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A CONTRIBUTION ON CONVEX AND STRICTLY
PLURISUBHARMONIC FUNCTIONS DEFINED BY

HOLOMORPHIC FUNCTIONS OF SEVERAL
COMPLEX VARIABLES AND APPLICATIONS

ABIDI JAMEL

Abstract. Let A1, A2 ∈ C\{0} and n,m ∈ N\{0}. Using alge-
braic methods, we prove that there exist three analytic functions
ϕ : Cm → C and g1, g2 : Cn → C such that v is convex and strictly
plurisubharmonic on Cn × Cm if and only if m = 1, n ∈ {1, 2}, there
exists c ∈ C such that | ϕ + c |2 is convex and strictly subharmonic
on C and the functions g1 and g2 have fundamental representations
over Cn. v(z, w) =| A1ϕ(w) − g1(z) |2 + | A2ϕ(w) − g2(z) |2, for
(z, w) ∈ Cn × Cm. At the end, we prove an additional theorem by
analytic and algebraic methods.

1. Introduction

Let D be a convex domain of Cn and ψ : C → C be a holomor-
phic not constant function, n ≥ 1. Assume that g : D → C
and f1, f2 : C → C be two holomorphic functions. Put
u1(z, w) =| ψ(w)−g(z) |2 and u2(ξ, w) =| w−f1(ξ) |2 + | w−f2(ξ) |2,
(z, w, ξ) ∈ D×C×C. Assume that u1 is convex on D×C. By [4], we
have the following two cases.
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Case 1. ψ is affine on C. Therefore g is affine on D.
Case 2. ψ is not affine on C. Then g is constant on D. (Observe that
if we consider the sum of two absolute values like u2, we have another
situation).
Moreover, u1 is convex and strictly psh on D×C if and only if n = 1,
ψ is affine on C, g is affine on D with the modulus | ∂ψ

∂w
|> 0 and

| ∂g
∂z
|> 0.

Now let f : Cn → C be holomorphic and v1(z, w) =| w − f(z) |2,
v2(z, w) =

∫
B(0,1)

v1(z + ξ, w)dm2n(ξ), for (z, w) ∈ Cn × C.

We have v1 is not strictly psh at every point of Cn × C. While v2 is
strictly psh at all Cn × C, if f shall satisfy a suitable condition. But
for example, there exists several cases where u2 is convex and strictly
psh on C × C. This proves that we have a great differences between
the family of functions defined like v1 and the class of functions like
v2.
The original problem is to find all the analytic functions
ϕ1, ϕ2, ϕ3, ϕ4 : Cm → C and f1, f2, f3, f4 : Cn → C such that u3 and
u4 are convex functions on Cn×Cm and u5 = (u3 + u4) is strictly psh
on Cn × Cm. Where u3(z, w) =| ϕ1(w)− f1(z) |2 + | ϕ2(w)− f2(z) |2,
u4(z, w) =| ϕ3(w)−f3(z) |2 + | ϕ4(w)−f4(z) |2, for (z, w) ∈ Cn×Cm.

In this paper, we consider application of the following complex
analysis property. Let g, f : G → Ct be two analytic functions,
s, t ∈ N\{0} and G a domain of Cs. Then ‖ f + g ‖2 and
(‖ f ‖2 + ‖ g ‖2) have the same hermitian Levi form over G. This
criterion plays a particular role in several questions of complex
analysis.
We are first interested, in section 2, to answer of the following
question and related topics.
Let A1, A2 ∈ C\{0} and n,m ∈ N\{0}. Find exactly all the three
analytic functions ϕ : Cm → C and g1, g2 : Cn → C such that v is
convex and strictly plurisubharmonic on Cn × Cm, where v(z, w) =
| A1ϕ(w)− g1(z) |2 + | A2ϕ(w)− g2(z) |2, for (z, w) ∈ Cn × Cm.
In this case find exactly ϕ, g1 and g2 by their expressions.
Similarly, using the methods based on the idea of this paper, we
can discuss the several cases, v is convex and strictly psh but not
strictly convex on Cn × Cm, v is convex strictly psh but not strictly
convex on any not empty open ball of Cn × Cm, v is strictly convex
on Cn × Cm, ...
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We obtain several representations which exhibit new classes of
functions in the above type. We study now some good family of
plurisubharmonic (psh) functions, that is the class of convex and
strictly psh functions over CN , N ≥ 1.
The following classes ((convex and strictly psh functions), (convex
strictly psh and not strictly convex functions), (convex strictly psh
and not strictly convex in any not empty Euclidean open ball of
Cn × Cm), ...) play a classical role on many problems of complex
analysis, convex analysis and harmonic analysis (representation
theory).
Several papers appeared recently related to this topic, let us mention
[3], [5], [4], the monograph [6] and others.
In section 3, some auxiliary results are proved, while we will need a
key lemma and several algebraic methods.
Let U be a domain of Rd, (d ≥ 2). sh(U) is the class of subharmonic
functions on U and md is the Lebesgue measure on Rd. For N ≥ 1
and h = (h1, ..., hN), where h1, ..., hN : U → C, ‖ h ‖= (| h1 |2 +...+

| hN |2)
1
2 .

Let g : D → C be a analytic function, where D is a domain of C. We
denote by g(m) = ∂mg

∂zm
the holomorphic derivative of g of order m, for

all m ∈ N.
If z = (z1, ..., zn), ξ = (ξ1, ..., ξn) ∈ Cn, we denote
< z/ξ >= z1ξ1 + ... + znξn and B(ξ, r) = {ζ ∈ Cn/ ‖ ζ − ξ ‖< r} for

r > 0, where
√
< ξ/ξ > =‖ ξ ‖ is the Euclidean norm of ξ. Denote

C∞(U) = {ϕ : U → C/ϕ is of class C∞ on U}.
Let D be a domain of Cn, (n ≥ 1). psh(D) and prh(D) are respectively
the class of plurisubharmonic and pluriharmonic functions on D.
For the study of properties of analytic and plurisubharmonic functions
we cite the references [1], [7], [8], [9], [11], [12], [13] and [14]. For the
study of convex functions in complex convex domains, we cite [10],
[6] and [12].

2. The representation of analytic functions in real and
complex convexity

Throughout this section, A1, A2 ∈ C\{0}, n,m ∈ N\{0},
ϕ : Cm → C be analytic and g1, g2 : Cn → C be two analytic functions.
Also we define u(z, w) =| A1ϕ(w) − g1(z) |2 + | A2ϕ(w) − g2(z) |2,
v(z, w) =
| A1ϕ(w)− g1(z) |2 + | A2ϕ(w)− g2(z) |2, for (z, w) ∈ Cn × Cm.
The following theorem is an important technical result, which we will
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need for our purposes.
Theorem 1. Assume that u is convex on Cn × Cm. Then there exist
c ∈ C such that | ϕ+ c |2 is convex on Cm.
Proof. u is a function of class C∞ on Cn × Cm. Let
w = (w1, ..., wm) ∈ Cm, α = (α1, ..., αm) ∈ Cm and z ∈ Cn.
The function u(z, .) is convex on Cm. Assume that ϕ is not affine on
Cm.

Therefore |
m∑

j,k=1

∂2u

∂wj∂wk
(z, w)αjαk |≤

m∑
j,k=1

∂2u

∂wj∂wk
(z, w)αjαk.

Then |
m∑

j,k=1

∂2ϕ

∂wj∂wk
(w)(| A1 |2 ϕ(w)− A1g1(z))αjαk +

m∑
j,k=1

∂2ϕ

∂wj∂wk
(w)(| A2 |2 ϕ(w)−A2g2(z))αjαk |≤| A1

m∑
j=1

∂ϕ

∂wj
(w)αj |2 +

| A2

m∑
j=1

∂ϕ

∂wj
(w)αj |2 .

It follows that

|
m∑

j,k=1

∂2ϕ

∂wj∂wk
(w)[(| A1 |2 + | A2 |2)ϕ(w)−A1g1(z)−A2g2(z)]αjαk |≤

(| A1 |2 + | A2 |2) |
m∑
j=1

∂ϕ

∂wj
(w)αj |2

for all z ∈ Cn.
It follows that (A1g1 + A2g2) is analytic and bounded on Cn.
Therefore (A1g1 + A2g2) is constant on Cn, by Liouville theorem.
Thus A1g1(z) + A2g2(z) = −c(| A1 |2 + | A2 |2), for all z ∈ Cn, where
c ∈ C.
Now we have

|
m∑

j,k=1

∂2ϕ

∂wj∂wk
(w)(| A1 |2 + | A2 |2)(ϕ(w) + c)αjαk |≤

(| A1 |2 + | A2 |2) |
m∑
j=1

∂ϕ

∂wj
(w)αj |2 .

Thus

|
m∑

j,k=1

∂2ϕ

∂wj∂wk
(w)(ϕ(w) + c)αjαk |≤|

m∑
j=1

∂ϕ

∂wj
(w)αj |2, ∀w =

(w1, ..., wm) ∈ Cm.
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Consequently, | ϕ+ c |2 is convex on Cm. This follows from [4].
Theorem 2. Assume that u is convex on Cn ×Cm and ϕ is not con-
stant in Cm. Then there exists a constant c ∈ C such that | ϕ+ c |2 is
convex on Cm. c is independent of n, g1, g2 and we have the following
three cases.
(A) ϕ(w) =< w/a > +b, for all w ∈ Cm, where a ∈ Cm\{0} and
b ∈ C. Then we have the representation{

g1(z) = A1(< z/λ > +µ) + A2(< z/λ1 > +µ1)
s

g2(z) = A2(< z/λ > +µ)− A1(< z/λ1 > +µ1)
s

(for all z ∈ Cn, where λ, λ1 ∈ Cn, µ, µ1 ∈ C, s ∈ N), or{
g1(z) = A1(< z/λ2 > +µ2) + A2e

(<z/λ3>+µ3)

g2(z) = A2(< z/λ2 > +µ2)− A1e
(<z/λ3>+µ3)

(for all z ∈ Cn, where λ2, λ3 ∈ Cn, µ2, µ3 ∈ C).
(B) ϕ(w) = (< w/a > +b)k − c, for all w ∈ Cm, with a ∈ Cm\{0},
b ∈ C, k ∈ N, k ≥ 2. We have then the representation{

g1(z) = −A1c+ A2(< z/λ > +µ)s

g2(z) = −A2c− A1(< z/λ > +µ)s

(for all z ∈ Cn, where λ ∈ Cn, µ ∈ C, s ∈ N), or{
g1(z) = −A1c+ A2e

(<z/λ1>+µ1)

g2(z) = −A2c− A1e
(<z/λ1>+µ1)

(for all z ∈ Cn, where λ1 ∈ Cn, µ1 ∈ C).
(C) ϕ(w) = e(<w/a>+b) − c, for all w ∈ Cm, with a ∈ Cm\{0} and
b ∈ C. Then we have the representation{

g1(z) = −A1c+ A2(< z/λ > +µ)s

g2(z) = −A2c− A1(< z/λ > +µ)s

(for all z ∈ Cn, where λ ∈ Cn, µ ∈ C, s ∈ N), or{
g1(z) = −A1c+ A2e

(<z/λ1>+µ1)

g2(z) = −A2c− A1e
(<z/λ1>+µ1)

(for all z ∈ Cn, where λ1 ∈ Cn, µ1 ∈ C).
The proof follows from the case m = 1, (see also [3]).
We can also consider the study of prh functions and establish several
representations.
The following lemma is fundamental, we will use it as an important
tool in pluripotential theory and in this paper.
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Lemma 1. Let g = (g1, ..., gN) and f = (f1, ..., fN) be 2 holomor-
phic functions on D, where N ≥ 1, D is a domain of Cn, n ≥ 1,
(fj, gj : D → C), for all j ∈ {1, ..., N}. Then ‖ g + f ‖2 and
(‖ g ‖2 + ‖ f ‖2) have the same hermitian Levi form on D.
On the other hand, let u : D → R be a function of class C2. Define
u1 = (u+ ‖ g + f ‖2), u2 = (u+ ‖ f ‖2 + ‖ g ‖2).
Then u1 and u2 are functions of class C2 on D and we have the asser-
tion.
u1 is strictly psh on D if and only if u2 is strictly psh on D.
(Observe that if N < n, then ‖ g ‖2 is not strictly psh at each point
of D).
Proof. We have ‖ g + f ‖2=| g1 + f1 |2 +...+ | gN + fN |2=| g1 |2

+ | f1 |2 +...+ | gN |2 + | fN |2 +
N∑
j=1

(gjfj + gjfj) =‖ g ‖2 + ‖ f ‖2

+
N∑
j=1

(gjfj + gjfj).

Since (gjfj + gjfj) is prh on D, then
N∑
j=1

(gjfj + gjfj) is prh on D.

Consequently, ‖ g + f ‖2 and (‖ g ‖2 + ‖ f ‖2) have the same hermit-
ian Levi form on D.
Several fundamental properties can be deduced from the above
lemma 1. As an example, we cite theorem 4, theorem 5 and
theorem 6.
Theorem 3. The following assertions are equivalent
(A) u is convex and strictly psh on Cn × Cm;
(B) n = m = 1 and we have the following two cases.
(I) ϕ(w) = aw + b, with a ∈ C\{0}, b ∈ C and we have the represen-
tation {

g1(z) = A1(λz + µ) + A2ϕ1(z)
g2(z) = A2(λz + µ)− A1ϕ1(z)

(for all z ∈ C, with λ, µ ∈ C and ϕ1 : C →
C be analytic affine bijective on C), or{

g1(z) = A1(λ2z + µ2) + A2e
ϕ2(z)

g2(z) = A2(λ2z + µ2)− A1e
ϕ2(z)

(for all z ∈ C, with λ2, µ2 ∈ C, ϕ2 : C →
C be analytic affine bijective on C).
(II) ϕ(w) = e(aw+b) − c, for all w ∈ C, with a ∈ C\{0}, b ∈ C and
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c ∈ C.
Then we have the representation{

g1(z) = A2(γ1z + δ1)− A1c
g2(z) = −A1(γ1z + δ1)− A2c

(for all z ∈ C, where γ1 ∈ C\{0}, δ1 ∈ C), or{
g1(z) = A2e

(γ2z+δ2) − A1c
g2(z) = −A1e

(γ2z+δ2) − A2c

(for all z ∈ C, where γ2 ∈ C\{0}, δ2 ∈ C).
Proof. (A) implies (B). u is a function of class C∞ on Cn×Cm. u(0, .)
is convex on Cm. Then

|
m∑

j,k=1

∂2u

∂wj∂wk
(0, w)αjαk |≤

m∑
j,k=1

∂2u

∂wj∂wk
(0, w)αjαk, ∀w =

(w1, ..., wm) ∈ Cm, ∀α = (α1, ..., αm) ∈ Cm.
Thus

|
m∑

j,k=1

∂2ϕ

∂wj∂wk
(w)[(| A1 |2 + | A2 |2)ϕ(w)−A1g1(0)−A2g2(0)]αjαk |≤

(| A1 |2 + | A2 |2) |
m∑
j=1

∂ϕ

∂wj
(w)αj |2 .

Then

|
m∑

j,k=1

∂2ϕ

∂wj∂wk
(w)[ϕ(w) + c]αjαk |≤|

m∑
j=1

∂ϕ

∂wj
(w)αj |2, ∀w =

(w1, ..., wm) ∈ Cm, ∀α = (α1, ..., αm) ∈ Cm, where c ∈ C. There-
fore | ϕ+ c |2 is convex on Cm.

Since u(0, .) is strictly psh on Cm, then |
m∑
j=1

∂ϕ

∂wj
(w)αj |2> 0,

∀w = (w1, ..., wm) ∈ Cm, ∀α = (α1, ..., αm) ∈ Cm\{0}. Therefore
m = 1.
Consequently, | ϕ + c |2 is convex and strictly sh on C. By Abidi [2],
it follows that
ϕ(w) = aw + b, for all w ∈ C, where a ∈ C\{0} and b ∈ C, or
ϕ(w) = e(a1w+b1) − c, for all w ∈ C, where a1 ∈ C\{0} and b1 ∈ C.
(I) ϕ(w) = aw + b, for all w ∈ C. Then we have the representation{

g1(z) = A1(< z/λ > +µ) + A2ϕ1(z)
g2(z) = A2(< z/λ > +µ)− A1ϕ1(z)
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(for all z ∈ Cn, with λ ∈ Cn, µ ∈ C, ϕ1 : Cn → C be analytic, | ϕ1 |2
is convex on Cn).
Then u(z, w) = (| A1 |2 + | A2 |2)(| aw + b− < z/λ > −µ |2 + |
ϕ1(z) |2), (z, w) ∈ Cn×C. Put T (z, w) = (z, w+ 1

a
< z/λ >), (z, w) ∈

Cn ×C. T is a C linear bijective transformation on Cn ×C. Let u1 =
1

(|A1|2+|A2|2)uoT.

u1 is a function of class C∞ on Cn × C and we have
u is strictly psh on Cn ×C if and only if u1 is strictly psh on Cn ×C.
But u1(z, w) =| aw + b− µ |2 + | ϕ1(z) |2 .
Observe now that u1 is strictly psh on Cn × C if and only if | ϕ1 |2 is
strictly psh on Cn. Therefore n = 1 and | ϕ1 |2 is convex and strictly
sh on C.
Thus ϕ1(z) = λ3z + µ3, for all z ∈ C, where λ3 ∈ C\{0} and µ3 ∈ C,
or
ϕ1(z) = e(λ4z+µ4), for all z ∈ C, with λ4 ∈ C\{0} and µ4 ∈ C.
(II) ϕ(w) = e(aw+b) − c, for all w ∈ C (a1 = a, b1 = b).
By theorem 2, we have{

g1(z) = −A1c+ A2ϕ1(z)
g2(z) = −A2c− A1ϕ1(z)

for all z ∈ Cn, with ϕ1 : Cn → C be analytic, | ϕ1 |2 is convex on Cn.
u(z, w) =| A1e

(aw+b) − A2ϕ1(z) |2 + | A2e
(aw+b) + A1ϕ1(z) |2=

(| A1 |2 + | A2 |2)(| e(aw+b) |2 + | ϕ1(z) |2), (z, w) ∈ Cn × C.
Observe that u is strictly psh on Cn×C if and only if | ϕ1 |2 is strictly
psh on Cn. Therefore n = 1. Consequently, | ϕ1 |2 is convex and strictly
sh on C. Thus
ϕ1(z) = γ1z + δ1, for all z ∈ C, where γ1 ∈ C\{0} and δ1 ∈ C, or
ϕ1(z) = e(γ2z+δ2), for all z ∈ C, with γ2 ∈ C\{0} and δ2 ∈ C.
Theorem 4. The following conditions are equivalent
(A) v is convex and strictly psh on Cn × Cm;
(B) m = 1, n ∈ {1, 2} and we have the following two cases.
(I) ϕ(w) = aw + b, for all w ∈ C, where a ∈ C\{0} and b ∈ C.{

g1(z) = A1(< z/λ > +µ) + A2ϕ1(z)
g2(z) = A2(< z/λ > +µ)− A1ϕ1(z)

(∀z ∈ Cn, with λ ∈ Cn, µ ∈ C), ϕ1 : Cn → C be analytic, | ϕ1 |2 is
convex on Cn such that
Case 1. ϕ1(z) = (< z/a1 > +b1)

s1 , for all z ∈ Cn, where a1 ∈ Cn,
b1 ∈ C, s1 ∈ N. Then (n = 1, λ 6= 0), or (n = 1, s1 = 1 and a1 6= 0), or
(n = 2, s1 = 1 and (λ, a1) is a basis of the complex vector space C2).
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Case 2. ϕ1(z) = e(<z/a2>+b2), for all z ∈ Cn, where a2 ∈ Cn and b2 ∈ C.
Then
(n = 1 and λ 6= 0), or (n = 1 and a2 6= 0), or (n = 2 and (λ, a2) is a
basis of the complex vector space C2).
(II) ϕ(w) = e(aw+b) − c, for all w ∈ C, where a ∈ C\{0}, b ∈ C and
c ∈ C.
Then n = 1 and {

g1(z) = A2(γ1z + δ1)− A1c
g2(z) = −A1(γ1z + δ1)− A2c

(∀z ∈ C, with γ1 ∈ C\{0}, δ1 ∈ C), or{
g1(z) = A2e

(γ2z+δ2) − A1c
g2(z) = −A1e

(γ2z+δ2) − A2c

(∀z ∈ C, with γ2 ∈ C\{0} and δ2 ∈ C).
Proof. (A) implies (B). Note that v is a function of class C∞ on
Cn × Cm. The function v(0, .) is then strictly psh on Cm.

Therefore 0 <
m∑

j,k=1

∂2v

∂wj∂wk
(0, w)αjαk, ∀w = (w1, ..., wm) ∈ Cm, ∀α =

(α1, ..., αm) ∈ Cm\{0}. Thus |
m∑
j=1

∂ϕ

∂wj
(0)αj |> 0, ∀α = (α1, ..., αm) ∈

Cm\{0}.
Then m = 1, because if m ≥ 2, there exists always β = (β1, ..., βm) ∈

Cm\{0} such that
m∑
j=1

∂ϕ

∂wj
(0)βj = 0. By theorem 1, there exists c ∈ C

such that | ϕ+ c |2 is convex on C. Since | ϕ |2 is strictly sh on C, then
| ϕ+ c |2 is convex and strictly sh on C. It follows that
ϕ(w) = aw + b, for all w ∈ C, where a ∈ C\{0} and b ∈ C, or
ϕ(w) = e(c1w+d1) − c, for all w ∈ C, with c1 ∈ C\{0} and d1 ∈ C.
(I) ϕ(w) = aw + b, for all w ∈ C.
Let T (z, w) = (z, w), (z, w) ∈ Cn × C. T is an R linear bijective
transformation on Cn×C. Since v is convex on Cn×C, then u = voT is
convex and of class C∞ on Cn×C. u(z, w) =| A1aw−(g1(z)−A1b) |2 +
| A2aw − (g2(z)− A2b) |2, for (z, w) ∈ Cn × C.
By theorem 3, it follows that{

g1(z) = A1(< z/λ > +µ) + A2ϕ1(z)
g2(z) = A2(< z/λ > +µ)− A1ϕ1(z)



112 ABIDI JAMEL

∀z ∈ Cn, with λ ∈ Cn, µ ∈ C, ϕ1 : Cn → C be analytic, | ϕ1 |2 is
convex on Cn.
v(z, w) = (| A1 |2 + | A2 |2)(| ϕ(w) − < z/λ > − µ |2 + | ϕ1(z) |2),
(z, w) ∈ Cn × C.
Let v1(z, w) =| ϕ(w)−< z/λ >−µ |2 + | ϕ1(z) |2, for (z, w) ∈ Cn×C.
v1 is a function of class C∞ on Cn × C. We have
v is convex and strictly psh on Cn × C if and only if v1 is convex and
strictly psh on Cn × C.
Define v2(z) =|< z/λ >|2 + | ϕ1(z) |2, z ∈ Cn. v2 is a function of class
C∞ on Cn and we have the assertion
v1 is strictly psh on Cn × C if and only if v2 is strictly psh on Cn.
By the lemma 1, we have n ≤ 2. Then n ∈ {1, 2}.
The Levi hermitian form of v2 is

L(v2)(z)(α) =|< α/λ >|2 + |
n∑
j=1

∂ϕ1

∂zj
(z)αj |2, z, α ∈ Cn.

Case 1. ϕ1(z) = (< z/a1 > +b1)
s1 , for all z ∈ Cn, where a1 ∈ Cn,

b1 ∈ C and s1 ∈ N.
L(v2)(z)(α) =|< α/λ >|2 +s21 |< α/a1 >|2|< z/a1 > +b1 |2s1−2> 0,
for all z ∈ Cn and α ∈ Cn\{0}.
Then (n = 1 and α 6= 0), or (n = 1, s1 = 1 and a1 6= 0), or (n =
2, s1 = 1 and (α, a1) is a basis of the complex vector space C2).
Case 2. ϕ1(z) = e(<z/a2>+b2), for all z ∈ Cn, where a2 ∈ Cn and b2 ∈ C.
L(v2)(z)(α) =|< α/λ >|2 + |< α/a2 >|2| e(<z/a2>+b2) |2> 0, ∀z ∈ Cn,
∀α ∈ Cn\{0}.
Therefore (n = 1 and λ 6= 0), or (n = 1 and a2 6= 0), or (n = 2 and
(λ, a2) is a basis of the complex vector space C2).
(II) ϕ(w) = e(aw+b) − c, for all w ∈ C, (a = c1, b = d1).
By theorem 3, we have{

g1(z) = A2ϕ1(z)− A1c
g2(z) = −A1ϕ1(z)− A2c

∀z ∈ Cn, with ϕ1 : Cn → C be analytic, | ϕ1 |2 is convex on Cn.
v(z, w) = (| A1 |2 + | A2 |2)(| e(aw+b) |2 + | ϕ1(z) |2), (z, w) ∈ Cn × C.
Observe that v is strictly psh on Cn×C if and only if | ϕ1 |2 is strictly
psh on Cn.
By lemma 1, we have n = 1. Consequently, | ϕ1 |2 is strictly sh on C.
Therefore
ϕ1(z) = (γ1z + δ1), for all z ∈ C, where γ1 ∈ C\{0} and δ1 ∈ C, or
ϕ1(z) = e(γ2z+δ2), for all z ∈ C, with γ2 ∈ C\{0} and δ2 ∈ C.
(B) implies (A) is evident.
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Theorem 5. The following assertions are equivalent
(A) u is a convex function on Cn × Cm, v is strictly psh on Cn × Cm

and u is not strictly psh on any not empty Euclidean open ball of
Cn × Cm;
(B) m = 1, ϕ(w) = aw + b, for all w ∈ C, where a ∈ C\{0}, b ∈ C
and n ∈ {1, 2} with
(n = 1, λ 6= 0 and ϕ1 is constant on C), or (n =

2 and (λ, (∂ϕ1

∂z1
(z), ∂ϕ1

∂z2
(z)))

is a basis of the complex vector space C2,∀z = (z1, z2) ∈ C2), where{
g1(z) = A1(< z/λ > +µ) + A2ϕ1(z)
g2(z) = A2(< z/λ > +µ)− A1ϕ1(z)

for all z ∈ Cn, where λ ∈ Cn, µ ∈ C, ϕ1 : Cn → C be analytic, | ϕ1 |2
is convex on Cn.
Proof. (A) implies (B). u and v are functions of class C∞ on Cn×Cm.
Since v is strictly psh on Cn × Cm, then v(0, .) is strictly psh on Cm.
Therefore m = 1 and consequently, | ϕ |2 is strictly sh on C.
Now since u is convex on Cn×C, then u(0, .) is convex on C. It follows
that | ϕ+ c |2 is convex on C, where c ∈ C.
Since ϕ is analytic on C, then | ϕ + c |2 is convex and strictly sh on
C. Consequently,
ϕ(w) + c = aw + b, ∀w ∈ C, where a ∈ C\{0} and b ∈ C, or
ϕ(w) + c = e(a1w+b1), ∀w ∈ C, where a1 ∈ C\{0} and b1 ∈ C, by Abidi
[4].
Case 1. ϕ(w) = e(a1w+b1) − c, for w ∈ C.
Put k1 = A1c+ g1, k2 = A2c+ g2; k1 and k2 are holomorphic functions
on Cn.
After an holomorphic affine change of variable, the function ψ is C∞

and convex on Cn×C, ψ(z, w) =| A1e
w−k1(z) |2 + | A2e

w−k2(z) |2 .
Fix z ∈ Cn. Since ψ1 = ψ(z, .) is convex on C, then

| ∂
2ψ1

∂w2
(w) |≤ ∂2ψ1

∂w∂w
(w)

for any w ∈ C. Thus
| (| A1 |2 + | A2 |2)e(w+w) − ew(A1k1(z) + A2k2(z)) |≤
(| A1 |2 + | A2 |2) | ew |2, for every w ∈ C.
It follows that
| (| A1 |2 + | A2 |2)e(w) − (A1k1(z) + A2k2(z)) |≤
(| A1 |2 + | A2 |2) | ew |, for each w ∈ C.
For w = x1 ∈ R, we have lim

x1→(−∞)
ex1 = 0. Then (A1k1 + A2k2) = 0 on
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Cn. Since k2 = −A1

A2
k1, we can prove that k1 = A2ϕ1 and k2 = −A1ϕ1,

where ϕ1 : Cn → C be analytic and | ϕ1 |2 is convex on Cn.
We prove that this case is impossible.
For the rest of the proof we use a similar technical idea developed at
the proof of theorem 4.

3. A characterization satisfying some specific conditions

Using the same notation of the below theorem 6. We show that
we have a great differences in the theory of convex and strictly
psh functions (which involve the complex structure), between the
class of functions defined like u1 and the family of functions like
v. Precisely, we prove that there exist a family of convex functions
belonging to the class of functions like u1 and u2 such that v is
strictly psh on Cn × C, but u is not. On the other hand, when
the number N of functions like u1 or (u2) satisfy N ≥ 2, we
show the desired result. Theorem 6. Let g1, f1, g2, f2 : Cn → C
be 4 analytic functions, n ≥ 1 and A1, A2, B1, B2 ∈ C\{0}.
Put u1(z, w) =| A1w − g1(z) |2 + | B1w − f1(z) |2,
u2(z, w) =| A2w − g2(z) |2 + | B2w − f2(z) |2, u = u1 + u2,

v(z, w) =

∫
B(0,1)

u(z + ξ, w)dm2n(ξ), for (z, w) ∈ Cn × C.

The following conditions are equivalent
(A) n = 3, u1 and u2 are convex functions on C3×C, v is strictly psh
on C3 × C but u is not strictly psh on C3 × C;
(B) We have one of the following 3 cases.
Case 1. We have B1g1(z) − A1f1(z) = (| A1 |2 + | A2 |2)(< z/λ1 >
+µ1)

s1 , B2g2(z) − A2f2(z) = (| A2 |2 + | B2 |2)(< z/λ2 > +µ2)
s2 ,

A1g1(z) + B1f1(z) = (| A1 |2 + | B1 |2)(< z/a1 > +b1),
A2g2(z) + B2f2(z) = (| A2 |2 + | B2 |2)(< z/a2 > +b2), for all
z ∈ Cn, where λ1, λ2, a1, a2 ∈ Cn, µ1, µ2, b1, b2 ∈ C and s1, s2 ∈ N.
(a1 − a2, λ1, λ2) is a basis of the complex vector space C3 and s1 ≥ 2
or s2 ≥ 2.
Case 2. We have B1g1(z) − A1f1(z) = (| A1 |2 + | B1 |2)(< z/λ1 >
+µ1)

s1 , B2g2(z) − A2f2(z) = (| A2 |2 + | B2 |2)e(<z/γ2>+δ2),
A1g1(z) + B1f1(z) = (| A1 |2 + | B1 |2)(< z/a1 > +b1),
A2g2(z) + B2f2(z) = (| A2 |2 + | B2 |2)(< z/a2 > +b2), for all
z ∈ Cn, where λ1, γ2, a1, a2 ∈ Cn, µ1, δ2, b1, b2 ∈ C and s1 ∈ N, s1 ≥ 2.
(a1 − a2, λ1, γ2) is a basis of the complex vector space C3.
Case 3. B1g1(z)− A1f1(z) = (| A1 |2 + | B1 |2)e(<z/γ1>+δ1),
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B2g2(z) − A2f2(z) = (| A2 |2 + | B2 |2)(< z/λ2 > +µ2)
s2 ,

A1g1(z) + B1f1(z) = (| A1 |2 + | B1 |2)(< z/a1 > +b1),
A2g2(z) + B2f2(z) = (| A2 |2 + | B2 |2)(< z/a2 > +b2), for all
z ∈ Cn, where γ1, λ2, a1, a2 ∈ Cn, δ1, µ2, b1, b2 ∈ C and s2 ∈ N with
s2 ≥ 2. (a1 − a2, γ1, λ2) is a basis of the complex vector space C3.
Proof. (A) implies (B). Denote by (| A1 |2 + | B1 |2)ϕ1 =
(B1g1 − A1f1) and (| A2 |2 + | B2 |2)ϕ2 = (B2g2 − A2f2). ϕ1 and
ϕ2 are analytic functions on C3. By theorem 2, | ϕ1 | and | ϕ2 | are
convex functions on C, (A1g1 + B1f1) and (A2g2 + B2f2) are affine
functions on C3.
Therefore (A1g1(z) + B1f1(z)) = (| A1 |2 + | B1 |2)(< z/a1 > +b1),
(A2g2(z) + B2f2(z)) = (| A2 |2 + | B2 |2)(< z/a2 > +b2), for all
z ∈ Cn, where a1, a2 ∈ Cn, b1, b2 ∈ C.
We have u(z, w) = (| A1 |2 + | B1 |2)(| w− < z/a1 > −b1 |2 +
| ϕ1(z) |2) + (| A2 |2 + | B2 |2)(| w− < z/a2 > −b2 |2 + | ϕ2(z) |2),
(z, w) ∈ Cn × C.

v(z, w) = (| A1 |2 + | B1 |2)(
∫
B(0,1)

| w− < z/a1 > − < ξ/a1 > −b1 |2

dm6(ξ)+

∫
B(0,1)

| ϕ1(z + ξ) |2 dm6(ξ)) + (| A2 |2 + | B2 |2)(
∫
B(0,1)

| w+

− < z/a2 > − < ξ/a2 > −b2 |2 dm6(ξ)+

∫
B(0,1)

| ϕ2(z + ξ) |2 dm6(ξ)),

(z, w) ∈ Cn × C.
Define
v1(z, w) = | w− < z/a1 > −b1 |2 + | ϕ1(z) |2 + | w− < z/a2 > −b2 |2+
| ϕ2(z) |2, v2(z, w) =

∫
B(0,1)

| w− < z/a1 > − < ξ/a1 > −b1 |2 dm6(ξ)+∫
B(0,1)

| ϕ1(z + ξ) |2 dm6(ξ) +

∫
B(0,1)

| w− < z/a2 > − < ξ/a2 >

−b2 |2 dm6(ξ) +

∫
B(0,1)

| ϕ2(z + ξ) |2 dm6(ξ), (z, w) ∈ C3 × C.

u, v, v1, v2 are functions of class C∞ on C3 × C.
Note that u is strictly psh on C3 × C if and only if v1 is strictly psh
on C3 × C.
v is strictly psh on C3 × C if and only if v2 is strictly psh on C3 × C.
Let T : C3 × C → C3 × C, T (z, w) = (z, w+ < z/a1 >), for
(z, w) ∈ C3 × C.
T is a C linear bijective transformation on C3 × C.
Define v3 = v1oT, v4 = v2oT. v3 and v4 are functions of class C∞ on
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C3 × C.
We have v1 is strictly psh on C3 × C if and only if v3 is strictly psh
on C3 × C.
v2 is strictly psh on C3 ×C if and only if v4 is strictly psh on C3 ×C.
v3(z, w) =| w − b1 |2 + | ϕ1(z) |2 + | w+ < z/a1 − a2 > −b2 |2 +
| ϕ2(z) |2, (z, w) ∈ C3 × C.
By an examination of the hermitian Levi form of v3, we observe that
v3 is strictly psh on C3 × C if and only if v5 is strictly psh on C3,
where v5(z) = | ϕ1(z) |2 + |< z/a1 − a2 > −b2 |2 + | ϕ2(z) |2, z ∈ C3,
(v5 is a C∞ function on C3).

Put v6(z) =

∫
B(0,1)

| ϕ1(z + ξ) |2 dm6(ξ) +

∫
B(0,1)

|< z/a1 − a2 > +

− < ξ/a2 > −b2 |2 dm6(ξ) +

∫
B(0,1)

| ϕ2(z + ξ) |2 dm6(ξ), z ∈ C3.

v6 is a function of class C∞ on C3.
Observe that v4 is strictly psh on C3 × C if and only if v6 is strictly
psh on C3.
The Levi hermitian form of v5 is

L(v5)(z)(α) =|< α/a1 − a2 >|2 + |
3∑
j=1

∂ϕ1

∂zj
(z)αj |2+ |

3∑
j=1

∂ϕ2

∂zj
(z)αj |2,

z = (z1, z2, z3), α = (α1, α2, α3) ∈ C3.
The Levi hermitian form of v6 is

L(v6)(z)(α) =|< α/a1 − a2 >|2
∫
B(0,1)

1dm6(ξ) +

∫
B(0,1)

|
3∑
j=1

∂ϕ1

∂zj
(z +

ξ)αj |2 dm6(ξ) +

∫
B(0,1)

|
3∑
j=1

∂ϕ2

∂zj
(z + ξ)αj |2 dm6(ξ),

z = (z1, z2, z3), α = (α1, α2, α3) ∈ C3.
Case 1. ϕ1(z) = (< z/λ1 > +µ1)

s1 , ϕ2(z) = (< z/λ2 > +µ2)
s2 , for all

z ∈ C3, where λ1, λ2 ∈ C3, µ1, µ2 ∈ C and s1, s2 ∈ N.
We have L(v6)(z)(α) =|< α/a1 − a2 >|2

∫
B(0,1)

1dm6(ξ) +

s21 |< α/λ1 >|2
∫
B(0,1)

|< z/λ1 > + < ξ/λ1 > +µ1 |2s1−2 dm6(ξ) +

s22 |< α/λ2 >|2
∫
B(0,1)

|< z/λ2 > + < ξ/λ2 > +µ2 |2s2−2 dm6(ξ),
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z, α ∈ C3.
Observe that if (s1 = 0 or λ1 = 0), then v6 is not strictly psh at any
point of C3.
Therefore s1 > 0 and λ1 6= 0. Also we have s2 > 0 and λ2 6= 0.
Fix z ∈ C3. Then∫
B(0,1)

|< z/λ1 > + < ξ/λ1 > +µ1 |2s1−2 dm6(ξ) > 0,∫
B(0,1)

|< z/λ2 > + < ξ/λ2 > +µ2 |2s2−2 dm6(ξ) > 0

and

∫
B(0,1)

1dm6(ξ) > 0.

Therefore v6 is strictly psh on C3 if and only if for all (z, α) ∈ C3×C3,
the condition |< α/a1 − a2 >|2 +s21 |< α/λ1 >|2 +s22 |< α/λ2 >|2= 0
implies that α = 0 ∈ C3.
Thus the system < α/a1 − a2 >= 0, < α/λ1 >= 0, < α/λ2 >= 0 and
α ∈ C3 implies that α = 0. It follows that (a1 − a2, λ1, λ2) is a basis
of the complex vector space C3.
We have L(v5)(z)(α) =|< α/a1 − a2 >|2 +
s21 |< α/λ1 >|2|< z/λ1 > +µ1 |2s1−2 +s22 |< α/λ2 >|2|< z/λ2 >
+µ2 |2s2−2 .
Since u is not strictly psh on C3, then v5 is not strictly psh on C3.
It follows that s1 ≥ 2 or s2 ≥ 2.
Case 2. ϕ1(z) = (< z/λ1 > +µ1)

s1 , ϕ2(z) = e(<z/γ2>+δ2), for all
z ∈ C3.

L(v6)(α) =|< α/a1 − a2 >|2
∫
B(0,1)

1dm6(ξ) +

s21 |< α/λ1 >|2
∫
B(0,1)

|< z/λ1 > + < ξ/λ1 > +µ1 |2s1−2 dm6(ξ) +

|< α/γ2 >|2
∫
B(0,1)

| e(<z/γ2>+<ξ/γ2>+δ2) |2 dm6(ξ).

If s1 = 0 or λ1 = 0, then v6 is not strictly psh at any point of C3.
If γ2 = 0, then v6 is not strictly psh at each point of C3.
Therefore s1 > 0, λ1 6= 0 and γ2 6= 0.
Fix z ∈ C3. Observe now that∫
B(0,1)

|< z/λ1 > + < ξ/λ1 > +µ1 |2s1−2 dm6(ξ) > 0,∫
B(0,1)

| e(<z/γ2>+<ξ/γ2>+δ2) |2 dm6(ξ) > 0 and

∫
B(0,1)

1dm6(ξ) > 0.

It follows that L(v6)(z)(α) = 0 if and only if |< α/a1 − a2 >|2 +
|< α/λ1 >|2 + |< α/γ2 >|2= 0.
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Thus for all fixed z ∈ C3, the system < α/a1−a2 >= 0, < α/λ1 >= 0,
< α/γ2 >= 0 and α ∈ C3, implies that α = 0.
It follows that (a1 − a2, λ1, γ2) is a basis of the complex vector space
C3 (C3 is a
complex vector space of dimension 3) and s1 > 0.
Since v5 is not strictly psh on C3, then there exists z ∈ C3 and α =
(α1, α2, α3) ∈ C3\{0} such that L(v5)(z)(α) =|< α/a1−a2 >|2 +s21 |<
α/λ1 >|2|< z/λ1 > +µ1 |2s1−2 + |< α/γ2 >|2| e(<z/γ2>+δ2) |2= 0.
Therefore s1 ≥ 2. In fact we take z ∈ C3 satisfying the con-
dition < z/λ1 > +µ1 = 0. In this situation we can prove by
an algebraic method that there exists α ∈ C3\{0} such that
< α/a1 − a2 >=< α/γ2 >= 0.
Consequently, in this case we have s1 ≥ 2 and (a1 − a2, λ1, γ2) is a
basis of the complex vector space C3.
Case 3. ϕ1(z) = e(<z/γ1>+δ1), ϕ2(z) = (< z/λ2 > +µ2)

s2 .

L(v6)(z)(α) =|< α/a1 − a2 >|2
∫
B(0,1)

1dm6(ξ) +

|< α/γ1 >|2
∫
B(0,1)

| e(<z/γ1>+<ξ/γ1>+δ1) |2 dm6(ξ) +

s22 |< α/λ2 >|2
∫
B(0,1)

|< z/λ2 > + < ξ/λ2 > +µ2 |2s2−2 dm6(ξ),

z, α ∈ C3.

Note that

∫
B(0,1)

| e(<z/γ1>+<ξ/γ1>+δ1) |2 dm6(ξ) > 0,∫
B(0,1)

|< z/λ2 > + < ξ/λ2 > +µ2 |2s2−2 dm6(ξ) > 0 and∫
B(0,1)

1dm6(ξ) > 0.

Therefore L(v6)(z)(α) = 0 if and only if |< α/a1 − a2 >|2 + |<
α/γ1 >|2 +s22 |< α/λ2 >|2= 0.
Thus v6 is strictly psh on C3 if and only if (a1 − a2, γ1, λ2) is a basis
of the complex vector space C3.
Now since v5 is not strictly psh on C3, then s2 ≥ 2. In fact there
exists z ∈ C3 such that (< z/λ2 > +µ2) = 0. It follows that
L(v5)(z)(α) =|< α/a1 − a2 >|2 + |< α/γ1 >|2| e(<z/γ1>+δ1) |2, α ∈ C3.
If we take in this situation (by an algebraic method)
< α/a1 − a2 >=< α/γ1 >= 0 and α ∈ C3\{0}, then we have
L(v5)(z)(α) = 0 and α 6= 0.
Therefore v5 is not strictly psh on C3.
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4. Concluding remarks

Remark 1. Let u : Cn → R be a function of class C∞ and psh.

Define u1(z) =

∫
B(0,1)

u(z + ξ)dm2n(ξ), for z ∈ Cn. Note that if u is

strictly psh on Cn, then u1 is strictly psh on Cn.
Now observe that if u1 is strictly psh on Cn, we can not conclude that
u is strictly psh on Cn. Example. Let v(z) =| z |4, for z ∈ C. v is a
function of class C∞ and sh on C. v is not strictly sh on C, but v1 is

strictly sh on C, where v1(z) =

∫
D(0,1)

| z + ξ |4 dm2(ξ), for z ∈ C. In

fact v1 is a function of class C∞ on C. ∂2

∂z∂z

∫
D(0,1)

| z + ξ |4 dm2(ξ) =

4

∫
D(0,1)

| z + ξ |2 dm2(ξ) = π | z |2 +

π

2
> 0, for all z ∈ C. But ∂2v

∂z∂z
(0) = 0.

Remark 2. Let (a, b) ∈ CN × CN\{(0, 0)}, n,N, k ∈ N\{0}.
Put u(z, w) =|< w/a > −f1(z) |2 + |< w/b > −f2(z) |2, for
f1, f2 : Cn → C be two analytic functions and (z, w) ∈ Cn × CN .
(A) Suppose that u is convex on Cn × CN . Then we have two cases.
(I) Assume that {a, b} is a free family on the complex vector space
CN . Then f1 and f2 are affine functions on Cn.
(II) Suppose that {a, b} is not a free family on CN . Now by using this
paper, we show that f1 and f2 have several holomorphic representa-
tions.
(B) Let v(z, w) =|< w/a >k −f1(z) |2 + |< w/b >k −f2(z) |2 and
v1(z, w) =| exp(< w/a >) − f1(z) |2 + | exp(< w/b >) − f2(z) |2,
for (z, w) ∈ Cn × CN . Assume that v and v1 are convex functions on
Cn ×CN . Analogously, from (A) and the above section 2, we can for-
mulate our main result as the holomorphic representations of f1 and
f2.
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