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Abstract 

 
In this paper we present some synchronous and asynchronous 

parallelization of the Jacobi and Gauss-Seidel methods for linear and 
nonlinear systems resolution. Finally, we compare complexity of a parallel-
synchronous variant implementation of the classical Jacobi method, in linear 
case, versus classical serial Gaussian elimination method. 
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1. INTRODUCTION 
Let us consider the following system of algebraic equations:  
 
(1)            ( ) nixxxf ni ..1,0,...,, 21 ==     
We will write the system in an equivalent way that is convenient for 
the application of iterative methods in order to obtain a numerical 
solution:  
 
(2)           ( ) nixxxfx nii ..1,,..,, 21 ==     
The system described in (2) can be also written as a fixed point 
equation: 
 
(3)           )(xfx =        
where  
 
(4)           ),...,,(),,...,,( 2121 nn xxxxffff ==     
The classical iterative methods consist in finding the recurrent series 
looking like: 
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(5)           ,....,2,1,0,),( 01 =∈=+ kDxxgx kk     
that could converge to the separate solution over D,  
     ),...,,( **

2
*
1

*
nxxxx = . 

For the classical iterative methods the components for the solution 
vector x* are approximated sequentially by one serial computer.   
In parallel computing the components can be approximated with 
distinct processors which can exchange information between them in 
different ways. We will describe some of these exchange methods in 
this article. 

2. SYNCHRONOUS PARALLELIZATION OF JACOBI 
ALGORITHM  
The simple successive approximations method (Jacobi) uses the 
following series: 

 
(6)              ,....1,0,..1),()(1

1 ====+ knixfxgx k
i

k
i

k    
We will use a virtual parallel computer. Also we will suppose that we 
have exactly n processors P1,P2,...,Pn (see Figure 1) for the 
approximation of the n components of the solution vector (if we have 
less then n processors, the tasks will be divided between them in a 
balanced way). 
The Pi processor will iterate the i component after the formula: 

 
(7)              ,...,1,0,)(1 ==+ kxfx k

i
k
i      

At every iteration step each of the n processors will deposit the result 
in the common memory MC, which is managed and controlled by the 
host processor P. The host processor will wait for the synchronization 
(in order that each processor will deposit its result) and will test the 
stop criteria. If the stop criteria is not fulfilled then the calculations 
will be resumed after the same algorithm with k=k+1. 
Observation: If the operator n

n RDDDffff ⊂→= ,:)...,,,( 21  is a 
contraction according to the canonical vector norm over D, then the 
algorithm will converge according the 2.2.9 theorem and Robert-
Charnay-Musy theorem [1]. 
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   Figure 1:  Synchronous parallelization of Jacobi algorithm 
 
The pseudo-code procedure for the slave processor P[i] is presented in 
Table 1. 

Table 1: The Jacobi procedure for the slave P[i] 

procedure Jacobi P[i] 
begin 

receive xold from P; 
{computes the i component with the formula}   
   x[i]=f[i](xold); 
send x[i] to P;  
wait message from P; 

end. 

 
Table 2: The synchronous parallel Jacobi procedure for the master P 

procedure PAR_SINC_JACOBI 
//vectors with n components: xinit, xold, xnew, error 
select xinit {vector}; ε:= 0.00...01; 
begin  
xold:=xinit; 
while (error > (ε,ε,…,ε)) 
 for i:=1 to n do in parallel 
  send  xold to P[i]; 
 endfor; 
 for i:=1 to n do in parallel 
  cobegin P[i]; 
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  coend; 
  receive x[i] from P; 
 endfor; 
 xnew=(x[1],x[2],...,x[n]);

  error=xnew - xold→; 
 xold: =xnew; 
endwhile;  
end. 
 

 

3. ASYNCHRONOUS PARALLELIZATION OF JACOBI 
ALGORITHM 
We present the asynchronous variant of the same parallel model in 
Figure 2. The Pi processor will iterate the i-th component using the 
formula: 
 
(8)  ,)1()( ii tt

i
t

i
t
i

t
i xqxfqx −+=      

where 



 −

=
otherwise

xofdepositandcomputingforenoughisttperiodtheif
q

t
iit

i ,0
,1

; 
t
ix is the i component of the current approximation of the solution 

vector for the t moment of time; 
it

ix  is the i component of the current approximation of the solution 
vector for the ti< t previous moment of time; 
At every elementary iteration step each of the n processors will deposit 
its result in the common memory MC, managed and controlled by the 
host processor P which will not wait for the synchronization but will 
test the stop criteria. If this criterion is not fulfilled, the computations 
will be resumed after the same algorithm with the current 
approximation vector as it is in that moment.   
In this way a certain processor that finished iteration will not wait 
anymore all the other processors to fulfil their computations and will 
iterate its component after the formula: 
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(9)                ),( t
i

t
i xfx ′=       

where xt’ is the current approximation vector which was formed from 
the modification of the components, from deposing its result and, 
eventually, from the results of the processors that finish in the same 
moment (casual synchronization).  
Observation: If the operator n

n RDDDffff ⊂→= ,:)...,,,( 21 is a 
contraction according to the canonical vector norm over D, then the 
algorithm converge according Baudet theorem [1].   
Also, this algorithm is convergent every time the corresponding 
synchronous algorithm converges. 
The functionality of the asynchronous algorithm procedure can be 
described in the following way. 
For the asynchronous algorithm from Figure 2 the evaluation of the 
components is made with the formulas: 
 
(10)             )(1

1
1

Pp xfx =+ ,      
where xp is the value of the approximation of the solution vector that 
exists in the common memory from P in the moment when P1 waits to 
execute again its instruction (without synchronization with the other 
processors; the synchronization can be also made but in a casual way); 
 
(11)             )(2

1
2

qq xfx =+ ,      
where  xq  is the value of the approximation of the solution vector that 
exists in the common memory from P in the moment when P2 waits to 
execute again its instruction (without synchronization with the other 
processors; the synchronization can be also made but in a casual way); 
(12)             )(3

1
3

rr xfx =+ ,     
where xr  is the value of the approximation of the solution vector that 
exists in the common memory from P in the moment when P3 waits to 
execute again its instruction (without synchronization with the other 
processors; the synchronization can be also made but in a casual way). 
In this way the components of the solution vector will change all the 
time until it is obtained the wished approximation. This is tested (as in 
the first case) by the P processor. According to Baudet theorem, if f  is 
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a contraction in a vector norm, then the asynchronous algorithm is 
convergent.  
If Ts is the serial computation time for solving the system (in other 
words, if we would use only one processor for the evaluation of all 
components), then, accordingly to the algorithm from figure 1, the 
parallel synchronous computation time Tps will be: 
 
(13)             ,s

sps TnTT +=      
where Ts is the time wasted for the synchronization and transferring of 
the information. 
If we eliminate the synchronization, in other words each processor will 
not wait anymore that is finished the computation of the other 
components after it finish the computation of its own component but 
will continue to iterate its component with the current value of the 
approximation of the solution vector, then we will obtain the 
asynchronous algorithm from figure 2 for which the parallel 
asynchronous computation time Tpa will be reduced considerably.  
Then we will have: 
 
(14)            ,a

spa TnTT +=      
where Ta<Ts is the time wasted only with the transmission of the 
information. 
Using the procedure for the slaves processors described in Table 1, the 
asynchronous parallel Jacobi procedure for the master is described in 
Table 3. 
 

Table 3: The asynchronous parallel Jacobi procedure for the master P 
procedure PAR_ASYNC_JACOBI 
//vectors with n components: xinit, xold, xnew, error 
select xinit {vector}; ε:= 0.00...01; 
begin  
xold:=xinit; 
while (error > (ε,ε,...,ε)) 
  for i:=1 to n do in parallel asynchronous 
     send  xold to P[i];  
     parbegin P[i]; 
     parend; {asynchronous} 
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     receive x[i] from P; 
     change in xnew the received components;

               error=xnew-xold→;
  

     xold:=xnew;  
  endfor; 
endwhile;  
end. 
 
 
 
 

 
Figure 2:  Asynchronous parallelization of Jacobi algorithm 
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4. PIPELINE MODEL OF GAUSS-SEIDEL ALGORITHM 

 
 

Figure 3:  Pipeline variant (Gauss-Seidel algorithm) 

 
 
 
Gauss-Seidel variant for the successive approximations method makes 
the following modification: 
 
(15)           11

11
1 ,...,,,...,()( −−

−
+ == k
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i

k
i

k
i

k
i xxxxfxgx    

In this case, the easiest method of parallelization is using a pipeline 
computation structure (see Figure 3). 
In this model the computations are organized in the following way:  

 The P processor sends to P1 processor the initial value of the 
vector from the successive approximations series x0, which will 
compute its component after the formula )( 0

1
*
1 xfx = .After the 
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computation it will send to P2 processor the vector:  
),...,,( 00

2
*
1

1
nxxxx = ; 

 The Pi+1 processor take the vector xi from the Pi processor and 
it will evaluate its component after the formula )(*

1
i

ii xfx =+ , 
and will send to its successor the vector. In this vector it will 
modify only the component that is computed by it 
self: ),...,,,,...,( 1

*
11

1 i
n

i
ii

i
i

ii xxxxxx ++
+ = ; 

 The P processor receives the vector xn from Pn, tests if the 
approximation is correct. If it’s not then it will send the vector 
x0=xn to P1 processor. The process will continue until the stop 
criteria are reached. 

Observation: If the operator n
n RDDDffff ⊂→= ,:)...,,,( 21 , is a 

contraction according to the scalar norm over D, and then the 
algorithm will converge according to the Banach Theorem.  
 

5. SYNCHRONOUS MODEL OF GAUSS-SEIDEL 
ALGORITHM  
If in the sequential algorithm of Gauss-Seidel, at the vector step k we 
have the approximation of the system solution found with the 
vector ),...,,( 21

k
n

kkk xxxx = , then at the grouped (vector) step k+1, the 
xk+1 vector components will be found with the following system: 
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We can write the above system: 
(16)      nixxxfx nii ..1),,...,,( 21 == ,    
as following: 
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(17)      nixxxg ni ..1,0),...,,( 21 ==     
using the transformation )()( xfxxg iii −= . 

We reorganize the algorithm in the following way: we will solve the 
equations in comparison with xi: 
  
(18)      ,0),...,,,,..,( 111 =+−

k
n

k
ii

k
i

k
i xxxxxg    

After solving the equation we will assign xi
k+1=xi. 

For each i between 1 and n, the task used for finding xi can be given to 
Pi processor, concordant with the model from Figure 1. 
Work procedures of the processors can be similarly described with the 
ones from the synchronous parallelization of Jacobi algorithm. 
Observation: If the operator n

n RDDDffff ⊂→= ,:)...,,,( 21 is a 
contraction according to the canonical vector norm over D, then the 
algorithm converge according Robert-Charnay-Musy theorem [1]. 
 

6. ASYNCHRONOUS PARALLELIZATION OF GAUSS-
SEIDEL ALGORITHM 
Pi processor will determine the xi vector from the equation (18), in 
which we replace k with t (excepting the i-th component, all the other 
components are the last approximations that exist at the t moment). 
After that we will assign xi

t =xi. After each elementary iteration step 
each of the n processors will deposit its result in the shared memory 
MC, managed and controlled by the host processor P. The host 
processor will not wait for synchronization but it will do the stop 
criteria test. If these criteria are not fulfilled then the computations will 
be resumed after the same algorithm using the current approximation 
vector as it is in that moment.  
Remark: If the operator n

n RDDDffff ⊂→= ,:)...,,,( 21 is a 
contraction according to the canonical vector norm over D, then the 
algorithm converge according to Baudet theorem [1]. 
 

7. DISCUSSION OF SOME PARTICULARIZATIONS FOR A 
SYSTEM OF ALGEBRAIC LINEAR EQUATIONS  
Let us consider a system of algebraic linear equations given by the 
equations from the formula: 
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(19)             ∑
=

==
n

i
njjbjxjia

1
...1],[][*],[    

Using the direct method, Gauss successive elimination, we will have 
the serial procedure from Table 4. We suppose that a[k,k] ≠ 0.  
 

Table 4: The serial procedure for Gaussian successive elimination [2] 
procedure GAUSSIAN_ELIMINATION 
begin  
  for k:=1 to n do  
  begin 
   for j:=k to n do  
      a[k,j]:=a[k,j]/a[k,k]; 
      c[k]:=b[k]/a[k,k]; 
      a[k,k]:=1; 
   endfor; 
      for i:=k to n do  
       begin 
     for j:=k to n do  
           a[i,j]:=a[i,j]-a[i,k]*a[k,j]; 
           b[i]=b[i]-a[i,k]*c[k]; 
           a[i,k]:=o; 
      endfor; 
      endfor; 
  endfor; 
end. 
 
In a large way, for the sequential execution of the procedure described 
above, we will need approximate n2/2 divisions on rows and 
approximate (n3/3-n2/2) subtractions and multiplications on columns. 
Supposing that the time for executing one arithmetic operation is equal 
with a unit of time then the serial response time will be about: 
 
(20)            3/2 3nTs ∗=      
So the approximate complexity in serial computation will be O(n3). 
If we use a parallel implementation of the algorithm, with an 
elementary partitioning of the system matrix over a hypercube 
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structure with n processors, then a summary evaluation of the parallel 
execution time will be about: 
 
(21)         2/log)1(log2/)1(3 nnnTnTnnT cmp ∗−∗∗+∗+−∗∗= ,
  
where Tm is the consumed time for the initiation of sending the 
messages between two processors directly connected, and Tc is the 
transfer time per word.  
So the complexity according the time of parallel implementation can 
be of order O(n2). 
The same is the nature of the complexity of the serial Jacobi algorithm 
which demonstrates that the parallel implementation of Gaussian 
elimination method is not favourable.  
In the next part we will describe the synchronous parallel 
implementation of Jacobi algorithm for SEAL resolution, with the a 
posteriori estimation of the error of approximation.  In a similar way it 
can be implemented with an a priori evaluation of the error of 
approximation, the while cycle being replaced by a for cycle.  
 

Table 5: Jacobi procedure for slaves (system (19)) 

procedure Jacobi P[k] 
begin 
receive xold from P; 
{computes the k component with the formula}  

 ;][*],[][][][
1
∑
=

−+=
n

j
jxoldjkakxoldkbkxnew  

send xnew[k] to P;  
wait message from P; 
end. 

 
Table 6: The parallel synchronous Jacobi procedure for the master P (SEAL) 

procedure PAR_SYNC_JACOBI 
//vectors with n components: xinit, xold, xnew, error 
select xinit {vector}; ε:= 0.00...01; 
begin  
xold:=xinit; 
while (error > (ε,ε,.…ε)) 
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     for k:=1 to n do in parallel 
       send  xold to P[k]; 
     endfor; 
  for k:=1 to n do in parallel 
       receive xnew[i] from P; 
     endfor; 
            xnew=(x[1],x[2],...,x[n]); 
            error=xnew - xold→; 

            
xold: =xnew; 

endwhile; 
end. 
In the serial parallel implementation described above, the complexity 
according the time is: 
 
(22)           nnnnTppnpnT log],[log]/[],[ 222 +==+=   
So the approximate complexity order of the parallel algorithm is O(n). 
Obviously such an implementation is favourable, but more favourable 
will be the parallel asynchronous implementation where the 
synchronization time is eliminated.  
 

8. CONCLUSIONS 
We can observe that if a serial algorithm, for example the “Gaussian 
elimination algorithm”, has a complexity O(n3), its parallel 
implementation on a hypercube with n processors reduces this 
complexity to O(n2), and the “parallel synchronous Jacobi algorithm” 
reduces this complexity even more, at O(n). 
The system solving time can be reduced more if we apply an 
asynchronous implementation, in other word if we enforce that every 
processor use for the iteration of the current vector the existent values 
in the moment in which the processor is ready to do a new iteration, 
without waiting the synchronization with the other processors.  
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