x∗ − xn)〉 = lim
k→+∞

〈x∗, Jϕ(x∗ − xnk
)〉.

From (3.8), taking into account that I − Ti is demiclosed, we obtain
a ∈ Γ. On other hand, by the assumption that the duality mapping
Jϕ is weakly continuous, the fact that x∗ = QΓ(0) and Lemma 2.1, we
then have

lim sup
n→+∞

〈x∗, Jϕ(x∗ − xn)〉 = lim
k→+∞

〈x∗, Jϕ(x∗ − xnk
)〉

= 〈x∗, Jϕ(x∗ − a)〉 ≤ 0.

Finally, we show that xn → x∗. In fact, since Φ(t) =
∫ t

0
ϕ(σ)dσ, ∀t ≥

0, and ϕ is a gauge function, then for 1 ≥ k ≥ 0, Φ(kt) ≤ kΦ(t). From
(3.1) and Lemma 2.6, we get that

Φ(‖xn+1 − x∗‖) = Φ(‖αn(θnxn) + (1− αn)yn − x∗‖)
≤ Φ(‖αnθn(xn − x∗) + (1− αn)(yn − x∗)‖)

+(1− θn)αn〈x∗, Jϕ(x∗ − xn+1)〉
≤ Φ(αnθn‖xn − x∗‖+ ‖(1− αn)(yn − x∗)‖)

+(1− θn)αn〈x∗, Jϕ(x∗ − xn+1)〉
≤ Φ(αnθn‖xn − x∗‖+ (1− αn)‖xn − x∗‖)

+(1− θn)αn〈x∗, Jϕ(x∗ − xn+1)〉
≤ Φ((1− (1− θn)αn)‖xn − x∗‖) + (1− θn)αn〈x∗, Jϕ(x∗ − xn+1)〉
≤ [1− (1− θn)αn]Φ(‖xn − x∗‖) + (1− θn)αn〈x∗, Jϕ(x∗ − xn+1)〉.

From Lemma 2.7, it follows that xn → x∗.
Case 2. Assume that the sequence {‖xn − x∗‖} is not monotonically
decreasing sequence. Set Bn = ‖xn−x∗‖ and τ : N→ N be a mapping
for all n ≥ n0 (for some n0 large enough) by τ(n) = max{k ∈ N : k ≤
n, Bk ≤ Bk+1}.
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We have τ is a non-decreasing sequence such that τ(n)→∞ as n→
∞ and Bτ(n) ≤ Bτ(n)+1 for n ≥ n0. Let i ∈ N∗, from (3.6), we have

m∑
i=1

λi

[
qβq−1

i − 2(m−1)qdqλ
q−1
i

]∥∥∥xτ(n) − Tixτ(n)

∥∥∥q ≤ ατ(n)C.

Furthermore, we have

lim
n→∞

m∑
i=1

λi

[
qβq−1

i − 2(m−1)qdqλ
q−1
i

]∥∥∥xτ(n) − uiτ(n)

∥∥∥q = 0.

Since qβq−1
i − 2(m−1)qdqλ

q−1
i > 0 ∀ i = 1, · · · ,m, we have

(3.9) lim
n→∞

∥∥∥xτ(n) − Tixτ(n)

∥∥∥q = 0.

By same argument as in case 1, we can show that xτ(n) is bounded in
K and lim sup

τ(n)→+∞
〈x∗, Jϕ(x∗ − xτ(n))〉 ≤ 0. We have for all n ≥ n0,

0 ≤ Φ(‖xτ(n)+1 − x∗‖)− Φ(‖xτ(n) − x∗‖) ≤
(

1− θτ(n)

)
ατ(n)[−Φ(‖xτ(n) − x∗‖)

+〈x∗, Jϕ(x∗ − xτ(n)+1)〉],
which implies that

Φ(‖xτ(n) − x∗‖) ≤ 〈x∗, Jϕ(x∗ − xτ(n)+1)〉.
Then, we have

lim
n→∞

Φ(‖xτ(n) − x∗‖) = 0.

Therefore,

lim
n→∞

Bτ(n) = lim
n→∞

Bτ(n)+1 = 0.

Furthermore, for all n ≥ n0, we have Bτ(n) ≤ Bτ(n)+1 if n 6= τ(n)
(that is, n > τ(n)); because Bj > Bj+1 for τ(n) + 1 ≤ j ≤ n. As
consequence, we have for all n ≥ n0,

0 ≤ Bn ≤ max{Bτ(n), Bτ(n)+1} = Bτ(n)+1.

Hence, lim
n→∞

Bn = 0, that is {xn} converges strongly to x∗. This com-

pletes the proof. �

Remark 3.2. In our theorem, we assume that K is a cone. But, in
some cases, for example, if K is the closed unit ball, we can weaken
this assumption to the following: λx ∈ K for all λ ∈ (0, 1) and x ∈ K.
Therefore, in the case where E is a real Hilbert space or E = lq, 1 <
p < ∞, our results can be used to approximated a common fixed
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points of a finite family of demicontractive mappings from the closed
unit ball to itself.

Corollary 3.3. Assume that E = lq, 1 < q <∞ or E is a real Hilbert
space. Let B be the closed unit ball of E. Let m ≥ 1 be a fixed number,
for i, 1 ≤ i ≤ m, Ti : B → B be a ki- demicontractive mapping such

that Γ :=
m⋂
i=1

Fix(Ti) 6= ∅. Let {xn} be a sequence defined iteratively

from arbitrary x0 ∈ B by: yn = λ0xn + λ1T1xn + · · ·+ λmTmxn,

xn+1 = αn(θnxn) + (1− αn)yn,
(3.10)

where λi ∈ (0, γ),

γ := min
1≤i≤m

{
1,
( qβq−1

i

2(m−1)qdq

) 1
q−1
}
, with βi =

1− ki
2

.

Suppose the following conditions hold:
{θn} and {αn} be sequences in (0, 1) satisfying:

(i) lim
n→∞

αn = 0; (ii)
∞∑
n=0

(1− θn)αn =∞,
m∑
i=0

λi = 1,

(iii) lim
n→∞

θn = 1.

Assume that I − Ti is demiclosed at the origin.
Then, the sequence {xn} generated by (3.10) converges strongly to x∗ ∈
Γ, where x∗ = QΓ(0) with QΓ the sunny nonexpansive retraction of B
onto Γ.

Now, we give some remarks on our results as follows:

(1) The proof methods of our result are very different from the ones
of Sow et al. [14] for finding fixed points of nonexpansive mapping.

Further, we remove the following conditions:
∞∑
n=0

|αn − αn+1| < ∞,

∞∑
n=0

αn =∞, and
∞∑
n=0

|λn − λn+1| <∞ in Theorem 1.3 of [14].

(2) Our results improve many recent results using Mann’s method
to approximate fixed points of nonexpansive mappings, quasi-
nonexpansive, strictly pseudo-contractive in Banach spaces.
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