

CAPTURE DE CO₂ EN CENTRALES AU CHARBON PULVERISE (CP) : ETUDE DU PROCEDE A BASE DE CARBONATE DE POTASSIUM⁺

J.-M. Amann¹, C. Bouallou¹*, C. Descamps¹, M. Kanniche²

¹Centre Énergétique et Procédés - École des Mines de Paris, 60 Bd Saint Michel, 75006 Paris, France ²EDF, Division Recherche et Développement, Département Systèmes de Production et Environnement, 6 quai Watier, 78401 Chatou cedex, France.

*Correspondance : chakib.bouallou@ensmp.fr

Abstract: The capture of CO_2 in the power production systems is due to the desire of reduction of greenhouse producing gases. The present study deals with the separation of CO_2 from flue gases of power plants through chemical absorption in potassium carbonate solutions. The flue gas composition (11.71 % moles CO_2) corresponds to a 600 MWe power plant using pulverized coal as fuel and desulphurization. The CO_2 absorption was simulated using Aspen PlusTM software. For estimating the physical properties of substances and mixtures, the thermodynamic model NRTL has been chosen. A parametric study revealed the influence of the solvent flow upon CO_2 separation degree and reboiling heat demand, at different loading degrees. The study shows that reboiling heat demand is very high at separation degrees higher than 50%.

Keywords: *pulverized coal, chemical absorption, potassium carbonate, capture, carbon dioxide.*

^{*} Paper presented at **COFrRoCA 2006**: **Quatrième Colloque Franco-Roumain de Chimie Appliquée**, 28 June – 2 July, Clermont-Ferrand, France

INTRODUCTION

A la suite du sommet de Kyoto de 1997, les gouvernements des principaux pays industrialisés s'apprêtent à mettre en oeuvre des mesures contraignantes de réduction de CO_2 afin de stabiliser les concentrations dans l'atmosphère à 500 ou 450 ppm en 2100. En effet les concentrations en CO_2 dans l'atmosphère n'ont cessé de croître depuis 1850, le rythme de croissance est de 1,5 ppm par an ces dernières années. Etant donné les disparités de richesse et de développement entre les différents pays industrialisés ou en voie de développement, cela entraîne un effort très important des pays industrialisés qui devront réduire leurs émissions de plus de 50%.

Le CO_2 d'origine anthropique provient surtout des combustibles fossiles et notamment de la production d'électricité, en outre les débits émis sont très importants et localisés ce qui simplifie leur traitement. Cette spécificité permet donc une action plus ciblée que pour les autres secteurs (transport, chauffage...) dont les émissions sont dispersées. Le charbon s'avère être une source d'énergie fossile d'avenir pour plusieurs siècles, disponible notamment dans de nombreux pays où le potentiel de développement est élevé, comme en Chine par exemple. Les techniques de séparation du CO_2 de gaz de synthèse ou des fumées existent, mais si ces techniques sont faisables leur crédibilité n'est pas encore acquise.

D'une manière générale, les procédés de capture jouent un rôle clé, dans la mesure où ils interviennent au cœur de la chaîne (émission / captage / stockage) mais également de par le fait qu'ils représentent l'essentiel du coût d'ensemble du traitement (de l'ordre de 60 à 80%, contre 40 à 20% pour le stockage) d'après les études économiques réalisées dans ce domaine. Parmi les procédés qui sont jusqu'à présent envisagés pour capturer le CO_2 d'un mélange gazeux, trois types principaux se détachent: *absorption* dans un liquide (et régénération), *adsorption* sur solide minéral (et régénération), séparation continue par *membranes*. D'un point de vue pratique, la plupart des travaux s'adressent à la récupération pré-combustion, réalisée sur des centrales thermiques de type IGCC [1-5] pour lesquelles les conditions de pression (de 20 à 50 bar) régnant dans la chambre de précombustion sont a priori plus propices à l'insertion d'un procédé de capture. L'objectif est désormais d'étudier les systèmes de production d'électricité en cherchant à réduire les pertes de rendement liées à la capture par rapport à la séparation du CO₂ en post combustion sur les fumées d'une centrale au gaz naturel ou au charbon.

COMPOSITION DES FLUX DE FUMEES ET DE CO₂ SEPARE

Cette étude concerne en particulier la séparation du CO_2 des fumées de centrale à l'aide de procédé d'absorption chimique. Les compositions des fumées prises en compte dans cette étude, détaillées tableau 1, correspondent à une centrale au Charbon Pulvérisé (CP) de 600 MWe avec désulfuration. La concentration en CO_2 est de 11,71 % mol dans le cas de la combustion du charbon.

La spécification pour le flux de fumées issu de la centrale au Charbon Pulvérisé, destiné à être rejeté dans l'atmosphère après traitement, concerne uniquement le niveau d'émission de polluants dont les concentrations doivent être équivalentes à celle des fumées entrant dans le système de captage du CO_2 (le CO_2 n'est pas considéré comme impureté).

Le flux de fumées issu de la séparation est fourni à 120°C par récupération de la chaleur

à partir du système de captage. La pression de ce flux doit se maintenir autour de 1,013 bar. La spécification du flux de CO_2 concerne uniquement sa pureté en CO_2 (> 99% mass) et la composition en eau (< 20 ppm). Le flux de CO_2 est destiné au transport sous forme liquide. Dans le modèle utilisé, le flux de CO_2 est compressé jusqu'à 65 bars avec refroidissement intermédiaire. Il est ensuite déshydraté et compressé jusqu'à 150 bars. Le flux est alors à environ 100 °C. A ce niveau il est toujours gazeux. On le refroidit à 40 °C pour le liquéfier.

Tubicuu 1. Thatyse des famees entrant dans le système de capture					
Composition	СР	Composition	СР		
H_2O (% mol)	5,55	Toluène (mg/Nm ³)	119		
CO_2 (% mol)	11,71	Trichloroéthylène (mg/Nm ³)	144		
O_2 (% mol)	6,69	Nonane (mg/Nm ³)	73		
N_2 (% mol)	76,05	p-Xylène (mg/Nm ³)	93		
		o-Crésol (mg/Nm ³)	62		
CO (mg/Nm ³)	0,025	Phénol (mg/Nm ³)	74		
NOx (mg/Nm ³)	200	Chloroforme			
$SO_2 (mg/Nm^3)$	200	2 Nitropropane (mg/Nm ³) 13			
Particules (mg/Nm ³)	50	Tétrachloroéthylène			
Benzène (mg/Nm ³)	149	Nitrobenzène (mg/Nm ³) 122			
Débit : 646 kg/s	Pression : 0.9	13 bar Température :	96 °C		

Tableau 1. Analyse des fumées entrant dans le système de capture

SELECTION DU PROCEDE DE SEPARATION

Les solutions de carbonate de potassium, K_2CO_3 , peuvent être utilisées pour la séparation des gaz acides, il s'agit des procédés BenfieldTM, CatacarbTM, ou CarsolTM par exemple. Les conditions d'alimentation classiques pour ces procédés sont une pression de 10 à 124 bars abs, et une concentration en CO₂ de l'ordre de 5 à 35 % vol., soit une pression partielle minimale de 500 mbar, dans les unités de production d'ammoniaque. Pour la purification du gaz naturel, la pression du flux à traiter varie entre 19 et 45 bars. Ces procédés n'ont guère été envisagés pour la séparation à partir des fumées. Les faibles pressions partielles sont loin de présenter les conditions optimales pour ce procédé [6-7].

Pour une concentration de la solution aqueuse de carbonate de potassium égale à 40 % mass, le bicarbonate de potassium précipite quand la température dépasse 115 °C. En pratique les concentrations sont généralement limitées à 30 % mass, ce qui permet de choisir des températures inférieures, jusqu'à 71 °C, sans aucun risque de précipitation. A température ambiante, la réaction n'est pas rapide et le comportement du solvant est très peu différent d'un solvant physique, dés 45°C la cinétique devient plus favorable mais la réaction ne peut être considérée comme instantanée. La plupart des procédés développés utilisent des activateurs et une température élevée pour l'absorption, allant jusqu'à obtenir que les colonnes d'absorption et de désorption soient à la même température, selon un procédé isotherme (102-115°C pour 21,7 bars par exemple pour l'absorption et environ 100°C pour la désorption à 1,3 bars, procédé BenfieldTM [8]). Des inhibiteurs de corrosion sont utilisés pour pouvoir construire les colonnes en acier carbone. L'activateur utilisé a une influence sur la cinétique mais aussi sur la capacité d'absorption dans la solution alcaline. Il apparaît que le taux de charge (nombre de

moles de CO_2 par rapport au nombre de moles du solvant) augmente entre le solvant non additivé, ou le solvant additivé, Kohl [8]. Ce constat est surtout notable dans les domaines de pressions partielles de CO_2 supérieures à environ 0,69 bars.

MODELE THERMODYNAMIQUE ET MECANISME REACTIONNEL

Modèle thermodynamique

Le logiciel Aspen Plus[™] a été choisi par EdF pour élaborer la modélisation de la Centrale. Il s'agit d'un code modulaire à résolution séquentielle adapté au génie des procédés. Il permet la simulation, la conception et l'optimisation des procédés en régime permanent. Le choix du modèle thermodynamique utilisé pour le calcul des propriétés physiques des corps purs et des mélanges est majeur. Dans cette étude le modèle NRTL électrolyte a été choisi. Ce modèle à coefficient d'activité permet de représenter les solutions aqueuses électrolytiques. Il calcule les coefficients d'activité des espèces ioniques et non ioniques. Dans le cas où la concentration en espèces ioniques devient nulle ce modèle se réduit au modèle NRTL.

Le modèle NRTL électrolyte est basé sur deux hypothèses. La première établit que la composition locale en cations (ou en anions) autour de cations (ou d'anions) est nulle. La seconde suppose que la distribution en anions et en cations autour des molécules est telle que la charge totale est nulle localement. L'expression de l'enthalpie libre d'excès contient trois termes, les deux premiers pour représenter les interactions ioniques et le troisième pour représenter les interactions locales. Les paramètres d'interactions des couples molécule-molécule, ou molécule-électrolyte ou électrolyte-électrolyte sont ajustables, de même que les coefficients des constantes diélectriques des corps purs. Ils sont disponibles dans les banques de propriétés physiques du modèle. L'équation d'état de Redlich-Kong-Soave représente la phase gazeuse et les gaz tels que l'H₂, le CO₂, et l'azote suivent la loi de Henry.

Mécanisme réactionnel

Le mécanisme réactionnel pris en compte est décrit par les équations (1-4), la première réaction (1) est rapide, mais la seconde (2) peut être considérée comme instantanée.

- $CO_2 + 2 H_2O \Leftrightarrow HCO_3^- + H_3O^+$ (1)
- $HCO_3^- + H_2O \Leftrightarrow CO_3^- + H_3O^+$ (2)
 - $2 H_2 O \Leftrightarrow OH^- + H_3 O^+$ (3)
 - $K_2CO_3 \Leftrightarrow 2 K^+ + CO_3^=$ (4)

DESCRIPTION DU PROCEDE DE SEPARATION

Nous avons considéré un schéma classique dans lequel les fumées riches en CO_2 sont introduites dans une colonne d'absorption dans laquelle le solvant est introduit en haut de la colonne, assurant un lavage à cotre courant, Figure 1. Deux échangeurs économiseurs sont utilisés, le premier permet de refroidir les fumées arrivant de la

centrale grâce au gaz traité sortant à une température moins élevée de la colonne d'absorption, le second permet de préchauffer le solvant riche avant la colonne de régénération à environ 80°C, en refroidissant le solvant pauvre (c'est à dire qu'il n'a pas absorbé de CO₂) récupéré en pied de la colonne de régénération. Le gaz sortant en tête de colonne de régénération contient de l'eau sous forme vapeur, le gaz est donc refroidi, un dernier échangeur permet la condensation de l'eau à 30°C de sorte que l'eau soit séparée du gaz et recyclée dans la colonne de régénération.

Figure 1. Schéma du procédé

Le schéma de principe pour le procédé de séparation par le carbonate de potassium est identique aux schémas classiques utilisés pour les solvants MEA et MDEA. La température des fumées à l'entrée de l'absorbeur est de 90 °C et celle au niveau du rebouilleur et donc du solvant régénéré est de 112°C. La majorité de l'eau est récupérée lors de la condensation à 30 °C et est réinjectée dans la colonne de régénération.

RESULTATS ET DISCUSSIONS

Nous avons étudié l'utilisation du carbonate de potassium pour la séparation du CO_2 dans les fumées du procédé CP sans la prise en compte des activateurs ajoutés habituellement dans le solvant. Cette simplification doit être abandonnée lors de la phase de dimensionnement des colonnes et des équipements du procédé.

L'étude de l'influence du nombre d'étages théoriques sur le taux de séparation du CO_2 a été effectué pour un taux de charge dans le solvant pauvre de 0,3, les résultats sont reportés figure 2. On voit que cette influence n'est pas très importante. Pour la suite nous avons choisi 3 plateaux théoriques pour la colonne d'absorption et 12 pour la colonne de désorption.

A un débit de solvant donné, le taux de capture sera plus important si le taux de charge dans le solvant pauvre est faible (figure 3). Ainsi il faut trouver un compromis entre le taux de capture et la consommation énergétique de la colonne de régénération, c'est-à-

dire un compromis entre le débit de solvant et la qualité de la régénération (α_{pauvre}). En diminuant la valeur du α_{pauvre} , le débit de solvant est réduit, ce qui permet de diminuer la taille des installations et la chaleur à fournir pour préchauffer le solvant riche mais la régénération est plus coûteuse car plus poussée.

Figure 2. Influence du nombre d'étages théoriques N sur le taux de séparation du CO_2 pour un débit de solvant de 100 kmol/s et $\alpha_{pauvre} = 0,3$

Figure 3. Influence du débit de solvant sur le taux de séparation du CO_2 en fonction de α_{pauvre}

Figure 4. Influence du taux de séparation sur la chaleur de rebouillage pour différents α_{pauvre}

Figure 5. Étude de la séparation du CO₂, débit de solvant 100 kmol/s

Les taux de charge dans le solvant riche, pour différentes valeurs du taux de charge dans le solvant pauvre, sont compris entre 0,35 et 0,56. Les chaleurs de rebouillage sont très élevées dés que le taux de séparation dépasse 50 %. Dans les conditions de cette étude,

il faut donc pouvoir accepter un taux de séparation bas, avec un taux de charge dans le solvant pauvre élevé, voir tableau 2 et figures 4 et 5. Ce choix permet de limiter la valeur de la chaleur de rebouillage, la figure 5 permet de voir l'importante influence de ce paramètre pour un débit de solvant fixé à 100 kmol/s. En effet on observe l'augmentation très nette de la chaleur de rebouillage dés que le taux de charge dans le solvant pauvre diminue. Ainsi pour $\alpha_{pauvre} = 0,30$ et un débit de solvant de 100 kmol/s on obtient une séparation de 52,5 % mol avec $\alpha_{riche} = 0,558$, dans ce cas la chaleur de rebouillage est quand même élevée, 248 MW. Le choix d'un taux de charge faible n'est pas envisageable, étant donné la consommation énergétique de la colonne de régénération. Ce type de procédé ne permet pas d'envisager des taux de capture très importants.

	Tableau 2. Etude de la separation du CO_2					
	Débit de solvant	$\alpha_{\rm riche}$	taux de séparation	Chaleur de rebouillage (QN)		
	kmol/s	mol/mol	%	MW		
α pauvre = 0,30						
	100	0,558	52,5	248		
	200	0,466	67,5	436		
α pauvre = 0,25						
	100	0,551	61,7	325		
α pauvre = 0,20						
	100	0,545	70,7	482		
α pauvre = 0,15						
	100	0,536	79,5	849		
	120	0,503	87,1	1019		
	140	0,468	91,5	1187		
	160	0,434	93,6	1358		
	180	0,405	94,4	1518		
	200	0,381	94,8	1674		
	220	0,360	94,9	1857		
	240	0,343	95,0	2000		
α pauvre = 0.125		i				
- ,	80	0,566	72,8	975		
	100	0,532	84,0	1223		
	120	0,494	91,4	1485		
	140	0,453	94,9	1703		
	160	0,416	96,2	1973		
α pauvre = 0,10		<i>,</i>	,			
- · · · · · · · ·	40	0,631	43,9	751		
	60	0,597	61,6	1120		
	80	0,563	76,5	1537		
	100	0,526	88,0	1903		

1 00

CONCLUSION

En considérant la spécification pour le flux de fumées issu de la centrale au Charbon Pulvérisé, destiné à être rejeté dans l'atmosphère après traitement, nous avons étudié le procédé de séparation utilisant le carbonate de potassium. Nous avons choisi un schéma classique identique à ceux utilisés dans les cas des solvants MEA et MDEA.

Figure 6. Influence du débit de solvant sur le taux de séparation du CO_2 et la chaleur de rebouillage, pour trois taux de charge $\alpha_{pauvre} = 0,15; 0,125,$ et 0,1

Le nombre d'étages théoriques n'a pas d'influence significative sur le taux de séparation du CO₂. Globalement, les chaleurs de rebouillage sont très élevées dés que le taux de séparation dépasse 50 % mol. Le seul choix permettant de réduire les dépenses énergétiques pour le rebouillage consiste à adopter un taux de séparation bas et un taux de charge dans le solvant pauvre élevé, dans ce cas la chaleur de rebouillage reste, quand même, élevée comparativement à ce que l'on rencontre dans le cas des amines primaires et secondaires.

REMERCIEMENTS

Ce travail a bénéficié du soutien financier d'EDF (Electricité de France) et d'ARMINES.

REFERENCES

- 1. Descamps C., Bouallou C., Kanniche, M. : Efficiency of an IGCC power plant including CO₂ removal, *Chemical Engineering Transactions*, **2005**, <u>7</u>, 541.
- 2. Descamps C., Madeline J. B., Bouallou C., Kanniche, M. : CO₂ removal from an IGCC power plant. Comparison of the capture options, *Proceedings Future Energy Systems and Technology for abatement*, Antwerpen, Belgium 17-20 november **2002**, pp. 115-122.
- Descamps C., Bouallou C., Kanniche, M. : Efficiency of an IGCC power plant including CO₂ removal, *Proceedings 16th International Conference on Efficiency, Costs Optimization, Simulation and Environmental Impact of Energy Systems,* Copenhagen, Denmark, June 30th – July 2nd 2003, pp. 39-45.
- Jaud P., Gros-Bonnivard R., Kanniche M., Amatini E., Manai T., Descamps C., Bouallou C. : Technico-economic feasibility study of CO₂ capture, Transport and geo-sequestration: a case study for France, 7th International Conference on Greenhouse Gas control Technologies, Vancouver, BC, Canada, September 5-9, 2004.
- Kanniche, M., Descamps C., Bouallou C. : Comparison of the CO₂ capture options in IGCC system, 7th International Conference on Greenhouse Gas control Technologies, Vancouver, BC, Canada, September 5-9 2004.
- 6. Chapel D. G., Maritz C., M., Ernest J. : Recovery of CO₂ from flue gases : commercial trends, *Proceedings of the Canadian Society of Chemical Engineers*, Saskatoon, Canada, Oct 4-6, **1999**.
- Chapel D.G., Maritz C.L. : Recovery of CO₂ from flue gases : commercial trends, *Proceedings of the Canadian Society of Chemical Engineers annual meeting*, Saskatoon, Canada, Oct 4-6, 1999.
- 8. Kohl A., Nielsen R. : *Gas Purification*, 5ème éd., Gulf Publishing Company, Houston, Texas, **1997**.