Tubular thin-walled structures with different shapes of the cross-sections are widely used in various transportation systems as energy absorbing components to dissipate the kinetic energy during violent collisions and crashes. The aims of this paper are to obtain numerical data on the crashing of thin-walled structures made by multiple layers of steel sheets. A series of finite element calculations was carried out on four different models crashed axially in dynamic conditions by using LS_Dyna V971. The effect of the generated fold depth on the peak load and the mean crashing load of these types of structures were also examined.