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Well — posedness of fixed point problem in orbitally
complete metric spaces
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Abstract

The purpose of this paper is to prove that for mappings satisfying a new type
of implicit relation in orbitally complete metric spaces fixed point problem is
well-posed. The result of Theorem 3 generalizes [6, Theorem 6] and other
results.
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1. Introduction
In 1974 Ciri¢ [2] has first introduced orbitally complete metric spaces.
Definitionl. Let T be a self mapping of a metric space (X, d). If for all x in X
every Cauchy sequence of the orbit O, (T)={x, Tx, Ty ,...} is convergent in
X, then the metric space (X, d ) is said T-orbitally complete .
Remark 1. Every complete metric space is T-orbitally complete for any T: X
— X. An orbitally complete space may not be complete metric space
(Example [6,], Example 1 [15]).

The notion of well-posedness of a fixed point problem has evoked much
interest to several mathematicians (see for example [3], [6], [10]).
Definition 2 [3]. Let (X, d) be a metric space, f: (X, d) —(X, d) be a mapping.
The fixed point problem of fis said to be well-posed if:
(7) f'has a unique fixed point x, inx,
(it) For any sequence {x,} cu X with d (x
d(x
Recently, the well-posedness of fixed point problem for certain type of
mappings have been investigated in [3], [6] and [10].

The notion of contractive mapping has been introduced by Banach in [1].
During the last thirty years different types of generalization of this concept
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appeared. The connection between them have been studied in different papers
[51, [7], [11]-[14].
Let (X, d) be a metric space and T: (X, d) — (X, d) be a mapping .In essence
is a generalized contraction if an inequality of type
(1) d (Tx, Ty) < f(d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx))
holds for x, y € X, where f: R’ —R satisfies some properties or has a

special form.

In [8], the present author established a class of mappings F: R®—R such as
the fulfillment of the inequality of type .
(2) F(d (Tx, Ty),d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) <0 for all x, y
€ X, ensures the existence and uniqueness of a fixed point of T .

Recently [9], the present author established two classes of mappings F,

G: R’ —R such that the fulfillment of the inequality of type

(3) F (d(Tx,Ty),d(x,y),d(x,Tx),d(y,Ty),d(y, T* x),d(y, Tx)) < 0 or

(4) G(Tx, Ty),d(x, y),d(x, Tx),d(y, Ty),d(x, 77y ),d(x, Ty)) <0 forx,y X
ensures the existence and the uniqueness of a fixed point for T.

The purpose of this paper is to introduce a new class of mappings F: R’ — R

such that the fulfillment of the inequality of type.

(5) F(d(Tx, Ty) ,d(x, y),d(x, Tx),d(y, Ty),d(y, Tx),d(Tx, T>x)) <0

for x, y in X ensures the existence and the uniqueness of a fixed point for T
and to prove for mappings satisfying are implicit relation of type (5) in are
orbitally complete metric space that fixed point problem is well-posed.

2. Implicit relations

Let F (t,,...,t,) : R°—R be a continuous function we define the following
properties:

(Fm): F is non-increasing in variable .

(Fh): There exists he (0, 1) such that for everyu>0, v>0with F (u, v, v, u,
0,u) <0 we have u<hv.

(Fu) : F(t,t,0,0,t,0)>0 foreveryt>0.

(Fp): There exists p € (0, 1) such that for every u >0, v >0, w > 0 with F(u,
v,0, w, v, 0) <0 we have u < p max{v, w}.

Examplel. F (¢,....t,)= t,— ¢ max{tz,tS,t4,%(t5 +1t,)}, where ce(0,1).

(Fm): Obviously.

(Fh): Letu>0, v>0and F(u, v, v, u, 0, u) =u-c max{u, v} <0 .Ifu>v then
u (1-¢) <, a contradiction. Thenu <vandu<hv, where 0 <h=c<1.Ifu=0,
then u < hv.
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(Fu) : F(t,t,0,0,t,0)=t(1-c)>0, t>0.

(Fp): Letu>0,v>0,w>0and F(u, v, 0, w, v, 0) =u-c max{v,0,w} <0 .
Then u <h max {v, w}, where 0 <h=c <1.

Example 2. F (¢,,....¢,) = tf —amax{tzz,tf,tf} —b tit,, wherea,b>0anda <
1.

(Fm): Obviously.

(Fh): Letu>0,v>0andF (u,v,v,u,0,u) =u’-a max {u’, v’} <0.Ifu>
v, then u*(1-a) <0, a contradiction. Then u<v and u <hv, where 0 <h :\/Z
<1.Ifu=0, thenu<hv.

(Fu) : F(t,1,0,0,t,0) = ¢*(1-a) >0,V t>0 .

(Fp): Letu>0,v>0,w>0and F (u,v,0,w,v,0)= u’-amax { v2,w?} <
0. If u > max{v,w}, then u? (1-a) <0, a contradiction. Thus u < max{v, w}
and u < hmax{v,w}, where 0 <h =Ja<1. If u=0, then u < Amax{v, w}.
Example3. F (¢, ...,t, ) = t/ —t,(at,+ bt,+ct,)-d tt,, wherea>0; b, c, d
>0 and atbt+c<1.

(Fm): Obviously.

(Fh): Letu>0,v>0and F(u, v, vu, 0, u)=u>-u(av+bv+cu) <0 . Thenu <

a+b

hv where 0 <h= <1.Ifu=0, thenu<hv.

l-c
(Fu) : F(t,1,0,0,t,0)=¢>(1-a) >0, Vt> 0.
(Fp): Letu>0,v>0and F (u. v, 0, w, v, 0) = uz—u(av+cw)§0,thenu§p
max {v, w}, where O<p=a+c<I1.Ifu=0,thenu<pmax{v, w}.
btstg
1—t3 +1y

2

Example 4. F (¢,, ...t )=t -a t; - ,where 0 <a<1andb>0.

(Fm): Obviously.

(Fh): Letu>0,v>0and F (u, v, v, u, 0, u) = u>-a v>< 0. Then u < hv,
whereO<h=\/E <1.

(Fu): F(t,t,0,0,t,0)= ¢*(1-a) > 0,V t > 0.

(Fp): Letu>0,v>0,w>0and F (u, v, 0, w, v, 0) = u>-av’>< 0 which
implies u < Ja v <+Ja max {v, w). Hence u < p max {v, w}, where 0 < p
=Ja<1.

Example 5. F (¢, ...,t,)=t,- at,- a,t, - ast,- a,t;- ast,, where a,>0, ...,

a;>0and0< aq,+a,+ a,+a,+ a;<l.
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(Fm): Obviously.
(Fh): Letu>0,v>0and F (u,v,v,u,0,v)=u- a,v- a,v-a,w- a,v<0

a, +a,

then u < hv where 0 <h= <1.

l-a; —a,
(Fu): F(t,1,0,0,t,0)= (1 (a,*+a,))t>0,Vt>0.
(Fp): Letu>0,v>0,w>0and F(u,v,0,w,v,0)=u- a,v- a;w-a,v<0.1If
u>2max{v,w}, then wu(l-a;—az—-ay)<0, a contradiction. Then
u < max{v,w}, which implies u < p max{v, w}, where 0 < p =1-(

a,tay+a,)<1.If u=0,then u < pmax{v,w}.

3. Main results
Theorem 1. Let (X, d) be a metric space and T : (X, d) —(X, d) be a
mapping satisfying the inequality (5) for all x, y in X, where F satisfies
condition (Fu). Then T has at most one fixed point.
Proof. Suppose that T has two fixed points u and v with u # v. Then by (5)
we have successivelly F(d(Tu, Tv ), d(u, v) , d(u, Tu) , d(v, Tv) , d(v, Tu) ,
d(Tu,7*u) ) <0, F(d(u, v), d(u, v), 0, 0.d (u, v), 0) <0, a contradiction with
(Fu).
Lemmal. (Popa [9]) Let (X, d) be a metric space and T: (X, d) — (X, d) be a
mapping such that there exists # € (0, 1) with d(7>x, Tx) <h d (x, Tx) for
every X € X. Then for every x €X the sequence {7"x},u=20,1,2..,1s a
Cauchy sequence.
Theorem?2. Let (X, d) be a metric space and T: (X, d) — (X, d) be a mapping.
If X is T — orbitally complete and T satisfies conditions (Fm), (Fh), (Fu) and
inequality (5) for all X, y in X, then T has a unique fixed point.

Proof. Let x be arbitrary in X. We show that the sequence defined by x,,, =
T"x is a Cauchy sequence. From (5) for y = Tx we have F( d(Tx, T*x), d(x,
Tx), d(x, Tx) , d(Tx, T°x), 0, d(Tx, T*x)) <0.

By (Fh) we have d (Tx, T°x) < h d (x, Tx). By Lemma 1 the sequence
{T"x} is a Cauchy sequence. Since x, € O,(T) and X is T-orbitally
complete, the sequence {x,} is convergent in X and there exists ue X such
that /im x, = u. By (5) we have successively F(d(Tx,, Tu) d(x,,u), d(x,,,
Tx,),d(u, Tu),d(u, Tx,),d( Tx,, T* x,) <0 and

F(d(xp 410, Tw), d(x, ,0) ,d(x, , X, ), d(u,Tu), d(u, x,,,, ), d(X,,;, x,,,) )= 0.
Letting n tend to infinity we have successively

n?o
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F( d(u, Tu), 0, 0, d(u, Tu), 0, 0) <O0.

F( d(u, Tu), 0, 0, d(u, Tu), 0, d(u, Tu)) < 0 wich implies by (Fh) that d(u, Tu)
=0. Hence u = Tu. By Theorem 1 u is the unique fixed point of T .
Theorem3. Let T: (X, d) — (X, d) be a mapping where (X, d) is T-orbitally
complete. If F satisfies conditions (Fm), (Fh), (Fu) and (Fp) and inequality (5)
for all x, y in X, then the fixed point problem is well-posed.

Proof. By Theorem 2, T has a unique fixed pointx,, i.e. x, = Tx,. Let {x, }

be a sequence in X such thatd (x,, Tx,) — 0 as n — co. Then by (5) we have
successively

Fd(Tx, ,Tx,),d(x,, x, ),d(x,,Tx, ),d(x,,Tx, ),d(x,,Tx,),d(Tx,,T 2 X,))
<0 and

F(d(x,,Tx,),d(x,, x, ),0,d( x,,T x, ),d( x,,x,),0)=<0.

By (Fp) we have:

d( x,,Tx,) <pmax {d(x,.x,).d(x,.T x,)} <p [d(x,,x, ) +d(x, . Tx,)].
Therefore

d( xy,x,) < d(x,,Tx,) +d( Tx,,x,) < p[d( x,,x,) + d(x, ,Tx,)] +
d(x,.Tx,),

which implies d (x,,x,) Sr—pd (x,,Tx,)— 0 as n—oo. This proves the

theorem.

Corollary 1. (Lahiri and Dos [6]). Let T: (X, d) —(X, d) be a mapping ,
where (X,d) is a complete metric space. If F satisfies conditions (Fu), (Fh),
(Fw), (Fp) and inequality (5) holds for all x,y in X, then the fixed-point
problem is well-posed.

Let T: (X, d) —(X, d) be a mapping such that there exists Ke (0, %)

such that for all x, y € X, d(Tx, Ty) <K [d(x, Tx) +d(y, Ty)].

Kannan [4] proved that if (X,d) is complete then T has a unique fixed point.
Corollary 2. (Lahiri and Dos [6]). The fixed point problem for Kannan’s map
in a complete metric space X is well -posed.

Proof. The proof follows by Remark 1, Theorem 3 and Example 5 for
ay =az=kand aj=a,= a; =0.

Remark2. By Theorem3 and Example 1-5 we obtain new results.
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