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ABSTRACT : The cosmetic industry looks for substances able to preserve 
and take care of the skin. Biotechnology is one of the way to prepare 
substances able to satisfy the consumers needs. Lipases and glycosidases 
constitute enzymes families with strong potentialities for the synthesis of 
many ingredients. These enzymes work in synthesis as well as hydrolysis 
and catalyze chemio-, regio- and stereo-selectives reactions. Examples could 
be given such as the modification of antioxidants like vitamin A and C, the 
synthesis of natural dyes like indigoids, but also the synthesis of 
biosurfactants like glucamides. 
 
KEYWORDS : enzymatic synthesis, lipases, •-glucosidases, vitamins, 
dyes, biosurfactants, cosmetic ingredients. 
 
RESUME : L'industrie des cosmétiques recherche des substances capables 
de préserver et de prendre soin de la peau. La biotechnologie est une des 
manières de préparer des substances capables de satisfaire les besoins des 
consommateurs. Les lipases et les glycosidases constituent des familles 
d'enzymes avec des fortes potentialités pour la synthèse de molécules 
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d’intérêts. Ces enzymes fonctionnent en synthèse aussi bien qu’en  
hydrolyse et catalysent des réactions chimio-, régio- et stéréo-sélectives. 
Nous présentons des exemples de synthèse tel que la modification 
d’antioxydants comme les vitamines A et C, la synthèse de colorants 
naturels comme les indigoïdes, mais également la synthèse de biosurfactants 
comme les glucamides. 
 
MOTS CLE : synthèse enzymatique, lipases, •-glucosidases, vitamines, 
colorants, biosurfactants, ingrédients pour les cosmétiques. 

 
 
 
INTRODUCTION 
 
Cosmetics are commercially available products that are used to improve the appearance 
of the skin. Since the late 1980s, consumer demand for more effective products that 
more substantively beautify the appearance has resulted in increased basic science 
research and product development in the cosmetics industry. The result has been more 
ingredients that may actually improve not just the appearance of the skin, but the health 
of the skin as well. We now have products that renew, restore, and rejuvenate not just 
cleanse, protect, and moisturize. 
Among the cosmetics ingredients we find i) actives molecules intended to the care of 
the skin, such as antioxidants, acidifiers, hydrating ; ii) molecules intended to the 
esthetic such as the dyes for the make-up; iii) molecules intended to the washing such as 
surfactants to the shampooing and the soaps. 
Antioxidants like vitamin C and A are at present generally considered to be beneficial 
components from fruit, vegetables and plants. The anti-oxidative properties of these 
compounds are often claimed to be responsible for the protective effects of these food 
components against cardiovascular disease, certain forms of cancer and/or 
photosensitivity diseases. In addition, beneficial health effects in ageing have also been 
related to antioxidant action [1].  
Natural dyes are so called because they are obtained from plants (e.g., alizarin, catechu, 
indigoids and logwood), from animals (e.g., cochineal, kermes, and purple), and from 
certain naturally occurring minerals (e.g., ocher and Prussian blue). They have been 
almost entirely replaced in modern dyeing by synthetic dyes. However, for the cosmetic 
industry, the natural dyes are always of interest. Indeed it is well known that plants can 
produces dyes with certain impurities that makes natural dye a more pleasing tinge than 
synthetic dye [2, 3]. The example of the indigoid biosynthesis will be described in the 
article.  
Soap is an ancient surfactant known since the dawn of civilization. Although the oldest 
synthetic surfactant, sulfonated castor oil or turkey red oil, was produced over a century 
ago, synthetic surfactants based upon either fats or petroleum have been developed 
industrially only during the past four decades. During this period the synthetic gradually 
replace soap so that at present the latter has practically disappeared from all products 
used for cleaning, laundering, textile scouring, and so forth. The synthetic surfactants of 
petrochemical origin gradually attained a dominant position. However, because of the 
current worldwide emphasis on biodegradable surfactants (the biosurfactants), fatty acid 
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derived surfactants, assume increasingly greater importance, especially for cosmetic 
industry. In this class, the glycamide surfactants constitute an extremely important 
group of non-ionic biosurfactants, stable in alkaline media. Potential toxicological 
effects of these amides are significantly lower than those of emulsifiers derived from 
petroleum. They are characterized by their skin tolerance, good biologic degradability 
and low toxicity [4]. 
 
 
SYNTHESIS OF VITAMIN A DERIVATIVES 
 
Vitamin A and derivatives (retinoids) are widely use in cosmetics and pharmaceuticals, 
in particular to combat skin disorders such cancer, photo aging, psoriasis, ichtyose or 
acne [5, 6]. 
Indeed, retinol, vitamin A alcohol, is involved in the control of cellular differentiation 
and proliferation. This vitamin acts as antioxidant with stabilizing free radicals 
producing DNA mutations [7 - 9]. Retinol, is the most active of retinoids, but its use in 
cosmetic formulations produces many disadvantages. First, the molecule is unstable: it’s 
readily oxidized by light, air, oxidizing agents or heat [10]. Moreover, excessive doses 
of the vitamin become irritant for skin. Finally, retinol is insoluble in aqueous solutions.  
Considerable effort has been expended to develop synthetic retinol derivatives and more 
specifically, retinyl esters. The synthesis of retinyl esters by chemical methods now 
occurs in developed countries, but there are some serious defects [11, 12]. As an 
alternative, the use of lipases in non-conventional media to catalyze these synthesis 
reactions has recently become a much more promising method [13]. Lipase-catalyzed 
reactions are superior to conventional chemical methods owing to mild reaction 
conditions, high catalytic efficiency and the inherent selectivity of natural catalysts, 
which results in much purer products [14, 15]. 
Recently, we have published the enzymatic synthesis of retinol derivatives by reverse 
hydrolysis, alcoholysis, acidolysis and interseterification. After a wide range of 
enzymes and solvents were tested, Candida antarctica lipase (Novozym 435) and 
Rhizomucor miehei lipase (Lipozyme), were identified to be the most effective catalysts 
for retinol acylation using dimethyl adipate or adipic acid as the acyl donor. Rhizomucor 
miehei lipase showed a best activity only in apolar solvents such as hexane, whereas 
Candida antarctica lipase showed a best activity in all solvents used (Table 1) [16, 17].  
Among the different synthesized compounds, some are water-soluble such as the 
carbohydrates derivatives (non-ionic water-soluble retinol derivative) and sodium salts 
of retinyl diacids (ionic water-soluble retinol derivative) (Scheme 1). The water 
solubility was estimated by the log P (Table 2) [18]. For each reaction, the optimal yield 
of synthesis is functions of solvent, molar ratio of substrates, concentration of 
substrates, temperature and water activity [19, 20].   
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Table 1. Candida antarctica lipase and Rhizomucor miehei lipase catalyzed-acylation 
of retinol by alcoholysis with dimethyl adipate [21] 

Solvent Log P 
Retinol conversion with 

C. antarctica lipase 
(%, 24 h)a 

Retinol conversion with 
R. miehei lipase 

(%, 24 h)a 
Dioxane 
Acetonitrile 
Acetone 
Tert-butanol 
Tert-amyl alcohol 
Toluene 
Hexane 

-1.1 
-0.33 
-0.24 
0.73 
1.22 
2.5 
3.5 

47 
61 
59 
52 
53 
67 
64 

1 
3 
0 
4 
5 
70 
81 

aDetermined from relative peak areas on HPLC chromatograms. 
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Scheme 1. Candida antarctica lipase catalysed synthesis of methyl retinyl succinate 3, 
sodium salt retinyl succinate 4, sorbityl retinyl succinate 5, maltosyl retinyl succinate 6, 

ascorbyl retinyl succinate 7 and retinyl lactate 8 from retinol 1 or retinyl palmitate 2 
 

Table 2. Log P of retinol and derivatives 

Retinol derivatives Com-
pounds Log Pa Retinol derivatives Com-

pounds Log Pa 
Retinyl palmitate  
Methy retinyl adipate 
Retinyl adipate 
Methyl retinyl succinate 
Retinyl succinate  
Retinol  
Retinyl lactate 
Sorbityl retinyl adipate 

2 
 
 

3 
 

1 
8 

 

15.51 
9.64 
9.36 
8.66 
8.38 
7.62 
7.58 
6.67 

Sorbityl retinyl succinate 
Retinyl adipate Na+ 
Retinyl succinate Na+ 
Saccharose retinyl adipate 
Maltose retinyl adipate 
Maltose retinyl succinate 
Palmitic acid 
Palmitic acidb 

5 
 

4 
 
 

6 

5.69 
5.55 
4.56 
3.94 
2.54 
1.56 
6.96 
7.17 

aDetermined from LogKow program methodology [18]. 
bPalmitic acid as reference : Determined by the experiments.. 
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SYNTHESIS OF VITAMIN C DERIVATIVES 
 
Vitamin C (ascorbic acid) and derivatives are widely used as natural antioxidant and are 
valuable agents in the treatment of photo aging, skin cancer, and numerous skin 
disorders. However, its highly hydrophilic behavior prevents its application in 
cosmetics or in the presence of fats and oils. This can be circumvented by using fatty 
acid esters of vitamin C, which, due to an amphiphilic structure, not only improve the 
solubility and miscibility in a more hydrophobic environment but also seem to enhance 
the radical scavenging performances compared to its free counterpart. Recent studies 
indicate that lipophilic vitamin C esters are much more effective in the prevention of 
low density lipoprotein per-oxidation [22]. At present, 6-0-palmitoyl ascorbic acid is 
produced commercially by chemical means. This is encountered with a number of 
disadvantages, which reside in the use of less biocompatible chemicals and solvents, the 
formation of by-products due to the instability of vitamin C and, hence, low yields.  
The alternative application of lipase for the synthesis of optically pure compounds, 
modification of fats and oils and the modification of carbohydrates is well documented 
in literature [23]. Although the lipase-catalyzed synthesis of vitamin C fatty acid esters, 
such as  6-0-ascorbyl palmitate and 6-0-ascorbyl oleate has been already described with 
good yieds [24, 25]. 
Recently in my group, we have describe the synthesis of a new type of vitamin C esters, 
the hydroxy acids esters of vitamin C (Scheme 2)[17, 26]. The ascorbyl lactate and the 
ascorbyl salicylate produced may be considered as an excellent carrier of lactic and 
salicylic acid. Indeed, in the presence of esterase-type epidermal enzymes, they can 
undergo hydrolysis, thus releasing lactic and salicylic acids progressively. Derived from 
fruit and dairy products, hydroxy acids are widely included in cosmetics as exfoliants. 
The most commonly used are lactic acid, glycolic acid and salicylic acid, all three seem 
to exert slight but significant effects in reducing skin discolorations and roughness when 
applied in a cream [27, 28]. Significant irritation is often associated with the use of 
hydroxy acids alone. Esters of vitamin C and hydroxy acids are unusually effective as 
skin conditioners, with significant reductions in the irritation problems characteristic of 
vitamin C and hydroxy acids in nonesterified form. 

O OH

O
OH

O

OH OH

O

OH

O

O
OH

O

OH OH

O

CH3

O
OH

O

OH OH

O

O

n
 

O
OH

O

OH OH

OH

1

2

3

4  
Scheme 2. Candida antarctica lipase catalysed synthesis of ascorbyl salicylate 2, 
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SYNTHESIS OF NATURAL INDIGOIDS 
 
Indigo is considered to be the oldest dye, with uses known in ancient times [29]. The 
dye was generally extracted from various species of plants such as Indigofera (tropical 
species, Africa, Asia, East Indies and South America), Polygonum tinctorium (Far East, 
China, Korea) and Isatis tinctoria, woad (Europe). At the end of the 19th century 
synthetic indigo almost completely replaced natural indigo. The actual annual 
production of synthetic indigo is estimated as 22000 tons of dyestuff [30]. More 
recently, due to the importance of natural indigo, considerable research has been 
performed to replace chemical synthesis of indigo by an application of biotechnological 
methods [31 - 35]. This is especially so in the cosmetic and textile industries where 
regulatory pressure has encouraged the development and marketing of natural 
compounds. Indeed, plants contain in addition to trans-indigo (indigotin, blue) and 
trans-indirubin (isoindigotin, red), certain impurities such as cis-indigo (blue), cis-
indirubin (isoindirubin, red), indigo brown (isoindigo), indigo gluten, indigo yellow and 
traces of flavonoids, that makes natural indigo a more pleasing tinge than synthetic 
indigo [36, 37]. Indigo is an artifact of secondary metabolism. Indigofera tinctoria and 
Polygonum tinctorium contain indican (indoxyl-β-D-glucoside) which serves as starting 
material for indigo production, whereas Isatis tinctoria (woad), contains isatan B 
(indoxyl-5-ketogluconate), as the major indigo precursor and indican, as the minor 
indigo precursor. In recent experiments we have shown for the first time that young 
leaves of Isatis tinctoria, harvested in June, contained isatan C, a novel indigo 
precursor, in addition to isatan B and indican [38].   

 
Scheme 3. Rhizomucor miehei Lipase and Aspergillus niger •-glucosidase catalysed 

synthesis of natural indigoids dyes 
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Scheme 4. Synthesis of sulfated indigoids dyes 
 
 
We have shown that indigo precursors after extraction can be broken down by 
hydrolases.  Rhizomucor miehei Lipase hydrolyzes isatan B and isatan C, whereas 
Aspergillus niger •-glucosidase hydrolyzes indican. Indoxyl liberated from isatan B, 
isatan C and indican can be oxidized by air yielding indigo. Isatin is generated from 
indoxyl and/or dioxindole in an oxygen-rich environment as a side reaction, and 
dioxindole is generated from isatan C. The condensation of indoxyl with isatin produces 
indirubin, whereas the condensation of dioxindole with isatine yields isoindirubin and 
indirubin, which are by-products of indigo biosynthesis (Scheme 3) [39].  
Furthermore, it is possible to replace isatin by an isatin derivative (as isatin 5-sulfonic 
acid) in order to produce a sulfated indigoids (as indirubin 5-sulfonic acid), which is a 
water soluble dyes of interest for the cosmetics but also a cycline-depended kinases 
(CDKs) inhibitor of interest for the pharmaceuticals (Scheme 4) [40].   
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SYNTHESIS OF BIOSURFACTANTS CONTAINING AMIDE BOND 
 
Glycamide surfactants are non-ionic biosurfactants in which the hydrophilic moiety (an 
amino-alditol derivative) and the hydrophobic moiety (a fatty acid) are linked via an 
amide bond [4]. Biosurfactants containing amide bonds are a particularly attractive class 
of compounds that are potential substitutes for emulsifiers derived from petroleum. 
Potential toxicological effects of these amides are significantly lower than those of 
emulsifiers derived from petroleum. They are characterized by their skin tolerance, 
good biologic degradability and low toxicity. This results in a chemical linkage that is 
highly stable under alkaline conditions, which is of key interest for many surfactant 
applications [41]. Such sugar fatty amide surfactants can be obtained by chemical 
synthesis, using for example the Schotten-Baumann reaction between an amino-alditol 
and a fatty acid chloride in aqueous alkaline medium. An important drawback of this 
approach is the formation of salts by neutralization. 
An alternative approach consists in using an enzymatic synthesis route, which avoids 
the formation of by-products and salts. The synthesis of amides can be catalyzed by 
proteases, using reverse hydrolysis. However, proteases are generally highly specific for 
the given amino acid and sensitive to organic solvents [42]. Besides proteases, lipases 
have proven to catalyze the synthesis of amides in non-conventional media [43] and 
involved in the obtention of peptides [44, 45], fatty amides [46 - 48], N-acyl-amino 
acids [48 - 51] and acyl-amino-propanol [52]. However, the yields reported were too 
low to allow any industrial development.  
Thus, we have studied the possibility of catalyzing the amidification of a widely 
available amino-alditol derivative, N-methyl-glucamine, by fatty acids, using 
commercially available immobilized lipase preparations as catalysts. N-methyl 
glucamine is easily obtained by reductive amination of D-glucose with methylamine. 
The efficient coupling of N-methyl-glucamine to fatty acid can be catalyzed with 
Rhizomucor miehei Lipase in hexane or with Candida antarctica lipase in tert-amyl 
alcohol as solvents. In hexane, the formation of a salt complex between the fatty acid 
and N-methyl-glucamine allows the efficient acylation of the amine. Fatty acid 
conversion is limited to 50%, due to salt formation (Scheme 5) [53].  
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Scheme 5. Ion-pair formation between a fatty acid and N-methyl-glucamine 
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In tert-amyl alcohol conversion yield of the fatty acid up to 100% can be obtained by 
removing the water co-product under reduced pressure [54]. Acido-basic conditions 
allow the control of the reaction chemo-selectivity [55]. This reaction can also be 
completed with using various amines and by using triglycerides or fatty acid esters as 
acyl donors, which opens the way to the valorization of plant oils for surfactant 
synthesis (Scheme 6) [56]. 
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Scheme 6. Enzymatic synthesis of amide, ester and amide-ester derivatives 
 
 
CONCLUSION 
 
In this article, we showed that lipases and glycosidases constitute enzymes families with 
strong potentialities for the synthesis of many cosmetic ingredients. We produced 
vitamins A and C derivatives like antioxydants, dyes of the indigoids family and finally 
glucamides like biosurfactants. Some of the synthesized compounds showed a real 
potential for the cosmetics industry and are currently under development [57]. 
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