Stud.Cercet.Stiint., Ser.Mat., 16 (2006), Supplement Proceedings of ICMI 45, Bacau, Sept.18-20, 2006, pp. 209-214

Well – posedness of fixed point problem in orbitally complete metric spaces

Valeriu Popa

Abstract

The purpose of this paper is to prove that for mappings satisfying a new type of implicit relation in orbitally complete metric spaces fixed point problem is well-posed. The result of Theorem 3 generalizes [6, Theorem 6] and other results.

Key words and phrases: well- posedness, orbitally complete space, implicit relation, fixed point.

(2000) Mathematics Subject Classification: 54H25, 47H10.

1. Introduction

In 1974 Ćirić [2] has first introduced orbitally complete metric spaces.

Definition1. Let T be a self mapping of a metric space (X, d). If for all x in X every Cauchy sequence of the orbit O_X (T) ={x, Tx, $T_X^2,...$ } is convergent in X, then the metric space (X, d) is said T-orbitally complete.

Remark 1. Every complete metric space is T-orbitally complete for any T: X \rightarrow X. An orbitally complete space may not be complete metric space (Example [6,], Example 1 [15]).

The notion of well-posedness of a fixed point problem has evoked much interest to several mathematicians (see for example [3], [6], [10]).

Definition 2 [3]. Let (X, d) be a metric space, f: $(X, d) \rightarrow (X, d)$ be a mapping. The fixed point problem of *f* is said to be well-posed if:

(*i*) f has a unique fixed point x_0 in x,

(*ii*) For any sequence $\{x_n\}$ cu X with d $(x_n, fx_n) \rightarrow 0$ as $n \rightarrow \infty$ we have $d(x_n, x_0) \rightarrow 0$ as $n \rightarrow \infty$.

Recently, the well-posedness of fixed point problem for certain type of mappings have been investigated in [3], [6] and [10].

The notion of contractive mapping has been introduced by Banach in [1]. During the last thirty years different types of generalization of this concept appeared. The connection between them have been studied in different papers [5], [7], [11]-[14].

Let (X, d) be a metric space and T: $(X, d) \rightarrow (X, d)$ be a mapping .In essence is a generalized contraction if an inequality of type

(1) $d(Tx, Ty) \le f(d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx))$

holds for x, $y \in X$, where f : $R_t^5 \rightarrow R$ satisfies some properties or has a special form.

In [8], the present author established a class of mappings $F: \mathbb{R}^6 \to \mathbb{R}$ such as the fulfillment of the inequality of type.

(2) F(d (Tx, Ty),d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) ≤ 0 for all x, y $\in X$, ensures the existence and uniqueness of a fixed point of T.

Recently [9], the present author established two classes of mappings F, G: $R_i^6 \rightarrow R$ such that the fulfillment of the inequality of type

(3) F (d(Tx,Ty),d(x,y),d(x,Tx),d(y,Ty),d(y,T²x),d(y,Tx)) ≤ 0 or

(4) G(Tx, Ty),d(x, y),d(x, Tx),d(y, Ty),d(x, T^2y),d(x, Ty)) ≤ 0 for x, y X ensures the existence and the uniqueness of a fixed point for T.

The purpose of this paper is to introduce a new class of mappings $F: R_t^6 \to R$ such that the fulfillment of the inequality of type.

(5) $F(d(Tx, Ty), d(x, y), d(x, Tx), d(y, Ty), d(y, Tx), d(Tx, T^{2}x)) \leq 0$

for x, y in X ensures the existence and the uniqueness of a fixed point for T and to prove for mappings satisfying are implicit relation of type (5) in are orbitally complete metric space that fixed point problem is well-posed.

2. Implicit relations

Let F $(t_1,...,t_6)$: $R_t^6 \rightarrow R$ be a continuous function we define the following properties:

(Fm): F is non-increasing in variable t_6 .

(Fh): There exists $h \in (0, 1)$ such that for every $u \ge 0$, $v \ge 0$ with F (u, v, v, u, 0, u) ≤ 0 we have $u \le hv$.

(Fu): F(t, t, 0, 0, t, 0) > 0 for every t > 0.

(Fp): There exists $p \in (0, 1)$ such that for every $u \ge 0$, $v \ge 0$, $w \ge 0$ with F(u, v, 0, w, v, 0) \le 0 we have $u \le p \max\{v, w\}$.

Example1. F $(t_1,...,t_6) = t_1 - c \max\{t_2,t_3,t_4,\frac{1}{2}(t_5+t_6)\}$, where $c \in (0,1)$.

(Fm): Obviously.

(Fh): Let u > 0, $v \ge 0$ and $F(u, v, v, u, 0, u) = u-c \max\{u, v\} \le 0$. If $u \ge v$ then $u (1-c) \le$, a contradiction. Then u < v and $u \le hv$, where 0 < h = c < 1. If u = 0, then $u \le hv$.

(Fu): F(t, t, 0, 0, t, 0) = t(1-c) > 0, t > 0. (Fp): Let u > 0, $v \ge 0$, $w \ge 0$ and F(u, v, 0, w, v, 0) =u-c max{v,0,w} \le 0. Then $u \le h$ max $\{v, w\}$, where $0 \le h = c \le 1$. **Example 2.** F $(t_1, ..., t_6) = t_1^2 - a \max\{t_2^2, t_3^2, t_4^2\} - b t_5 t_6$, where a, b > 0 and a < 1. (Fm): Obviously. (Fh): Let u > 0, $v \ge 0$ and F (u, v, v, u, 0, u) = u^2 -a max $\{u^2, v^2\} \le 0$. If $u \ge 0$ v, then $u^2(1-a) \le 0$, a contradiction. Then $u \le v$ and $u \le hv$, where $0 \le h = \sqrt{a}$ < 1. If u =0, then u < hv. (Fu): $F(t,t,0,0,t,0) = t^2(1-a) > 0, \forall t > 0$. (Fp): Let $u \ge 0$, $v \ge 0$, $w \ge 0$ and F (u, v, 0, w, v, 0) = u^2 -a max { v^2, w^2 } \le 0. If $u \ge \max\{v, w\}$, then $u^2(1-a) \le 0$, a contradiction. Thus $u < \max\{v, w\}$ and $u \le h \max\{v, w\}$, where $0 \le h = \sqrt{a} \le 1$. If u=0, then $u \le h \max\{v, w\}$. **Example3.** F $(t_1, ..., t_6) = t_1^2 - t_1(at_2 + bt_3 + ct_4) - dt_5 t_6$, where a > 0; b, c, d ≥ 0 and a+b+c < 1. (Fm): Obviously. (Fh): Let u > 0, $v \ge 0$ and $F(u, v, v u, 0, u) = u^2 - u(av + bv + cu) \le 0$. Then $u \le u \le 1$ hv where $0 < h = \frac{a+b}{1-c} < 1$. If u = 0, then $u \le hv$. (Fu): F(t, t, 0, 0, t, 0) = $t^2(1-a) > 0, \forall t > 0$. (Fp): Let u > 0, $v \ge 0$ and F (u. v, 0, w, v, 0) = $u^2 - u(av + cw) \le 0$, then $u \le p$ max $\{v, w\}$, where 0 . If <math>u = 0, then $u \le p \max\{v, w\}$. **Example 4.** F $(t_1, ..., t_6) = t_1^2$ -a t_2^2 - $\frac{bt_5t_6}{1-t_2+t_4}$, where 0 < a < 1 and $b \ge 0$. (Fm): Obviously.

(Fh): Let $u \ge 0$, $v \ge 0$ and F (u, v, v, u, 0, u) = u^2 -a $v^2 \le 0$. Then $u \le hv$, where $0 < h = \sqrt{a} < 1$. (Fu): F(t, t, 0, 0, t,0) = $t^2(1-a) > 0$, $\forall t > 0$.

(Fp): Let $u \ge 0$, $v \ge 0$, $w \ge 0$ and F (u, v, 0, w, v, 0) = $u^2 - av^2 \le 0$ which implies $u \le \sqrt{a} v \le \sqrt{a} \max \{v, w\}$. Hence $u \le p \max \{v, w\}$, where 0 .

Example 5. F $(t_1, ..., t_6) = t_1 - a_1 t_2 - a_2 t_3 - a_3 t_4 - a_4 t_5 - a_5 t_6$, where $a_1 \ge 0$, ..., $a_5 \ge 0$ and $0 < a_1 + a_2 + a_3 + a_4 + a_5 < 1$.

(Fm): Obviously.

(Fh): Let $u \ge 0$, $v \ge 0$ and F (u, v, v, u, 0, v) = u- $a_1v - a_2v - a_3w - a_4v \le 0$

then $u \le hv$ where $0 < h = \frac{a_1 + a_2}{1 - a_3 - a_5} < 1$.

(Fu): F(t, t, 0, 0, t, 0) = $(1 - (a_1 + a_4))$ t >0, \forall t>0.

(Fp): Let u > 0, $v \ge 0$, $w \ge 0$ and F(u, v, 0, w, v, 0) = u- $a_1 v - a_3 w - a_4 v \le 0$. If $u \ge \max\{v, w\}$, then $u(1 - a_1 - a_3 - a_4) \le 0$, a contradiction. Then $u < \max\{v, w\}$, which implies $u \le p \max\{v, w\}$, where $0 -(<math>a_1 + a_3 + a_4$) < 1. If u = 0, then $u \le p \max\{v, w\}$.

3. Main results

Theorem 1. Let (X, d) be a metric space and $T : (X, d) \rightarrow (X, d)$ be a mapping satisfying the inequality (5) for all x, y in X, where F satisfies condition (Fu). Then T has at most one fixed point.

Proof. Suppose that T has two fixed points u and v with $u \neq v$. Then by (5) we have successivelly F(d(Tu, Tv), d(u, v), d(u, Tu), d(v, Tv), d(v, Tu), d(Tu, T^2 u)) ≤ 0 , F(d(u, v), d(u, v), 0, 0, d(u, v), 0) ≤ 0 , a contradiction with (Fu).

Lemma1. (Popa [9]) Let (X, d) be a metric space and T: (X, d) \rightarrow (X, d) be a mapping such that there exists $h \in (0, 1)$ with $d(T^2 x, Tx) \leq h d(x, Tx)$ for every $x \in X$. Then for every $x \in X$ the sequence $\{T^n x\}, u = 0, 1, 2..., is$ a Cauchy sequence.

Theorem2. Let (X, d) be a metric space and T: $(X, d) \rightarrow (X, d)$ be a mapping. If X is T – orbitally complete and T satisfies conditions (Fm), (Fh), (Fu) and inequality (5) for all x, y in X, then T has a unique fixed point.

Proof. Let x be arbitrary in X. We show that the sequence defined by $x_{n+1} = T^n x$ is a Cauchy sequence. From (5) for y = Tx we have F(d(Tx, $T^2 x)$, d(x, Tx), d(x, Tx), d(Tx, $T^2 x$), 0, d(Tx, $T^2 x$)) ≤ 0 .

By (Fh) we have d (Tx, $T^2 x$) \leq h d (x, Tx). By Lemma 1 the sequence $\{T^n x\}$ is a Cauchy sequence. Since $x_n \in O_X(T)$ and X is T-orbitally complete, the sequence $\{x_n\}$ is convergent in X and there exists $u \in X$ such that *lim* $x_n = u$. By (5) we have successively F(d(T x_n , Tu) d(x_n , u), d(x_n , T x_n), d(u, Tu), d(u, T x_n), d(T x_n , $T^2 x_n$) ≤ 0 and

F(d(x_{n+1} u,Tu), d(x_n ,u),d(x_n , x_{n+1}), d(u,Tu), d(u, x_{n+1}), d(x_{n+1} , x_{n+2})) ≤ 0 . Letting n tend to infinity we have successively F(d(u, Tu), 0, 0, d(u, Tu), 0, 0) \leq 0.

F(d(u, Tu), 0, 0, d(u, Tu), 0, d(u, Tu)) ≤ 0 wich implies by (Fh) that d(u, Tu) = 0. Hence u = Tu. By Theorem 1 *u* is the unique fixed point of T.

Theorem3. Let T: $(X, d) \rightarrow (X, d)$ be a mapping where (X, d) is T-orbitally complete. If F satisfies conditions (Fm), (Fh), (Fu) and (Fp) and inequality (5) for all x, y in X, then the fixed point problem is well-posed.

Proof. By Theorem 2, T has a unique fixed point x_0 , i.e. $x_0 = T x_0$. Let $\{x_n\}$ be a sequence in X such that $d(x_n, T x_n) \rightarrow 0$ as $n \rightarrow \infty$. Then by (5) we have successively

 $\begin{aligned} & F(d(T x_{0}, T x_{n}), d(x_{0}, x_{n}), d(x_{0}, T x_{0}), d(x_{n}, T x_{n}), d(x_{n}, T x_{0}), d(T x_{0}, T^{2} x_{0})) \\ &\leq 0 \text{ and} \\ & F(d(x_{0}, T x_{n}), d(x_{0}, x_{n}), 0, d(x_{n}, T x_{n}), d(x_{n}, x_{0}), 0) \leq 0. \end{aligned}$ $\begin{aligned} & By (Fp) \text{ we have:} \\ & d(x_{0}, T x_{n}) \leq p \max \{ d(x_{0}, x_{n}), d(x_{n}, T x_{n}) \} \leq p [d(x_{0}, x_{n}) + d(x_{n}, T x_{n})]. \end{aligned}$ $\begin{aligned} & Therefore \\ & d(x_{0}, x_{n}) \leq d(x_{0}, T x_{n}) + d(T x_{n}, x_{n}) \leq p [d(x_{0}, x_{n}) + d(x_{n}, T x_{n})] + d(x_{n}, T x_{n})] + d(x_{n}, T x_{n}), \end{aligned}$

which implies $d(x_0, x_n) \leq \frac{1+p}{1-p} d(x_n, Tx_n) \rightarrow 0$ as $n \rightarrow \infty$. This proves the

theorem.

Corollary 1. (Lahiri and Dos [6]). Let T: $(X, d) \rightarrow (X, d)$ be a mapping, where (X,d) is a complete metric space. If F satisfies conditions (Fu), (Fh), (Fw), (Fp) and inequality (5) holds for all x,y in X, then the fixed-point problem is well-posed.

Let T: (X, d) \rightarrow (X, d) be a mapping such that there exists $K \in (0, \frac{1}{2})$

such that for all x, $y \in X$, $d(Tx, Ty) \le K [d(x, Tx) + d(y, Ty)]$.

Kannan [4] proved that if (X,d) is complete then T has a unique fixed point.

Corollary 2. (Lahiri and Dos [6]). The fixed point problem for Kannan's map in a complete metric space X is well -posed.

Proof. The proof follows by Remark 1, Theorem 3 and Example 5 for $a_2 = a_3 = k$ and $a_1 = a_4 = a_5 = 0$.

Remark2. By Theorem3 and Example 1-5 we obtain new results.

References

- S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux equations integrales, Fund. Math. 3(1992), 133-181.
- [2] L.Cirić, On some maps with non-unique fixed points, Pub. Just. Math. (Beograd), 13(31), (1974). 52-58.
- [3] F.S. De Blasi and T Myjak, Sur la porosité les contraction sans point fixe ,C.R.Acad. Sci. Paris, 308(1989), 51-54.
- [4] R. Kannan, Some results of fixed points Π , Amer. Math. Monthly 76(45) (1969), 405-408.
- [5] T.Kincses and V.Talik, **Theorems and counter-examples on** contractive mapings, Math. Balcanica, 4(1990), 69-90.
- [6] B.K. Lahiri and D.Dos, Well-posedness and porosity of a certain class of operators, Demonstratio Math., 1(2005), 170-176.
- [7] S.Park, On general contractive type condition, J. Korean Math .Soc. 17(1980), 131-140.
- [8] V.Popa, Fixed point theorems for implicit contractive mappings, Stud. Cerc. St. Ser. Mat., Univ. Bacau, 7(1997), 129-133.
- [9] V.Popa, One some fixed point theorems for mappings satisfying a new type of implicit relation, Math. Moravica, 7 (2003), 61-66.
- [10] S. Reich and A.J. Zaslavski, Well-posedness of fixed point problems, Far East T. Math. Sci, Special volume (2001), Part III, 393-401.
- [11] B.E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math .Soc. 226 (1971), 257-290.
- [12] B.E. Rhoades, A collection of contractive definitions, Math. .Semin. Notes, 7(1979), 229-235.
- [13] B.E. Rhoades, Contractive definitions, Non- Linear Analysis (Ed. T. M. Rassias), World Scientific Publishing Company, New-Jersey, (1988), 513-526.
- [14] M.R. Tasković, **Some new principles in fixed point theory**, Math. Japonica, 35(1990), 645-666.
- [15] D. Turkoglu, O.Ozer and B. Fisher, Fixed point theorems for T-orbitally complete spaces, Stud. Cerc. St. Ser. Mat., Univ. Bacau, 9(1999), 211-218.

Department of Mathematics University of Bacău, vpopa@ub.ro