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Abstract:  Artificial neural networks (ANN) are robust and efficient 
mathematical tools inspired by the biological nervous system, and can be 
used to simulate a wide variety of complex scientific and engineering 
problems. A powerful ANN function is determined largely by the 
interconnections between artificial neurons, similar to those occurring in 
their natural counterparts of biological systems. Neural network based 
method proved to be able to appreciate the liquid crystalline behavior with 
small errors, so it represents an effective tool for structure – properties 
prediction. The most common type ANN with multiple layers has been used 
in this work. 
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INTRODUCTION 
 
Over the past few years, liquid crystalline materials have been studied extensively and 
have gained great importance due to their unique mechanical, rheological and optical 
properties [1-3]. Their special properties have been successfully employed, for example, 
in information technology. The use of neural networks to the prediction of compound 
properties has as main advantage the fact that they can simulate the nonlinear 
relationship between structural information and properties of compounds during the 
training process, and generalize the knowledge among homologous series without need 
for theoretical formulas. The ability of neural network is significant in determination 
quantitative structure-property relationship, because compounds with known properties 
can be used to train ANN, so that, subsequently, properties of other compounds that can 
not be ascertained by experimentation can be determined [4-8].  
In this paper we used an organic compounds database [9] (250 in all), which includes a 
wide variety of compounds: bis aromatic types containing connecting groups in the 
rigid core as azo, azomethine or double bond.  
 
 
METHODS 
 
Computational neural networks provide powerful tools for modeling of materials. In the 
chemical sciences, the use of computational neural networks has rapidly increased over 
the past 10 years. It is the goal of this paper to presents results on the use artificial 
neural network (ANN) in material science as a method for making accurate predictions 
of organic compounds properties based on their molecular structure and for designing 
molecular – based compounds that have specified properties in future. 
An ANN is composed of simple nonlinear elements operating in parallel and 
interconnected [10-12]. These elements are called artificial neurons, processing 
elements, nodes or units, and they are inspired by the biological nervous. An ANN is 
composed of several layers of neurons: an input layer, one or more hidden layer, and an 
output layer. Each layer of neurons receives its input from the previous layer or from the 
network input, and the output of each neuron feeds the next layer or the output of the 
network. The way in which these nodes are interconnected and distributed in several 
layers determines the network architecture and its applications. For example, figure 1 
shows a scheme of an ANN with three layer, four neurons in the input layer, three 
neurons in the hidden and two output neurons (4-3-2). 
As in nature, the network function is determined largely by the connection between 
elements. The network stores the information in the strength of the neuron 
interconnection; therefore we can train an ANN to perform a particular function or 
model by adjusting the values of these connections between elements. So, the 
architecture of an ANN consists of a description of how many layers the network has, 
the number of neurons in each layer, each layer’s transfer function and how the layers 
are connected each to other. The best architecture to be use depends on the type of 
problem represented by the network. A large number of neurons in the hidden layer 
produces that the network required less iterations in the training, however, each of these 
steps will be slow. The number of neurons in the hidden layer has not to be the same 
that input layer, in order to avoid the memorizing of all the inputs data, instead of 
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generalize from the individual cases. The size of the input and output levels is given for 
the nature of the problem and for the degree of goodness that is expected for the 
network [13-15]. 
 

 
 

Figure 1. A simple 4-3-2 neural network  
 
An ANN has to be trained before using it. The learning rule or training algorithm is a 
procedure for modifying the weights of the connections between the neurons of the 
network, and applied in order to train the network to perform some particular task. In 
supervised learning, the learning rule is provided with a set of examples (input and 
target vectors) of proper network behavior. As the inputs are applied to the network, the 
networks are compared with the targets by means of a performance function. The 
learning rule is then used to adjust the weights of the network in order to move the 
network outputs closer to the targets. In unsupervised learning, the weights are modified 
in response to network inputs only. There are no target outputs available. Most of these 
algorithms perform clustering operations, and categorize the input patterns into a finite 
number of classes. This is especially useful in such application as vector quantizations, 
recognition of standards such as voice or images, etc. 
One of the problems that occur during neural network training is called overfitting, as 
explained before. The error on the training set is driven to a very small value, but when 
new data are presented to the network the error is large. The network has memorized the 
training examples, but it has not learned to generalize to new situations. One method for 
improving network generalization is to use a network that is just large enough to 
provide an adequate fit. Unfortunately, it is difficult to know beforehand how large a 
network should be for a specific application. There are early stopping methods for 
improving generalization. In this technique, the available data are divided into three 
subsets. The first subset is the training set, which is used for computing the gradient and 
updating the network weights and biases. The second subset is the validation set. The 
error on the validation set is monitored during the training process. The validation error 
will normally decrease during the initial phase of training, as does the training set error. 

Input 
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Hidden 
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Output 
layer 



SCIENTIFIC STUDY & RESEARCH ♦ Vol. VIII (2) ♦ 2007 ♦ ISSN 1582-540X 
 

 106

However, when the network begins to overfit the data, the error on the validation set 
will typically begin to rise. When the validation error increases for a specified number 
of iterations, the training is stopped, and the weight and biases at the minimum of the 
validation error are returned. 
The input sets used for the training are, which determine what the network will be able 
to solve. It is necessary that input sets were representative for the problem; in this way, 
the network will be able to answer satisfactorily to any kind of input. Another important 
fact concerning the ANNs it that the network training process is necessary only once, in 
such a way that ANN trained could be used to solve a new situation very fast [16]. 
In this work, we have used the most common type ANN with multiple layers and 
supervised learning called feed-forward network. In this network, each neuron has 
several inputs and one output, and uses a nonlinear differentiable transfer function. 
 
 
RESULTS AND DISCUSSIONS 
 
In this paper we used an organic compounds database (250 in all), which includes a 
wide variety of bis aromatic types compounds (scheme 1). 

 

R'R

 
  Scheme 1. The general structures of the analyzed compounds 

 
The organic compounds have similar structures with small structural changes that allow 
a systematical analysis of the factors that influences liquid crystals properties and 
determination of some parameters that will be used in prediction with neural networks. 
Our database contains compounds with different units connected to the aromatic core 
such as CN, Br, variable length alkyl chains, ketones by means of ester or ether linking 
group. 
The first step of the study was to establish the “input” parameters for the ANN 
algorithms. The parameters considered as inputs of the neural model were: length of the 
rigid core (Lrig), length of the flexible core (Lflex), the asymmetry parameter (S) and 
molecular weight (M), evaluated using modeling simulation. The length of the flexible 
and the rigid core and the asymmetry parameters were estimated by mechanical 
molecular simulation using Hyperchem program. 
“S” represents the ratio between the length and the diameter of the polymer single 
chain. All the above enumerated parameters are considered as inputs of the neural 
networks because they are the most important structural characteristics that impose a 
liquid crystalline behavior. 
Concerning the liquid crystal behavior (LC), we have coded with “1” the possibility to 
generate a mesophase and with “0” the crystalline or amorphous phases. This is the 
output variable for neural model. 
Firstly the experimental data were split into training and validation sets, with 198 and 
52 experimental points, respectively. 
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A special software application - NeuroSolution - was used in this paper in order to 
design and obtain predictions of neural networks. In this program, the following 
specifications are necessary: the network type, the input and desired output values, the 
stop condition of the training, the number of processing elements in hidden layers, the 
activation functions, the learning rule, the maximum number of epochs and some 
configuration parameters to display the neural model development. We developed and 
trained many networks, changing the above options, and then we selected the best one 
that balances the size and the performance. 
In this study a number of different neural network architecture with 4 inputs, single, two 
or three hidden layers with 10…40 intermediate neurons and 1 output (table 1) were 
used since a number of different experiments were performed. 
 

Table 1. Different topologies tested for the feed forward neural networks 
No. Network 

topology MSE r Ep(%) 

1. MLP(4:10:1) 0.0033 0.990 0.102 
2. MLP(4:15:1) 0.0049 0.987 0.146 
3. MLP(4:20:1) 0.0051 0.986 0.188 
4. MLP(4:14:1) 0.0055 0.985 0.217 
5. MLP(4:17:1) 0.0050 0.986 0.189 
6. MLP(4:16:1) 0.0050 0.986 0.199 
7. MLP(4:10:10:1) 0.00094 0.996 0.112 
8. MLP(4:15:10:1) 0.0016 0.993 0.144 
9. MLP(4:15:15:1) 0.00090 0.996 0.093 

10. MLP(4:20:20:1) 0.00060 0.997 0.065 
11. MLP(4:25:25:1) 0.0010 0.996 0.059 
12 MLP(4:30:30:1) 0.00070 0.9973 0.073 
13. MLP(4:35:30:1) 0.00056 0.9978 0.057 
14. MLP(4:25:20:1) 0.00098 0.9964 0.064 
15. MLP(4:35:35:1) 0.00045 0.9982 0.046 
16. MLP(4:40:35:1) 0.00046 0.982 0.045 
17. MLP(4:40:40:1) 0.000064 0.9997 0.0087 
18. MLP(4:10:10:10:1) 0.00034 0.9985 0.077 
19. MLP(4:20:20:20:1) 0.00035 0.9986 0.045 
20. MLP(4:30:30:30:1) 0.000012 0.99995 0.0036 

 
The best network topology was determined based upon the mean squared errors (MSE) 
on the training data. The training phase was considered complete when the error of all 
the training patterns was less than a pre-specified error criterion or a maximum number 
of epochs (iterations) had been reached. If, after the entire set of training patterns was 
presented, the overall error was still unacceptable, the neural network would be returned 
to the beginning of the training patterns and the process would be repeated. So, the 
training is considered terminated at the point where network error (MSE) becomes 
sufficiently small (<0.001). 
The mean squared error was computed using the following formula [17]: 
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where P is the number of output processing elements (in this case, P = 1), N is the 
number of exemplars in the data set, ijy  is the network output for exemplar I at 
processing element j, and ijd  is the desired output for exemplar I at processing element 
j. 
Good predictions are obtained with the neural models MLP (4:10:1), MLP (4:40:40:1) 
and MLP (4:30:30:30:1) on training data. Table 2 presents the predictions of 
MLP(4:40:40:1) on training data. Two columns named “LC net” appear in table 2: the 
first contains the real predictions of the network and the second the rounded result to 
correspond to experimental data. 
 

Table 2. Prediction of MLP(4:40:40:1) on training data 
Lrig Lflex S M LC exp LC net LC net round 
10.0 16.3 0.118 383 0 -0.00061 0 
10.0 14.8 0.118 383 0 -0.0012 0 
9.9 17.3 0.112 411 0 0.002395 0 

11.1 12.8 0.114 350 1 0.999746 1 
10.0 22.7 0.093 509 0 -0.00048 0 
10.4 5.1 0.172 319 0 0.002685 0 
10.0 17.2 0.114 427 0 0.004448 0 
10.0 19.2 0.118 453 0 0.00223 0 
9.4 19.7 0.143 338 0 0.000649 0 

10.0 25.2 0.087 481 0 -0.00103 0 
10.0 15.6 0.129 411 1 0.999316 1 
10.0 16.8 0.125 425 0 -0.00187 0 
10.3 9.5 0.142 314 0 0.002273 0 
11.1 11.4 0.126 389 0 0.001033 0 
10.0 26.5 0.086 495 0 -0.00036 0 
10.0 15.8 0.135 411 0 0.002002 0 
10.0 30.4 0.078 537 0 0.000264 0 
10.0 24.6 0.101 525 0 -0.000098 0 
10.0 11.9 0.154 354 0 -0.00022 0 

 
Table 3 presents some predictions of the neural models to previously unseen data (not 
used in the training phase, so “unseen” data for the networks). In Table 3 one can also 
see the nominal and numerical codifications of the inputs and output for the networks. 
Cells marked in gray represent wrong predictions of the networks. For the MLP(4:10:1) 
the probability of a correct answer was 92.31 %, for the MLP(4:40:40:1) the probability 
of a correct answer was 94.23 %, and for MLP(4:30:30:30:1) was 96.15 %, that is a 
good performance of the designed networks. Consequently, a feed-forward network 
MLP(4:30:30:30:1) can predict satisfactory the LC behavior of the some bis phenil 
aromatic derivatives.  
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Table 3. Validation of the neural models  

MLP(4:10:1) MLP(4:40:40:1) MLP(4:30:30:30:1) 
Lrig Lflex S M 

LC 
exp 

LC 
net LC exp LC net LC exp LC net 

10.0 17.6 0.108 397 0 0 0 1 0 0 
8.6 10.6 0.191 327 0 0 0 0 0 0 

10.0 15.8 0.112 369 1 0 1 0 1 0 
10.0 12.5 0.129 340 0 0 0 0 0 0 
10.0 26.6 0.086 495 0 0 0 0 0 0 
9.7 8.9 0.142 291 1 0 1 1 1 1 

10.0 18.9 0.109 411 0 0 0 0 0 0 
10.0 15.1 0.121 369 0 0 0 0 0 0 
10.0 29.0 0.079 551 0 0 0 0 0 0 
10.0 20.9 0.092 481 0 0 0 0 0 0 
7.2 19.3 0.118 445 0 0 0 0 0 0 

10.0 20.2 0.101 425 0 0 0 0 0 0 
10.0 15.6 0.128 397 0 1 0 1 0 1 
10.0 20.2 0.103 425 0 0 0 0 0 0 
10.0 18.9 0.107 411 0 0 0 0 0 0 
10.0 29.1 0.081 579 0 0 0 0 0 0 
10.7 2.6 0.196 291 0 0 0 0 0 0 
10.0 20.2 0.107 425 0 0 0 0 0 0 
10.0 18.9 0.109 411 0 0 0 0 0 0 
7.2 21.8 0.107 473 0 0 0 0 0 0 
8.6 14.4 0.185 355 0 0 0 0 0 0 

10.0 10.0 0.145 312 0 0 0 0 0 0 
10.0 20.8 0.152 525 0 0 0 0 0 0 
10.0 19.0 0.130 483 0 0 0 0 0 0 
7.2 11.6 0.147 294 0 1 0 0 0 0 

 
 
CONCLUSIONS 
 
Conventional methods to model the properties of the organic compounds involve a step 
by step procedures based on a complex mathematical model with large time and 
memory complexity. Hence the application of ANNs offers a simple yet effective route 
to model complex systems with out much of mathematical complexities and hence large 
error. Further advantage with ANNs is that is has an automated learning process by the 
adjustment of the synaptic weights. Hence like the human brain it can learn seeing the 
trends in the data and hence can find solutions. Hence complex proprieties like creep, 
fatigue and wear where there is no rigid mathematical model, can be easily modeled 
without much complication, a further advantage being the saving of valuable 
experimentation time. It has hence been found out very good results have been obtained 
using the ANN approach. 
The ideal conditions concluded for the use of ANNs in organic compound property 
prediction are: 

• A large training dataset is always useful for good predictions. 
• A fast training algorithm is more suited for industrial applications 
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• The more complex the non-linear relation between the input and output, the 
larger is the training dataset required. 

• The analysis of relationships between simple and complex properties provide 
additional help in prediction of data. 

This work has shown the excellent capability of an ANN approach for the prediction 
liquid crystalline behavior of some bis phenil aromatic derivatives. Simple architecture 
neural networks and simple methods of establishing the networks’ structure are 
proposed for process modeling: feed-forward networks with a single, two or three 
hidden layers. For the MLP(4:30:30:30:1) the probability of a correct answer was 96.15 
%, that is a good performance of the designed networks. Consequently, a feed-forward 
network MLP(4:30:30:30:1) can predict satisfactory the LC behavior of the some bis 
phenil aromatic derivatives. 
A direct neural network modeling that means prediction of proprieties as function of 
structural parameters will be completed with a inverse modeling procedure in order to 
appreciate the structures that lead to imposed characteristics. 
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