UNIVERSITATEA DIN BACĂU

STUDII ŞI CERCETĂRI ŞTIINŢIFICE
Seria: MATEMATICĂ
Nr. 15(2005), pag. 1-9

A RELATED FIXED POINT THEOREM FOR TWO PAIRS OF MAPPINGS ON TWO COMPLETE METRIC SPACES WITHOUT CONTINUITY

by

ABDELKRIM ALIOUCHE AND BRIAN FISHER

Abstract

A related fixed point theorem for two pairs of mappings on two complete metric spaces without continuity is obtained.

1. Introduction

In the following, we give a new related fixed point theorem. The first related fixed point theorem was the following, see [1].
Theorem 1. Let $\left(X, d_{1}\right)$ and $\left(Y, d_{2}\right)$ be complete metrics spaces. If T is a mapping of X into Y and S is a mapping of Y into X satisfying the inequalities

$$
\begin{aligned}
& \mathrm{d}_{2}(\mathrm{Tx}, \mathrm{TSy}) \leq \mathrm{c} \max \left\{\mathrm{~d}_{1}(\mathrm{x}, \mathrm{Sy}), \mathrm{d}_{2}(\mathrm{y}, \mathrm{Tx}), \mathrm{d}_{2}(\mathrm{y}, \mathrm{TSy})\right\}, \\
& \mathrm{d}_{1}(\mathrm{Sy}, \mathrm{STx}) \leq \mathrm{c} \max \left\{\mathrm{~d}_{2}(\mathrm{y}, \mathrm{Tx}), \mathrm{d}_{1}(\mathrm{x}, \mathrm{Sy}), \mathrm{d}_{1}(\mathrm{x}, \mathrm{STx})\right\}
\end{aligned}
$$

for all x in X and y in Y , where $0 \leq \mathrm{c}<1$, then ST has a unique fixed point z in X and TS has a unique fixed point w in Y. Further, $\mathrm{Tz}=\mathrm{w}$ and $\mathrm{Sw}=\mathrm{z}$.

Related fixed point theorems were later extended to two pairs of mappings on metric spaces, see for example [2], where the following related fixed point theorem was proved.

Key words and phrases: complete metric space, common fixed point. (2000) Mathematics Subject Classification: 54H25

Theorem 2. Let (X, d) and (Y, ρ) be complete metric spaces, let A, B be mappings of X into Y and let S, T be mappings of Y into X satisfying the inequalities
$\mathrm{d}\left(\mathrm{SAx}, \mathrm{TBx} \mathrm{I}^{\prime}\right) \leq \mathrm{c} \max \left\{\mathrm{d}\left(\mathrm{x}, \mathrm{x}^{\prime}\right), \mathrm{d}(\mathrm{x}, \mathrm{Sax}), \mathrm{d}^{\prime}\left(\mathrm{x}^{\prime}, \mathrm{TBx}{ }^{\prime}\right), \rho\left(\mathrm{Ax}, \mathrm{Bx}^{\prime}\right)\right\}$, $\rho\left(\mathrm{BSy}, \mathrm{ATy}{ }^{\prime}\right) \leq \mathrm{c} \max \left\{\rho\left(\mathrm{y}, \mathrm{y}^{\prime}\right), \rho(\mathrm{y}, \mathrm{BSy}), \rho\left(\mathrm{y}^{\prime}, \mathrm{ATy}^{\prime}\right), \mathrm{d}\left(\right.\right.$ SyTy $\left.\left.^{\prime}\right)\right\}$
for all $\mathrm{x}, \mathrm{x}^{\prime}$ in X and $\mathrm{y}, \mathrm{y}^{\prime}$ in Y , where $0 \leq \mathrm{c}<1$. If one of the mappings A , B, S and T is continuous, then SA and TB have a unique common fixed point u in X and BS and AT have a unique common fixed point v in Y. Further, Au $=B u=v$ and $S v=T v=u$.

For further related fixed point theorems, see [3] to [7].

2. Main result

We prove now the following related fixed point theorem without continuity.
Theorema 3. Let (X, d) and (Y, ρ) be complete metric spaces, let A, B be mappings of X into Y and let S, T be mappings of Y into X satisfying the inequalities

$$
\begin{align*}
d\left(S A x, T B x^{\prime}\right) & \leq c \frac{f\left(x, x^{\prime}, y, y^{\prime}\right)}{h\left(x, x^{\prime}, y, y^{\prime}\right)} \tag{2.1}\\
\rho\left(B S y, A T y^{\prime}\right) & \leq c \frac{g\left(x, x^{\prime}, y, y^{\prime}\right)}{h\left(x, x^{\prime}, y, y^{\prime}\right)} \tag{2.2}
\end{align*}
$$

for all x, x^{\prime} in X and y, y^{\prime} in Y for which $h\left(x, x^{\prime}, y, y^{\prime}\right) \neq 0$, where

$$
\begin{aligned}
& f\left(x, x^{\prime}, y, y^{\prime}\right)= \max \left\{d\left(x, x^{\prime}\right) \rho\left(y^{\prime}, A T y^{\prime}\right), d\left(S y, T B x^{\prime}\right) d(x, S y)\right. \\
&\left.d\left(S y, T y^{\prime}\right) d\left(S A x, T y^{\prime}\right), d\left(x, T y^{\prime}\right) \rho(y, A x)\right\}, \\
& g\left(x, x^{\prime}, y, y^{\prime}\right)=\max \left\{d(x . S y) \rho\left(y, y^{\prime}\right), d\left(x^{\prime}, T B x^{\prime}\right) \rho\left(y^{\prime}, A x\right),\right. \\
&\left.d\left(S A x, T y^{\prime}\right) \rho\left(A x, b x^{\prime}\right), \rho\left(A x, A T y^{\prime}\right) d(S A x, S y)\right\}, \\
& h\left(x, x^{\prime}, y, y^{\prime}\right)=\max \left\{\rho\left(B S y, A T y^{\prime}\right), d(x, S A x), d\left(S y, T B x^{\prime}\right), \rho\left(B x^{\prime}, A T y^{\prime}\right)\right\}
\end{aligned}
$$

and $0 \leq \mathrm{c}<1$. Then $S A$ and $T B$ have a unique common fixed point u in X and $B S$ and $A T$ have a unique common fixed point v in Y. Further, $\mathrm{Au}=\mathrm{Bu}=\mathrm{v}$ and $\mathrm{Sv}=\mathrm{Tv}=\mathrm{u}$.

A related fixed point theorem for two pairs on mappings on two complete metric spaces without continuity
Proof. Let x_{0} be an arbitrary point in X, let

$$
A x_{0}=y_{1}, \quad S y_{1}=x_{1}, \quad B x_{1}=y_{2}, \quad T y_{2}=x_{2}, \quad A x_{2}=y_{3}
$$

and in general let

$$
S y_{2 n-1}=x_{2 n-1}, \quad B x_{2 n-1}=y_{2 n}, \quad T y_{2 n}=x_{2 n}, \quad A x_{2 n}=y_{2 n+1}
$$

for $\mathrm{n}=1,2, \ldots$
We will first of all suppose that for some n

$$
\begin{aligned}
h\left(x_{2 n}, x_{2 n-1}, y_{2 n-1}, y_{2 n}\right)= & \max \left\{\rho\left(B S y_{2 n-1}, A T y_{2 n}\right), d\left(x_{2 n}, S A x_{2 n}\right),\right. \\
& \left.d\left(S y_{2 n-1}, T B x_{2 n-1}\right), \rho\left(B x_{2 n-1}, A T y_{2 n}\right)\right\} \\
= & \max \left\{\rho\left(y_{2 n+1}, y_{2 n}\right), d\left(x_{2 n}, x_{2 n+1}\right),\right. \\
& \left.\quad d\left(x_{2 n-1}, x_{2 n}\right), \rho\left(y_{2 n}, y_{2 n+1}\right)\right\} \\
= & 0 .
\end{aligned}
$$

Then putting $x_{2 n-1}=x_{2 n}=x_{2 n+1}=u$ and $y_{2 n}=y_{2 n+1}=v$, we see that

$$
\mathrm{BSv}=\mathrm{ATv}=\mathrm{v}, \mathrm{SAu}=\mathrm{u}, \mathrm{~Sv}=\mathrm{TBu}=\mathrm{u}, \mathrm{Bu}=\mathrm{Atv}=\mathrm{v}
$$

from which it follows that

$$
\mathrm{Au}=\mathrm{v}, \mathrm{Tv}=\mathrm{u}
$$

Similarly, $\quad h\left(x_{2 n}, x_{2 n+1}, y_{2 n+1}, y_{2 n}\right)=0$ for some n implies that there exists u in X and v in Y such that
(2.3) $\mathrm{SAu}=\mathrm{TBu}=\mathrm{u}, \mathrm{Bsv}=\mathrm{ATv}=\mathrm{v}, \mathrm{Au}=\mathrm{Bu}=\mathrm{v}, \mathrm{Sv}=\mathrm{Tv}=\mathrm{u}$.

We will now suppose that

$$
h\left(x_{2 n}, x_{2 n-1}, y_{2 n-1}, y_{2 n}\right) \neq 0 \neq h\left(x_{2 n}, x_{2 n+1}, y_{2 n+1}, y_{2 n}\right)
$$

for all n .
Applying inequality (2.1), we get

$$
\begin{aligned}
d\left(x_{2 n+1}, x_{2 n}\right) & =d\left(S A x_{2 n}, T B x_{2 n-1}\right) \\
& \leq c \frac{f\left(x_{2 n}, x_{2 n-1}, y_{2 n-1}, y_{2 n}\right)}{h\left(x_{2 n}, x_{2 n-1}, y_{2 n-1}, y_{2 n}\right)} \\
& =c d\left(x_{2 n-1}, x_{2 n}\right) \frac{\max \left\{\rho\left(y_{2 n+1}, y_{2 n}\right), d\left(x_{2 n-1}, x_{2 n}\right), d\left(x_{2 n+1}, x_{2 n}\right)\right\}}{\max \left\{\rho\left(y_{2 n+1}, y_{2 n}\right), d\left(x_{2 n+1}, x_{2 n}\right), d\left(x_{2 n-1}, x_{2 n}\right)\right\}},
\end{aligned}
$$

from which it follows that

A. Aliouche and B.Fisher

(2.4)

$$
d\left(x_{2 n+1}, x_{2 n}\right) \leq c \max \left\{d\left(x_{2 n-1}, x_{2 n}\right), \rho\left(y_{2 n+1}, y_{2 n}\right)\right\}
$$

Using inequality (2.1) again, we get

$$
\begin{aligned}
d\left(x_{2 n-1}, x_{2 n}\right) & =d\left(S A x_{2 n-2}, T B x_{2 n-1}\right) \\
& \leq c \frac{f\left(x_{2 n-2}, x_{2 n-1}, y_{2 n-1}, y_{2 n-2}\right)}{h\left(x_{2 n-2}, x_{2 n-1}, y_{2 n-1}, y_{2 n-2}\right)} \\
& =c d\left(x_{2 n-1}, x_{2 n-2}\right) \frac{\max \left\{\rho\left(y_{2 n-2}, y_{2 n-1}\right), d\left(x_{2 n-1}, x_{2 n}\right), d\left(x_{2 n-1}, x_{2 n-1}\right)\right\}}{\max \left\{\rho\left(y_{2 n}, y_{2 n-1}\right), d\left(x_{2 n-2}, x_{2 n-1}\right), d\left(x_{2 n-1}, x_{2 n}\right)\right\}}
\end{aligned}
$$

from which it follows that
(2.5

$$
d\left(x_{2 n-1}, x_{2 n}\right) \leq c \max \left\{d\left(x_{2 n-2}, x_{2 n-1}\right), \rho\left(y_{2 n-1}, y_{2 n}\right)\right\}
$$

Similarly, on using inequality (2.2) we have

$$
\begin{gathered}
\rho\left(y_{2 n}, y_{2 n+1}\right)=\mathrm{d}\left(\operatorname{BSy}_{2 \mathrm{n}-1}, \operatorname{ATy}_{2 \mathrm{n}}\right) \\
\leq c \frac{g\left(x_{2 n}, x_{2 n-1}, y_{2 n-1}, y_{2 n}\right)}{h\left(x_{2 n}, x_{2 n-1}, y_{2 n-1}, y_{2 n}\right)}
\end{gathered}
$$

where

$$
\begin{aligned}
& g\left(x_{2 n}, x_{2 n-1}, y_{2 n-1}, y_{2 n}\right)=\max \left\{d\left(x_{2 n}, x_{2 n-1}\right) \rho\left(y_{2 n-1}, y_{2 n}\right)\right. \\
& d\left(x_{2 n-1}, x_{2 n}\right) \rho\left(y_{2 n}, y_{2 n+1}\right) \\
& \left.d\left(x_{2 n+1}, x_{2 n}\right) \rho\left(y_{2 n+1}, y_{2 n}\right)\right\}
\end{aligned}
$$

We then have either

$$
g\left(x_{2 n}, x_{2 n-1}, y_{2 n-1}, y_{2 n}\right)=d\left(x_{2 n-1}, x_{2 n}\right) \max \left\{\rho\left(y_{2 n-1}, y_{2 n}\right), \rho\left(y_{2 n+1}, y_{2 n}\right)\right\}
$$

or
$g\left(x_{2 n}, x_{2 n-1}, y_{2 n-1}, y_{2 n}\right)=\rho\left(y_{2 n+1}, y_{2 n}\right) \max \left\{d\left(x_{2 n-1}, x_{2 n}\right), d\left(x_{2 n+1}, x_{2 n}\right)\right\}$
Further,

$$
\begin{aligned}
& h\left(x_{2 n}, x_{2 n-1}, y_{2 n-1}, y_{2 n}\right)=\max \left\{\rho\left(y_{2 n+1}, y_{2 n}\right), d\left(x_{2 n+1}, x_{2 n}\right), d\left(x_{2 n-1}, x_{2 n}\right)\right\} \\
& =\max \left\{\rho\left(y_{2 n+1}, y_{2 n}\right), d\left(x_{2 n-1}, x_{2 n}\right)\right\}
\end{aligned}
$$

on using inequality (2.4). It follows that either

A related fixed point theorem for two pairs on mappings on two complete metric spaces without continuity
$\overline{\rho\left(y_{2 n}, y_{2 n+1}\right) \leq c \max \left\{\rho\left(y_{2 n-1}, y_{2 n}\right), \rho\left(y_{2 n}, y_{2 n+1}\right)\right\}=c \rho\left(y_{2 n-1}, y_{2 n}\right), ~}$
or

$$
\rho\left(y_{2 n}, y_{2 n+1}\right) \leq c \max \left\{d\left(x_{2 n-1}, x_{2 n}\right), d\left(x_{2 n+1}, x_{2 n}\right)\right\}=c d\left(x_{2 n-1}, x_{2 n}\right)
$$

and so

$$
\begin{equation*}
\rho\left(y_{2 n}, y_{2 n+1}\right) \leq c \max \left\{d\left(x_{2 n-1}, x_{2 n}\right), \rho\left(y_{2 n-1}, y_{2 n}\right)\right\} \tag{2.6}
\end{equation*}
$$

Using inequality (2.2) again, we get

$$
\begin{aligned}
d\left(y_{2 n}, y_{2 n-1}\right) & =d\left(B S y_{2 n-1}, A T y_{2 n-2}\right) \\
& \leq c \frac{g\left(x_{2 n-2}, x_{2 n-1}, y_{2 n-1}, y_{2 n-2}\right)}{h\left(x_{2 n-2}, x_{2 n-1}, y_{2 n-1}, y_{2 n-2}\right)},
\end{aligned}
$$

where

$$
\begin{array}{r}
g\left(x_{2 n-2}, x_{2 n-1}, y_{2 n-1}, y_{2 n-2}\right)= \\
\max \left\{d\left(x_{2 n-2}, x_{2 n-1}\right) \rho\left(y_{2 n-1}, y_{2 n-2}\right),\right. \\
\\
d\left(x_{2 n-1}, x_{2 n}\right) \rho\left(y_{2 n-2}, y_{2 n-1}\right), \\
\left.\leq \quad d\left(x_{2 n-1}, x_{2 n-2}\right) \rho\left(y_{2 n-1}, y_{2 n}\right)\right\} \\
\leq \max \left\{d\left(x_{2 n-2}, x_{2 n-1}\right) \rho\left(y_{2 n-1}, y_{2 n-2}\right),\right. \\
\rho\left(y_{2 n-1}, y_{2 n}\right) \rho\left(y_{2 n-2}, y_{2 n-1}\right), \\
\\
\left.d\left(x_{2 n-1}, x_{2 n-2}\right) \rho\left(y_{2 n-1}, y_{2 n}\right)\right\}
\end{array}
$$

on using inequality (2.5). We then have either

$$
\begin{aligned}
& \quad g\left(x_{2 n-2}, x_{2 n-1}, y_{2 n-1}, y_{2 n-2}\right)= \\
& d\left(x_{2 n-2}, x_{2 n-1}\right) \max \left\{\rho\left(y_{2 n-1}, y_{2 n-2}\right), \rho\left(y_{2 n-1}, y_{2 n}\right)\right\} \\
& \text { or } \\
& g\left(x_{2 n-2}, x_{2 n-1}, y_{2 n-1}, y_{2 n-2}\right)=\rho\left(y_{2 n-1}, y_{2 n-2}\right) \max \left\{d\left(x_{2 n-2}, x_{2 n-1}\right), d\left(x_{2 n-1}, x_{2 n}\right)\right\} .
\end{aligned}
$$

Further

$$
\begin{gathered}
h\left(x_{2 n-2}, x_{2 n-1}, y_{2 n-1}, y_{2 n-2}\right)=\max \left\{\rho\left(y_{2 n}, y_{2 n-1}\right), d\left(x_{2 n-2}, x_{2 n-1}\right), d\left(x_{2 n-1}, x_{2 n}\right)\right\} \\
=\max \left\{\rho\left(y_{2 n+1}, y_{2 n}\right), d\left(x_{2 n-1}, x_{2 n}\right)\right\}
\end{gathered}
$$

or using inequality (2.5). It follows that either

$$
\rho\left(y_{2 n}, y_{2 n-1}\right) \leq c \max \left\{\rho\left(y_{2 n-1}, y_{2 n}\right), \rho\left(y_{2 n}, y_{2 n+1}\right)\right\}=c \rho\left(y_{2 n-1}, y_{2 n}\right)
$$

or

$$
\rho\left(y_{2 n}, y_{2 n+1}\right) \leq c \max \left\{d\left(x_{2 n-1}, x_{2 n}\right), d\left(x_{2 n+1}, x_{2 n}\right)\right\}=c d\left(x_{2 n-1}, x_{2 n}\right)
$$

and so

$$
\begin{equation*}
\rho\left(y_{2 n}, y_{2 n+1}\right) \leq c \max \left\{d\left(x_{2 n-1}, x_{2 n}\right), \rho\left(y_{2 n-1}, y_{2 n}\right)\right\} . \tag{2.7}
\end{equation*}
$$

From inequalities (2.4) to (2.7), we obtain

$$
\begin{align*}
& d\left(x_{n} x_{n+1}\right) \leq c^{n} \max \left\{d\left(x_{0}, x_{1}\right), \rho\left(y_{0}, y_{1}\right)\right\} \tag{2.8}\\
& \rho\left(y_{n}, y_{n+1}\right) \leq c^{n} \max \left\{d\left(x_{0}, x_{1}\right), \rho\left(y_{0}, y_{1}\right)\right\} \tag{2.9}
\end{align*}
$$

Since $0<c<1$, it follows from inequalities (2.8) and (2.9) that $\left\{x_{n}\right\}$ is a Cauchy sequence in X with a limit u and $\left\{y_{n}\right\}$ is a Cauchy sequence in Y with a limit v.

We now have

$$
\begin{align*}
& \lim _{n \rightarrow \infty} f\left(u, x_{2 n-1}, A u, y_{2 n}\right)=d^{2}(S A u) \tag{2.10}\\
& \lim _{n \rightarrow \infty} g\left(u, x_{2 n-1}, A u, y_{2 n}\right)=d(u, S A u) \rho(A u, v), \\
& \lim _{n \rightarrow \infty} h\left(u, x_{2 n-1}, A u, y_{2 n}\right)=\max \{\rho(v, B S A u), d(u, S A u)\}
\end{align*}
$$

If

$$
\begin{equation*}
\max \{\rho(v, B S A u), d(u, S A u)\}=0 \tag{2.13}
\end{equation*}
$$

then

$$
\begin{equation*}
S A u=u, \quad B S A u=v, \quad B u=v . \tag{2.14}
\end{equation*}
$$

If

$$
\begin{equation*}
\max \{\rho(v, B S A u), d(u, S A u)\} \neq 0 \tag{2.15}
\end{equation*}
$$

then we have on using equations (2.10) and (2.12)

$$
\begin{aligned}
d(S A u, v) & =\lim _{n \rightarrow \infty} d\left(S A u, T B x_{2 n-1}\right) \\
& \leq \lim _{n \rightarrow \infty} c \frac{f\left(u, x_{2 n-1}, A u, y_{2 n}\right)}{h\left(u, x_{2 n-1}, A u, y_{2 n}\right)} \\
& \leq c d(S A u, u)
\end{aligned}
$$

and so $S A u=u$, since $c<1$.
Further, using inequality (2.2) and equations (2.11) and (2.12), we get

$$
\begin{aligned}
\rho(B S A u, v) & =\lim _{n \rightarrow \infty} \rho\left(B S A u, A T y_{2 n}\right) \\
& \leq \lim _{n \rightarrow \infty} c \frac{g\left(u, x_{2 n-1}, A u, y_{2 n}\right)}{h\left(u, x_{2 n-1}, A u, y_{2 n}\right)} \\
& =0
\end{aligned}
$$

and so $B S A u=v$, contradicting equation (2.15). Therefore equations (2.13) and (2.14) must hold.

Now suppose that $T v \neq u$. Then

$$
\begin{align*}
& \lim _{n \rightarrow \infty} f\left(x_{2 n}, u, v, v\right)=d^{2}(u, T v), \tag{2.16}\\
& \lim _{n \rightarrow \infty} f\left(x_{2 n}, u, v, v\right)=\max \{d(u, T v), \rho(v, A T v)\} \neq 0 . \tag{2.17}
\end{align*}
$$

Using inequality (2.1) and equations (2.16) and (2.17) we have

$$
\begin{aligned}
d(u, T v) & =\lim _{n \rightarrow \infty} d\left(S A x_{2 n}, T B u\right) \\
& \leq \lim _{n \rightarrow \infty} c \frac{f\left(x_{2 n}, u, y_{2 n-1}, v\right)}{h\left(x_{2 n}, u, y_{2 n-1}, v\right)} \\
& =c d(u, T v),
\end{aligned}
$$

a contradiction. Hence $T v=u=T B u$.
Now suppose that $A u \neq v$, then

$$
\begin{align*}
& \lim _{n \rightarrow \infty} f(u, u, A u, v)=0 \tag{2.18}\\
& \lim _{n \rightarrow \infty} h(u, u, A u, v)=\rho(A u, v) \neq 0 . \tag{2.19}
\end{align*}
$$

Using inequality (2.2) and equations (2.18) and (2.19), we get

$$
\begin{aligned}
\rho(A u, v) & =\rho(B S A u, A T B u) \\
& \leq c \frac{f(u, u, A u, v)}{h(u, u, A u, v)} \\
& =0 .
\end{aligned}
$$

Therefore $A u=B u=v$ and equations (2.3) follow again.
To prove the uniqueness, suppose that $S A$ and $T B$ have a second distinct common fixed point u^{\prime} so that $A u \neq B u^{\prime}$. Then,

$$
\begin{align*}
& f\left(u, u^{\prime}, v, B u^{\prime}\right)=d^{2}\left(u, u^{\prime}\right), \tag{2.20}\\
& h\left(u, u^{\prime}, v, B u^{\prime}\right)=\max \left\{d\left(u, u^{\prime}\right), \rho\left(A u, B u^{\prime}\right)\right\} \neq 0 \tag{2.21}
\end{align*}
$$

Using inequality (2.1) and equations (2.20) and (2.21) we get

$$
\begin{aligned}
d\left(u, u^{\prime}\right) & =d\left(S A u, T B u^{\prime}\right) \\
& \leq c \frac{f\left(u, u^{\prime}, v, v\right)}{h\left(u, u^{\prime}, v, v\right)} \\
& \leq c d\left(u, u^{\prime}\right)
\end{aligned}
$$

a contradiction. Therefore u is unique.
We can prove similarly that v is the unique common fixed point of $B S$ and $A T$.
This completes the proof of the theorem.

A. Aliouche and B.Fisher

Corollary 1. Let A, B, S and T be self mappings on the complete metric space (X, d) satisfying the inequalities

$$
\begin{aligned}
& d(S A x, T B y) \leq c \frac{f(x, y)}{h(x, y)} \\
& d(B S x, A T y) \leq c \frac{g(x, y)}{h(x, y)}
\end{aligned}
$$

for all x, y in X for which $h(x, y) \neq 0$, where

$$
\begin{aligned}
f(x, y)= & \max \{d(x, y) \rho(y, A T y), d(S x, T B y) d(x, S x) \\
& d(S x, T y) d(S A x, T y), d(x, T y) d(x, A x)\} \\
g(x, y)= & \max \{d(x, S x) d(x, y), d(y, T B y) d(y, A x) \\
& d(S A x, T y) d(A x, B y), d(A x, A T y) d(S A x, S x)\} \\
h(x, y)= & \max \{d(B S x, A T y), d(x, S A x), d(S x, T B y), d(B y, A T y)\}
\end{aligned}
$$

and $0 \leq c<1$. Then $S A$ and $T B$ have a unique common fixed point u and $B S$ and $A T$ have a unique common fixed point v. Further, $A u=B u=v$ and $S v=T v=u$.

References

[1] B. Fisher, Fixed points on two metric spaces, Glasnik. Mat., 16(36)(1981), 333-337.
[2] B. Fisher and P.P. Murthy , Related fixed points theorems for two pairs of mappings on two complete metric spaces, Kyngpook. Math. J. 37 (1997) 343-347.
[3] B. Fisher and D.Turkoglu. Quasi-contrations on two metric spaces, Radovi. Math. 9, (2) (1999), 241-249.
[4] R. K. Namdeo and B. Fisher, A related fixed point theorem for two pairs of mappings on two complete metric spaces, Stud. Cerc. St. Ser. Matematica Universitatea Bacau. 12 (2002), 141-148.
[5] R. K. Namdeo, S. Jain and B. Fisher, Related fixed points theorems for two pairs of mappings on two complete and compact metric spaces, Stud. Cer. St. Ser. Matematica Universitatea Bacau. 11 (2001), 139-144.
[6] R. K. Namdeo, S. Jain and B. Fisher, A related fixed point theorem for two pairs of mappings on two complete metric spaces. Hacet. J. Stat. 32 (2003), 7-11.
[7] R. K. Namdeo and B. Fisher, A related fixed point theorem for two pairs of mapping on two metric spaces, Nonlinear Analysis Forum. 8, (1) (2003).

Department of Mathematics
University of Larbi Ben M'Hidi, Oum El Bouaghi, 04000,
ALGERIA
e-mail: abdmath@hotmail.com

Department of Mathematics
University of Leicester, Leicester, LES 5PJ,
U.K.
e-mail: fbr@le.ac.uk

