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The purpose of this paper is to prove that for mappings satisfying a new type 
of implicit relation in orbitally complete metric spaces fixed point problem is 
well-posed. The result of Theorem 3 generalizes [6, Theorem 6] and other 
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1. Introduction 
 In 1974 Ćirić [2] has first introduced orbitally complete metric spaces. 
Definition1. Let T be a self mapping of a metric space (X, d). If for all x in X 
every Cauchy sequence of the orbit XO  (T) ={x, Tx, 2

XT ,…} is convergent in 
X , then the metric space (X, d ) is said T-orbitally complete .  
Remark 1. Every complete metric space is T-orbitally complete for any T: X 
→ X. An orbitally complete space may not be complete metric space 
(Example [6,], Example 1 [15]). 
      The notion of well-posedness of a fixed point problem has evoked much 
interest to  several mathematicians (see for example [3], [6], [10]). 
Definition 2 [3]. Let (X, d) be a metric space, f: (X, d) →(X, d) be a mapping. 
The fixed point problem of  f is said to be well-posed if:  
(i) f has a unique fixed point 0x  in x,  
(ii) For any sequence { nx } cu X with d ( nx ,f nx )→0 as n→ ∞ we have  
d( nx , 0x ) → 0 as n → ∞ . 
Recently, the well-posedness of fixed point problem for certain type of 
mappings have been investigated in [3], [6] and [10].  
      The notion of contractive mapping has been introduced by Banach in [1]. 
During the last thirty years different types of generalization of this concept 
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appeared. The connection between them have been studied in different papers 
[5], [7], [11]-[14]. 
   Let (X, d) be a metric space and T: (X, d) → (X, d) be a mapping .In essence 
is a generalized contraction if an inequality of type 

(1) d (Tx, Ty) ≤ f(d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx))  
holds for x, y ∈  X, where f : 5

tR →R satisfies some properties or has a 
special form.  

  In [8], the present author established a class of mappings F: 6R →R such as 
the fulfillment  of the inequality of  type . 
(2) F(d (Tx, Ty),d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) ≤ 0 for all x, y   
∈  X , ensures the existence and uniqueness of a fixed point of T . 
 Recently [9], the present author established two classes of mappings F, 
G: 6

tR →R such that the fulfillment of the inequality of  type 
(3) F (d(Tx,Ty),d(x,y),d(x,Tx),d(y,Ty),d(y, 2T x),d(y, Tx)) ≤ 0 or 
(4) G(Tx, Ty),d(x, y),d(x, Tx),d(y, Ty),d(x, 2T y ),d(x, Ty)) ≤ 0  for x, y   X 
ensures the existence and the uniqueness of a fixed point for T.  
 The purpose of this paper is to introduce a new class of mappings F: 6

tR  → R 
such that the fulfillment of the inequality of type. 
(5) F(d(Tx, Ty) ,d(x, y),d(x, Tx),d(y, Ty),d(y, Tx),d(Tx, 2T x )) ≤ 0  
for x, y  in X ensures the existence and the uniqueness of a fixed point for T 
and to prove for  mappings satisfying  are implicit relation of type (5) in are 
orbitally complete metric space that fixed point problem is well-posed. 
 2. Implicit relations 
Let F ( 1t ,..., 6t ) : 6

tR →R be a continuous function we define the following 
properties: 
(Fm):   F is non-increasing in variable 6t . 
(Fh): There exists h∈  (0, 1) such that for every u ≥ 0,  v ≥ 0 with F (u, v, v, u, 
0, u) ≤ 0 we have u ≤ hv. 
(Fu) : F(t, t, 0, 0, t, 0) > 0  for every t > 0. 
(Fp): There exists p ∈   (0, 1) such that for every u ≥ 0, v ≥ 0, w ≥ 0 with F(u, 
v ,0, w, v, 0) ≤ 0 we have u ≤ p max{v, w}. 

Example1. F ( 1t ,..., 6t ) =  −1t  c max{ )}(
2
1,,, 65432 ttttt + ,  where c∈(0,1) . 

(Fm): Obviously. 
(Fh):  Let u > 0,  v ≥0 and F(u, v, v, u, 0, u) = u-c max{u, v} ≤ 0 . If u ≥ v then 
u (1-c) ≤, a contradiction. Then u < v and u ≤ hv, where 0 < h = c < 1. If u = 0, 
then u ≤ hv. 
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(Fu) : F(t, t, 0, 0, t, 0) = t(1-c) > 0 ,     t > 0 . 
(Fp) : Let u > 0 , v ≥ 0 ,w ≥ 0 and F(u, v, 0, w, v, 0) =u-c  max{v,0,w} ≤ 0 . 
Then u ≤ h max {v, w}, where 0 < h =c < 1. 
Example 2. F ( 1t ,..., 6t ) = btttat −− },,max{ 2

4
2
3

2
2

2
1 65tt , where a, b > 0 and a < 

1. 
(Fm):  Obviously. 
(Fh): Let u > 0, v ≥ 0 and F (u, v, v, u, 0, u) = 2u -a   max { 2u , 2v } ≤ 0 . If u ≥ 
v, then 2u (1-a) ≤ 0, a contradiction. Then  u < v and u ≤ hv, where 0 < h = a  
< 1 . If u =0, then u ≤ hv.  
(Fu) : F(t,t,0,0,t,0) = 2t (1-a) > 0 ,∀  t >0 . 
(Fp): Let u ≥ 0, v ≥ 0, w ≥ 0 and F (u, v, 0, w, v, 0) =  2u -a max { 2v , 2w } ≤ 
0. If },max{ wvu ≥ , then 0)1(2 ≤− au , a contradiction. Thus },max{ wvu <  
and },max{ wvhu ≤ , where 0 < h = a < 1 . If u=0, then },max{ wvhu ≤ .  
Example3. F ( 1t , ..., 6t  ) = 1

2
1 tt − (a 2t + b 3t +c 4t )–d 65tt , where a > 0 ; b, c, d 

≥ 0  and a+b+c < 1 . 
(Fm): Obviously. 
(Fh):  Let u > 0, v ≥ 0 and F(u, v, v u, 0, u) = 2u -u(av + bv +cu) ≤ 0 . Then u ≤ 

hv where  0 < h = 
c
ba

−
+

1
 <1. If u = 0, then u ≤ hv. 

(Fu) : F(t, t, 0, 0, t, 0) = 2t (1-a) > 0, ∀ t > 0. 
(Fp): Let u > 0, v ≥ 0 and F (u. v, 0, w, v, 0) = 2u -u (av + cw) ≤ 0, then u ≤ p 
max {v, w}, where     0< p = a + c < 1. If u = 0, then u ≤ p max{v, w}.  

Example 4. F ( 1t , .., 6t )= 2
1t  -a 2

2t  - 
43

65
1 tt

tbt
+−

, where 0 < a < 1 and b ≥ 0. 

(Fm): Obviously. 
(Fh):  Let u ≥ 0, v ≥ 0 and F (u, v, v, u, 0, u) = 2u -a 2v ≤ 0. Then u ≤ hv, 
where 0 < h = a  < 1. 
(Fu): F(t, t, 0, 0, t,0) = 2t (1-a) > 0,∀ t > 0. 
(Fp): Let u ≥ 0, v ≥ 0, w ≥ 0 and F (u, v, 0, w, v, 0) = 2u -a 2v ≤ 0 which 
implies u ≤ a v ≤ a max {v, w). Hence u ≤ p max {v, w}, where 0 < p 
= a < 1.   
Example 5. F ( 1t , ..., 6t )= 1t - 21ta - 32ta - 43ta -  54ta -  65ta , where 1a ≥ 0 , ..., 

5a ≥ 0 and 0 < 1a + 2a + 3a + 4a + 5a <1.  
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(Fm): Obviously. 
(Fh): Let u ≥ 0, v ≥ 0 and F (u, v, v, u, 0, v) = u- 1a v - 2a v - 3a w- 4a v ≤ 0 

then u ≤ hv where  0 < h =
53

21

1 aa
aa
−−

+ < 1. 

(Fu) : F(t, t, 0, 0, t, 0) =  (1 –( 1a + 4a )) t >0 ,∀ t> 0. 
(Fp): Let u >0, v ≥ 0, w ≥ 0 and F(u, v, 0, w, v, 0) = u- 1a v - 3a w - 4a v ≤ 0. If 

},max{ wvu ≥ , then 0)1( 431 ≤−−− aaau , a contradiction. Then 
},max{ wvu < , which implies u ≤ p max{v, w},  where 0 < p =1-( 

1a + 3a + 4a )< 1. If 0=u , then },max{ wvpu ≤ . 
3. Main results  

Theorem 1. Let (X, d) be a metric space and  T : (X, d) →(X, d) be a 
mapping  satisfying the inequality (5) for all x, y in X, where F satisfies 
condition (Fu). Then T has at most one fixed point. 
Proof.  Suppose that T has two fixed points u and v with u ≠  v. Then by (5) 
we have successivelly F(d(Tu, Tv ), d(u, v) , d(u, Tu) , d(v, Tv) , d(v, Tu) , 
d(Tu, 2T u) ) ≤ 0 , F(d(u, v), d(u, v), 0, 0,d (u, v), 0) ≤ 0, a contradiction with 
(Fu). 
Lemma1. (Popa [9]) Let (X, d) be a metric space and T: (X, d) → (X, d) be a 
mapping such that there exists h ∈  (0, 1) with d( 2T x, Tx) ≤ h d (x, Tx) for 
every x ∈X. Then for every x ∈X the sequence { nT x}, u = 0, 1, 2..., is a 
Cauchy sequence.  
Theorem2. Let (X, d) be a metric space and T: (X, d) → (X, d) be a mapping. 
If X is T – orbitally complete and T satisfies conditions (Fm), (Fh), (Fu) and 
inequality (5) for all x, y in X, then T has a unique fixed point.  
Proof.  Let x be arbitrary in X. We show that the sequence defined by 1+nx  = 

nT x is a Cauchy sequence. From (5) for y = Tx we have F( d(Tx, 2T x), d(x, 
Tx) , d(x, Tx) , d(Tx, 2T x), 0, d(Tx, 2T x)) ≤ 0. 
By (Fh) we have d (Tx, 2T x) ≤  h d (x, Tx). By Lemma 1 the sequence 
{ nT x} is a Cauchy sequence. Since nx ∈  XO (T) and X is T-orbitally 
complete, the sequence { nx } is convergent in X and there exists u∈X such 
that lim nx = u. By (5) we have successively F(d(T nx , Tu) d( nx ,u), d( nx , 
T nx ), d(u, Tu), d(u, T nx ) ,d( T nx , 2T nx ) ≤ 0 and 
F(d( 1+nx u,Tu), d( nx ,u) ,d( nx , 1+nx ), d(u,Tu), d(u, 1+nx ), d( 1+nx , 2+nx ) )≤ 0. 
Letting n tend to infinity we have successively  
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F( d(u, Tu), 0, 0, d(u, Tu), 0, 0) ≤ 0. 
F( d(u, Tu), 0, 0, d(u, Tu), 0, d(u, Tu)) ≤ 0 wich implies by (Fh) that d(u, Tu) 
= 0. Hence u = Tu.  By Theorem 1 u is the unique fixed point of T . 
Theorem3. Let T: (X, d) → (X, d) be a mapping where (X, d) is T-orbitally 
complete. If F satisfies conditions (Fm), (Fh), (Fu) and (Fp) and inequality (5) 
for all x, y in X, then the fixed point problem is well-posed. 
Proof. By Theorem 2, T has a unique fixed point 0x , i.e. 0x  = T 0x . Let { nx } 
be a sequence in X such that d ( nx , T nx ) → 0 as n → ∞. Then by (5) we have 
successively 
F(d(T 0x  ,T nx ),d( 0x , nx  ),d( 0x ,T 0x  ),d( nx ,T nx  ),d( nx ,T 0x ),d(T 0x ,T 2

0x )) 
≤ 0 and   
F(d( 0x ,T nx ), d( 0x , nx  ), 0, d(  nx ,T nx  ), d( nx , 0x ) ,0 ) ≤ 0. 
By (Fp) we have: 
d( 0x ,T nx ) ≤ p max {d( 0x , nx ) ,d( nx ,T nx )} ≤ p [d( 0x , nx  ) + d( nx ,T nx )]. 
Therefore 
d( 0x , nx ) ≤ d( 0x ,T nx )  +d( T nx , nx ) ≤ p[d( 0x , nx ) +  d( nx  ,T nx )] + 
d( nx ,T nx ),    

which implies d ( 0x , nx ) ≤
p
p

−
+

1
1 d ( nx ,T nx )→ 0 as  n→∞. This proves the 

theorem. 
Corollary 1. (Lahiri and Dos [6]). Let T: (X, d) →(X, d) be a mapping , 
where (X,d) is a complete metric space. If F satisfies conditions (Fu), (Fh), 
(Fw), (Fp) and inequality (5) holds for all x,y in X, then the fixed-point 
problem is well-posed. 

Let T: (X, d) →(X, d) be a mapping such that there exists K∈(0, 
2
1 ) 

such that for all x, y ∈X, d(Tx, Ty) ≤ K [d(x, Tx) +d(y, Ty)]. 
Kannan [4] proved that if (X,d) is complete then T has a unique fixed point. 
Corollary 2. (Lahiri and Dos [6]). The fixed point problem for Kannan’s map 
in a complete metric space X is well -posed. 
Proof. The proof  follows by Remark 1, Theorem 3 and Example 5 for 

32 aa = = k and   1a = 4a =  5a  = 0.  
Remark2.  By Theorem3 and Example 1-5 we obtain new results.  
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