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 In this paper we introduce a new class al functions RRF →+
6:  

such that the fulfilment at the inequality [5] for yx, in ( )dX , , ensures the 

existence and the uniqueness of a fixed point.  

  � � � 0 . � 1 2 3 / . � 1 0
  The notion of contractive mappings has been introduced by Banach in [1]. In 

the last years different types of generalizations of this concept appeared. The 

connection between   types have been studied in different paper, for example 

[2], [3] [6]-[10].   

   Let ( )dX ,  be a metric space and ( ) ( )dXdXT ,,: →  be a mapping. In 

essence, T  is a generalized contraction if on inequalite of  type 

   (1) ( ) ( ) ( ) ( ) ( ) ( )( )TyydTyxdTyydTxxdyxdfTyTxd ,,,.,,,,,, ≤  holds for all 

Xyx ∈, , where  RRf →+
5:  satisfies some properties or has a special 

form.  

    In [4], the prezent  author established a class of mappings RRF →+
6:  such 

that the fulfilment of the inequality of the type.   

   (2) ( ) ( ) ( ) ( ) ( ) ( )( )TxydTyxdTyydTxxdyxdTyTxdF ,,,,,,,,,,, 0≤  for Xyx ∈, , 

ensures the existence and the uniqueness of a fixed point for T . 

  Recently [5], the present author established two classes of mappings 

RRGF →+
6:,            

  such that the  fulfilment of the inequality of type.   

                                           

  4 � , 5 1 � 2 - � 0 2 � 6 � � - � - �
 complete metric space, compact metric space, 

fixed point, implicit relation.   

 
� � � � � � � � . 6 � 7 � . � / - � 3 + 8 � / . / 9 � - - � : � / � . � 1 0 �

 54H2 



                                                                 V.Popa 

 124 

(3) ( ) ( ) ( ) ( ) ( ) ( )( ) 0,,,,,,,,,,, 2 ≤TxydxTydTyydTxxdyxdTyTxdF  or   

   (4) ( ) ( ) ( ) ( ) ( ) ( )( ) 0,,,,,,,,,, 2 ≤TyxdyTxdTyydTxxdyxdTyTxdG  for Xyx ∈, , 

ensures the existence and the uniqueness of a fixed point for T .   

The purpose of  this paper is to introduce a new class of mappings 

RRF →+
6:  such that the  fulfiliment of the inequality of type.  

   (5) ( ) ( ) ( ) ( ) ( ) ( )( ) 0,,,,,,,,,,, 22 ≤xTTxdxTydTyydTxxdyxdTyTxdF   for 

Xyx ∈, , ensures the existence and the  uniqueness of  a  fixed point for T .     

 � � � 7 � 9 � / � . � � 9 � . � 1 0
    Let F  be the set of all real continous functions ( ) RRttF →+

6

61 :,...,  

satisfying the  following  conditions: 

    FFm :)(  is nonincreasing in variables 5t  and 6t ,   

     ( ) :Fh  There exists ( )1,0∈h  such that for every 0, ≥vu , 

( ) 0,,,,, ≤uuuvvuF , implies hvu ≤ ,   

     ( ) :Fu  ( ) 00,,0,0,, >tttF , 0>∀t   

 
� � � �

. ( ) 65432161 ,..., etdtctbtattttF −−−−−= , where 0,,,, ≥edcba  and 

( ) 10 <++++< edcba .  

  ( ) :Fm    Obviously.   

  ( ) :Fh   ( ) 0,,,,, ≤−−−−−= euducubvavuuuuvvuF  then hvu ≤ , where  

11/0 <−−−+=< edcbah   

   ( ) :Fu  ( ) ( ) 0;010,,0,0,, >∀>−−= tdattttF  � � � �
. ( ) ( )







 +−= 65432161

2

1
,,,max,..., tttttctttF ,  where  10 << c  . 

    ( ) :Fm   Obviously.  

    ( )Fh : Let 0,0 ≥> vu  and ( ) { } 0,max,,,,, ≤−= vucuuuuvvuF . If vu ≥ , 

then ( ) 01 ≤− cu , a contradiction then vu <  and hvu ≤ , where 10 <=< ch . 

If  0=u , then hvu ≤ .  

     ( )Fu : ( ) ( ) 0;010,,0,0,, >∀>−= tcttttF . � � �  
. 6

2

5432

2

212

2

1

3

161 ),...,( tdtttcttbttattttF −−−−= , where 0 d c, b, a, ≥ and 

1 d  c b a  0 <+++< . 

. )( mF : Obviously. 
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)( hF : Let 0  v0,>u >  and 

0),,,,,( 32223 ≤−−−−= ducuvbuvvauuuuuvvuF  , which implies 

0)()1( 22 ≤+−−− cbvauvdu .  

If 0  c  b == , then hvu ≤ , where 1 d-1 / a h   0 <=< . 

If 0  c + b ≠ , then 0)1()()( 2 ≥−−++= dattcbtf , where 
u

v
t = . 

Since 0)1()1( <−+++= dacbf , let 1r >  be the root of equation 0)( =tf . 

Then 0)( >tf  for r  t > which implies hvu ≤ , where 
r

h
1

= . 

If 0 u = ,  then hvu ≤ . 

:)( uF  0)1()0,,0,0,,( >−−= battttF ; 0>∀t . 

 

    3. 
� � � � 2 � 1 � 0 . - � 0 / 1 7 � 9 � . � 7 � . � � / - � � / � -

 

 � 6 � 1 � � 7 � �
 Let d) (X,  be a metric space and d)(X, d) (X,:T → be a mapping 

satisfying the inequality (5) for Xy  x, ∈ ,  where F  satisfies condition ( )uF  . 

Then T  has at most one fixed point. $ � 1 1 : �
 Suppose that T  has two fixed points u  and v  with vu ≠ . Then by (5) 

we have successively.  

0)),(),,(),,(),,(),,(),,(( 22 ≤uTTuduTvdTvvdTuudvudTvTudF  

0)0),,(,0,0),,(),,(( ≤vudvudvudF  a contradiction of  ( )uF  � 6 � 1 � � 7 � � � � � �
 Let d) (X,  be a metric space and ),(),(: dXdXT →  be a 

mapping  such         that there exists )1,0[∈h  with ),(),( 2 TxxhdTxxTd ≤  for 

Xx∈∀ . Then for Xx∈  the sequence { }xT n  is a Cauchy sequence. � 6 � 1 � � 7  �
 Let d) (X,  be a complete metric space and ),(),(: dXdXT →  a 

mapping satisfying inequality (5) for every Xyx ∈, ,  where ∈F F.$ � 1 1 : �
  Let X  be arbitrary in X . We shall show that the sequence defined by 

x  T= x n

1+n  is a Cauchy sequence. From (5) for Txy =  we have 

( ) ( ) ( ) ( ) ( ) ( )( ) 0,,,,,,,,,,,F 2222 ≤xTTxdxTTxdxTTxdTxxdTxxdxTTxd  

 By ( )uF  we have ( ) ( )TxxhdTxxT ,,d 2 ≤ . By Theorem 2 the sequence  

x T =x n

1+n  is a Cauchy sequence. Since d) (X,  is complete , there exists 

Xu∈ such  that u xlim n = . By (5) we have successively. 

( ) ( ) ( ) ( ) ( ) ( )( ) 0,,,,,,,,,,F 22 ≤nnnnnnn xTTxdxTudTuudTxxduxdTuTxd  
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( ) ( ) ( ) ( ) ( ) ( )( ) 0,.,,,,,,,,,F 21211 ≤+++++ nnnununn xxdxudTudxxduxdTuxd  

Letting n  tend to infinity we have successively:    

( ) ( )( ) 00,0,,0,0,,F ≤TuudTuud  

( ) ( ) ( ) ( )( ) 0,,,,,,0,0,,F ≤TuudTuudTuudTuud  

which implies by ( )F  that Tuu = .  

By Theorem 1 u  is the unique fixed point of  T .  

 � 1 � 1 9 9 � � , �
. Let d) (X, be a complete metric space and ),(),(: dXdXT →  

satisfying one of the following inequality . 

(1.1) ( ) ( ) ( ) ( ) ( ) ( ) 0,,,,,, 22 ≤++++≤ xTTxedxTyddyTycdTxxbdyxadTyTxd

 

where  0  e d, c, b, a, ≥  and 1e  d  c  b a0 <++++< ;  

(1.2)

 d

( ) ( ) ( ) ( ) ( ) ( )






 ≤+≤ 0,,

2

1
,.,,,,max, 22 xTTxdxTydTyydTxxdyxdcTyTx  

where 1c0 << , or; 

(1.3)        
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) 0,,,,,

,,,,,

222

223

≤−−

−−−

xTTxdxTydTyydTxxdyxcd

yxdTyTxbdyxdTyTxadTyTxd
 

where 0d c, b, a, ≥  and 1d  c b  a0 <+++< , for all y x,  in X . Then T  has a 

unique fixed point . 

 
$ � 1 1 : �

 The proof is following from Theorem 4 and Ex 1-3.  � � 7 � � � � �
 Let G be the set of all real continuous functions: 

RR →+
6

61 :)t,...,(tG  satisfying  the following conditions:  

( )mG : G  is noincreasing  in variables 5t and  6t ,  

( )hG : there exists n∈ )  such that for every u, v≥0 

( ) 0,,,,, ≤uuvuvuG  implies u hv≤ ,  

( )uG : G ( )0,,0,0,, ttt >0; ∀ t >0. � � 7 � � � �
. The functions F from Ex 1-3 satisfies conditions G m , G h  and G u . � 6 � 1 � � 7 �
. If the inequality 

(6) ( ) ( ) ( ) ( ) ( ) ( )( ) 0,,,,,,,,,,, 22 ≤yTydyTxdTyydTxxdyxdTyTxdG  holds for all 

yx,  in X , where ∈G G, then T has a unique fixed point. $ � 1 1 : �
The proof is similar to the proof of Theorem 3. 
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 � � � � � � 2 � 1 � 0 . - � 0 / 1 7 � � / . 7 � . � � / - � � / � - �
Let F

~
 be the set of all real continuous functions ( ) RRttF →+

6

61 :,...,  

satisfying the following conditions: 

)
~
( iF : for every ( ) 0,,,,,,0,0 <>≥ uuuvvuFvu  implies vu < , 

( ) .0,00,,0,0,,:)
~
( >∀> ttttFFu  � � 7 � � �  �

The functions  F from Ex. 1-3 satisfies conditions )
~
( iF  and )

~
( uF  . � � 7 � � � � �

There exists functions FF
~

∈  which is increasing in variables 5t  

and 6t . � � � �
 ( )

65

4323

161
1

,...,
tt

ttt
ctttF

++
−= , where 10 << c . 

)
~
( uF  Let 0, >vu  and ( ) 0

21
,,,,

2
3 <

+
−=

u

uv
cuuuuvuF , then 22

21
v

u

c
u

+
< , 

which implies vu < . If 0=u  and 0>v , then vu < . 

( ) 0,00,,0,0,,:)
~
( 3 >∀>= tttttFFu . � 6 � 1 � � 7 � �

Let T be a continuous mapping of the compact metric space 

( )dX ,  into itself such that 

(7) ( ) ( ) ( ) ( ) ( ) ( )( ) 0,,,,,,,,,,, 22 <xTTxdxTydTyydTxxdyxdTyTxdF  for every 

yx ≠  in X , where FF
~

∈ . Then T has a unique fixed point. $ � 1 1 : �
Let ( ) ( )Txxdxf ,=  for all Xx∈ . Since T is continuous, f  is 

continuous. There exists a point Xz∈  such that ( ) ( ){ }Xxufzf ∈= :inf . 

Suppose that Tzz ≠ . Then, by (7) for zx =  and Tzy =  we obtain 

( ) ( ) ( ) ( ) ( ) ( )( ) 0,,,,,,,,,,, 2222 <zTTzdzTTzdzTTzdTzzdTzzdzTTzdF  which 

implies by ( ) ( ) ( ) ( ){ }XxTxxdimfTzzdzTTzdFi ∈=< :,,,
~ 2 . A contradiction 

Hence, Tzz = .  From Theorem 1 z  is the unique fixed point of T  � 1 � 1 9 9 � � , �
Let T  be a continuous mapping of the compact metric space 

( )dt,  into itself such that 

( ) ( ) ( ) ( )
( ) ( )xTTxdxTyd

TyydTxxdyxd
cTyTxd

22

3

,,1

,,,
,

++
< , where 10 << c , for all yx ≠  in X . 

Then T  has a unique fixed point. $ � 1 1 : �
 The proof it follows from Theorem 5 and Ex. 4  
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� � 7 � � � � �
A corollary analogous to Corollary 1 is obtained by Ex. 1-3. � � 7 � � � � �
A theorem similar to Theorem 4 is obtained for compact metric 
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