
 409

Stud.Cercet.Stiint., Ser.Mat., 16 (2006), Supplement
Proceedings of ICMI 45, Bacau, Sept.18-20, 2006, pp. 409-422

Synchronous and asynchronous parallelization of some classical

methods for systems resolution

Ioan Dzitac, Simona Dzitac and Emma M. Valeanu

Abstract

In this paper we present some synchronous and asynchronous

parallelization of the Jacobi and Gauss-Seidel methods for linear and
nonlinear systems resolution. Finally, we compare complexity of a parallel-
synchronous variant implementation of the classical Jacobi method, in linear
case, versus classical serial Gaussian elimination method.

Key words: parallelization, synchronous, asynchronous, linear system,
nonlinear system

1. INTRODUCTION
Let us consider the following system of algebraic equations:

(1) () nixxxf ni ..1,0,...,, 21 ==
We will write the system in an equivalent way that is convenient for
the application of iterative methods in order to obtain a numerical
solution:

(2) () nixxxfx nii ..1,,..,, 21 ==
The system described in (2) can be also written as a fixed point
equation:

(3))(xfx =
where

(4)),...,,(),,...,,(2121 nn xxxxffff ==
The classical iterative methods consist in finding the recurrent series
looking like:

 410

(5) ,....,2,1,0,),(01 =∈=+ kDxxgx kk
that could converge to the separate solution over D,
),...,,(**

2
*
1

*
nxxxx = .

For the classical iterative methods the components for the solution
vector x* are approximated sequentially by one serial computer.
In parallel computing the components can be approximated with
distinct processors which can exchange information between them in
different ways. We will describe some of these exchange methods in
this article.

2. SYNCHRONOUS PARALLELIZATION OF JACOBI
ALGORITHM
The simple successive approximations method (Jacobi) uses the
following series:

(6) ,....1,0,..1),()(1

1 ====+ knixfxgx k
i

k
i

k
We will use a virtual parallel computer. Also we will suppose that we
have exactly n processors P1,P2,...,Pn (see Figure 1) for the
approximation of the n components of the solution vector (if we have
less then n processors, the tasks will be divided between them in a
balanced way).
The Pi processor will iterate the i component after the formula:

(7) ,...,1,0,)(1 ==+ kxfx k

i
k
i

At every iteration step each of the n processors will deposit the result
in the common memory MC, which is managed and controlled by the
host processor P. The host processor will wait for the synchronization
(in order that each processor will deposit its result) and will test the
stop criteria. If the stop criteria is not fulfilled then the calculations
will be resumed after the same algorithm with k=k+1.
Observation: If the operator n

n RDDDffff ⊂→= ,:)...,,,(21 is a
contraction according to the canonical vector norm over D, then the
algorithm will converge according the 2.2.9 theorem and Robert-
Charnay-Musy theorem [1].

 411

 Figure 1: Synchronous parallelization of Jacobi algorithm

The pseudo-code procedure for the slave processor P[i] is presented in
Table 1.

Table 1: The Jacobi procedure for the slave P[i]

procedure Jacobi P[i]
begin

receive xold from P;
{computes the i component with the formula}
 x[i]=f[i](xold);
send x[i] to P;
wait message from P;

end.

Table 2: The synchronous parallel Jacobi procedure for the master P

procedure PAR_SINC_JACOBI
//vectors with n components: xinit, xold, xnew, error
select xinit {vector}; ε:= 0.00...01;
begin
xold:=xinit;
while (error > (ε,ε,…,ε))
 for i:=1 to n do in parallel
 send xold to P[i];
 endfor;
 for i:=1 to n do in parallel
 cobegin P[i];

 412

 coend;
 receive x[i] from P;
 endfor;
 xnew=(x[1],x[2],...,x[n]);

 error=xnew - xold→;
 xold: =xnew;
endwhile;
end.

3. ASYNCHRONOUS PARALLELIZATION OF JACOBI
ALGORITHM
We present the asynchronous variant of the same parallel model in
Figure 2. The Pi processor will iterate the i-th component using the
formula:

(8) ,)1()(ii tt

i
t

i
t
i

t
i xqxfqx −+=

where



 −

=
otherwise

xofdepositandcomputingforenoughisttperiodtheif
q

t
iit

i ,0
,1

;
t
ix is the i component of the current approximation of the solution

vector for the t moment of time;
it

ix is the i component of the current approximation of the solution
vector for the ti< t previous moment of time;
At every elementary iteration step each of the n processors will deposit
its result in the common memory MC, managed and controlled by the
host processor P which will not wait for the synchronization but will
test the stop criteria. If this criterion is not fulfilled, the computations
will be resumed after the same algorithm with the current
approximation vector as it is in that moment.
In this way a certain processor that finished iteration will not wait
anymore all the other processors to fulfil their computations and will
iterate its component after the formula:

 413

(9)),(t
i

t
i xfx ′=

where xt’ is the current approximation vector which was formed from
the modification of the components, from deposing its result and,
eventually, from the results of the processors that finish in the same
moment (casual synchronization).
Observation: If the operator n

n RDDDffff ⊂→= ,:)...,,,(21 is a
contraction according to the canonical vector norm over D, then the
algorithm converge according Baudet theorem [1].
Also, this algorithm is convergent every time the corresponding
synchronous algorithm converges.
The functionality of the asynchronous algorithm procedure can be
described in the following way.
For the asynchronous algorithm from Figure 2 the evaluation of the
components is made with the formulas:

(10))(1

1
1

Pp xfx =+ ,
where xp is the value of the approximation of the solution vector that
exists in the common memory from P in the moment when P1 waits to
execute again its instruction (without synchronization with the other
processors; the synchronization can be also made but in a casual way);

(11))(2

1
2

qq xfx =+ ,
where xq is the value of the approximation of the solution vector that
exists in the common memory from P in the moment when P2 waits to
execute again its instruction (without synchronization with the other
processors; the synchronization can be also made but in a casual way);
(12))(3

1
3

rr xfx =+ ,
where xr is the value of the approximation of the solution vector that
exists in the common memory from P in the moment when P3 waits to
execute again its instruction (without synchronization with the other
processors; the synchronization can be also made but in a casual way).
In this way the components of the solution vector will change all the
time until it is obtained the wished approximation. This is tested (as in
the first case) by the P processor. According to Baudet theorem, if f is

 414

a contraction in a vector norm, then the asynchronous algorithm is
convergent.
If Ts is the serial computation time for solving the system (in other
words, if we would use only one processor for the evaluation of all
components), then, accordingly to the algorithm from figure 1, the
parallel synchronous computation time Tps will be:

(13) ,s

sps TnTT +=
where Ts is the time wasted for the synchronization and transferring of
the information.
If we eliminate the synchronization, in other words each processor will
not wait anymore that is finished the computation of the other
components after it finish the computation of its own component but
will continue to iterate its component with the current value of the
approximation of the solution vector, then we will obtain the
asynchronous algorithm from figure 2 for which the parallel
asynchronous computation time Tpa will be reduced considerably.
Then we will have:

(14) ,a

spa TnTT +=
where Ta<Ts is the time wasted only with the transmission of the
information.
Using the procedure for the slaves processors described in Table 1, the
asynchronous parallel Jacobi procedure for the master is described in
Table 3.

Table 3: The asynchronous parallel Jacobi procedure for the master P
procedure PAR_ASYNC_JACOBI
//vectors with n components: xinit, xold, xnew, error
select xinit {vector}; ε:= 0.00...01;
begin
xold:=xinit;
while (error > (ε,ε,...,ε))
 for i:=1 to n do in parallel asynchronous
 send xold to P[i];
 parbegin P[i];
 parend; {asynchronous}

 415

 receive x[i] from P;
 change in xnew the received components;

 error=xnew-xold→;

 xold:=xnew;
 endfor;
endwhile;
end.

Figure 2: Asynchronous parallelization of Jacobi algorithm

 416

4. PIPELINE MODEL OF GAUSS-SEIDEL ALGORITHM

Figure 3: Pipeline variant (Gauss-Seidel algorithm)

Gauss-Seidel variant for the successive approximations method makes
the following modification:

(15) 11

11
1 ,...,,,...,()(−−

−
+ == k

n
k
i

k
i

k
i

k
i

k
i xxxxfxgx

In this case, the easiest method of parallelization is using a pipeline
computation structure (see Figure 3).
In this model the computations are organized in the following way:

 The P processor sends to P1 processor the initial value of the
vector from the successive approximations series x0, which will
compute its component after the formula)(0

1
*
1 xfx = .After the

 417

computation it will send to P2 processor the vector:
),...,,(00

2
*
1

1
nxxxx = ;

 The Pi+1 processor take the vector xi from the Pi processor and
it will evaluate its component after the formula)(*

1
i

ii xfx =+ ,
and will send to its successor the vector. In this vector it will
modify only the component that is computed by it
self:),...,,,,...,(1

*
11

1 i
n

i
ii

i
i

ii xxxxxx ++
+ = ;

 The P processor receives the vector xn from Pn, tests if the
approximation is correct. If it’s not then it will send the vector
x0=xn to P1 processor. The process will continue until the stop
criteria are reached.

Observation: If the operator n
n RDDDffff ⊂→= ,:)...,,,(21 , is a

contraction according to the scalar norm over D, and then the
algorithm will converge according to the Banach Theorem.

5. SYNCHRONOUS MODEL OF GAUSS-SEIDEL
ALGORITHM
If in the sequential algorithm of Gauss-Seidel, at the vector step k we
have the approximation of the system solution found with the
vector),...,,(21

k
n

kkk xxxx = , then at the grouped (vector) step k+1, the
xk+1 vector components will be found with the following system:
















=

=

=

=

+
−

++

+
−

++

++

+

),,...,(
...

),...,,,...,(
...

),...,,(

)(

1
1

1
1

1

1
1

1
1

1

2
1

12
1

2

1
1

1

k
n

k
n

k
n

k
n

k
n

k
i

k
i

k
i

k
i

k
n

kkk

kk

xxxfx

xxxxfx

xxxfx

xfx

We can write the above system:
(16) nixxxfx nii ..1),,...,,(21 == ,
as following:

 418

(17) nixxxg ni ..1,0),...,,(21 ==
using the transformation)()(xfxxg iii −= .

We reorganize the algorithm in the following way: we will solve the
equations in comparison with xi:

(18) ,0),...,,,,..,(111 =+−

k
n

k
ii

k
i

k
i xxxxxg

After solving the equation we will assign xi
k+1=xi.

For each i between 1 and n, the task used for finding xi can be given to
Pi processor, concordant with the model from Figure 1.
Work procedures of the processors can be similarly described with the
ones from the synchronous parallelization of Jacobi algorithm.
Observation: If the operator n

n RDDDffff ⊂→= ,:)...,,,(21 is a
contraction according to the canonical vector norm over D, then the
algorithm converge according Robert-Charnay-Musy theorem [1].

6. ASYNCHRONOUS PARALLELIZATION OF GAUSS-
SEIDEL ALGORITHM
Pi processor will determine the xi vector from the equation (18), in
which we replace k with t (excepting the i-th component, all the other
components are the last approximations that exist at the t moment).
After that we will assign xi

t =xi. After each elementary iteration step
each of the n processors will deposit its result in the shared memory
MC, managed and controlled by the host processor P. The host
processor will not wait for synchronization but it will do the stop
criteria test. If these criteria are not fulfilled then the computations will
be resumed after the same algorithm using the current approximation
vector as it is in that moment.
Remark: If the operator n

n RDDDffff ⊂→= ,:)...,,,(21 is a
contraction according to the canonical vector norm over D, then the
algorithm converge according to Baudet theorem [1].

7. DISCUSSION OF SOME PARTICULARIZATIONS FOR A
SYSTEM OF ALGEBRAIC LINEAR EQUATIONS
Let us consider a system of algebraic linear equations given by the
equations from the formula:

 419

(19) ∑
=

==
n

i
njjbjxjia

1
...1],[][*],[

Using the direct method, Gauss successive elimination, we will have
the serial procedure from Table 4. We suppose that a[k,k] ≠ 0.

Table 4: The serial procedure for Gaussian successive elimination [2]
procedure GAUSSIAN_ELIMINATION
begin
 for k:=1 to n do
 begin
 for j:=k to n do
 a[k,j]:=a[k,j]/a[k,k];
 c[k]:=b[k]/a[k,k];
 a[k,k]:=1;
 endfor;
 for i:=k to n do
 begin
 for j:=k to n do
 a[i,j]:=a[i,j]-a[i,k]*a[k,j];
 b[i]=b[i]-a[i,k]*c[k];
 a[i,k]:=o;
 endfor;
 endfor;
 endfor;
end.

In a large way, for the sequential execution of the procedure described
above, we will need approximate n2/2 divisions on rows and
approximate (n3/3-n2/2) subtractions and multiplications on columns.
Supposing that the time for executing one arithmetic operation is equal
with a unit of time then the serial response time will be about:

(20) 3/2 3nTs ∗=
So the approximate complexity in serial computation will be O(n3).
If we use a parallel implementation of the algorithm, with an
elementary partitioning of the system matrix over a hypercube

 420

structure with n processors, then a summary evaluation of the parallel
execution time will be about:

(21) 2/log)1(log2/)1(3 nnnTnTnnT cmp ∗−∗∗+∗+−∗∗= ,

where Tm is the consumed time for the initiation of sending the
messages between two processors directly connected, and Tc is the
transfer time per word.
So the complexity according the time of parallel implementation can
be of order O(n2).
The same is the nature of the complexity of the serial Jacobi algorithm
which demonstrates that the parallel implementation of Gaussian
elimination method is not favourable.
In the next part we will describe the synchronous parallel
implementation of Jacobi algorithm for SEAL resolution, with the a
posteriori estimation of the error of approximation. In a similar way it
can be implemented with an a priori evaluation of the error of
approximation, the while cycle being replaced by a for cycle.

Table 5: Jacobi procedure for slaves (system (19))

procedure Jacobi P[k]
begin
receive xold from P;
{computes the k component with the formula}

 ;][*],[][][][
1
∑
=

−+=
n

j
jxoldjkakxoldkbkxnew

send xnew[k] to P;
wait message from P;
end.

Table 6: The parallel synchronous Jacobi procedure for the master P (SEAL)

procedure PAR_SYNC_JACOBI
//vectors with n components: xinit, xold, xnew, error
select xinit {vector}; ε:= 0.00...01;
begin
xold:=xinit;
while (error > (ε,ε,.…ε))

 421

 for k:=1 to n do in parallel
 send xold to P[k];
 endfor;
 for k:=1 to n do in parallel
 receive xnew[i] from P;
 endfor;
 xnew=(x[1],x[2],...,x[n]);
 error=xnew - xold→;

xold: =xnew;

endwhile;
end.
In the serial parallel implementation described above, the complexity
according the time is:

(22) nnnnTppnpnT log],[log]/[],[222 +==+=
So the approximate complexity order of the parallel algorithm is O(n).
Obviously such an implementation is favourable, but more favourable
will be the parallel asynchronous implementation where the
synchronization time is eliminated.

8. CONCLUSIONS
We can observe that if a serial algorithm, for example the “Gaussian
elimination algorithm”, has a complexity O(n3), its parallel
implementation on a hypercube with n processors reduces this
complexity to O(n2), and the “parallel synchronous Jacobi algorithm”
reduces this complexity even more, at O(n).
The system solving time can be reduced more if we apply an
asynchronous implementation, in other word if we enforce that every
processor use for the iteration of the current vector the existent values
in the moment in which the processor is ready to do a new iteration,
without waiting the synchronization with the other processors.

REFERENCES
[1] Dzitac, Parallel and distributed procedures in resolution of some
operator equations, Univ. “Babes-Bolyai” Cluj-Napoca, 2002 (PhD
Thesis, in Romanian)

 422

[2] V. Kumar, V. Grama, A. Gupta, G. Karypis, Introduction to
Parallel Computing/ Design and Analysis of Algorithms, The
Benjamin / Cummings Publishing Company. Inc., 1994

Department of Business Informatics, AGORA University, Oradea,
Romania,
idzitac@univagora.ro

Department of Energy Research, Faculty of Energy, University of
Oradea

