Studii și Cercetări Științifice Chimie și Inginerie Chimică, Biotehnologii, Industrie Alimentară

Scientific Study & Research Chemistry & Chemical Engineering, Biotechnology, Food Industry

ISSN 1582-540X

SHORT COMMUNICATION

2[(enH)₂O₂C-SO₃].SnPhCl₃ AND Cy₂NH₂O₂C-SO₃H.SnPhCl₃.H₂O: SYNTHESIS AND INFRARED STUDY

Daouda Ndoye, Libasse Diop*

Université Cheikh Anta Diop, Faculté des Sciences et Techniques, Département de Chimie, Laboratoire de Chimie Minérale et Analytique (LACHIMIA), Dakar, Sénégal

*Corresponding author: <u>dlibasse@gmail.com</u>

Received: March, 21, 2012 Accepted: September, 19, 2012

Abstract: By allowing $(enH)_2O_2C$ -SO₃ (in water) and $Cy_2NH_2O_2C$ -SO₃ (in ethanol) to react respectively with SnPh₃Cl (in water) and SnPh₂Cl₂ (in ethanol) in specific ratios, the studied complexes are obtained. The suggested structures are discrete and tetrameric, the environment of the tin center being octahedral, the O_2C -SO₃H⁻ anions behaving as a monodentate or a monochelating ligand.

Keywords: monochelating, monomeric and tetrameric structures, SnPhCl₃ adduct, sulphate in situ

© 2012 ALMA MATER Publishing House, "VASILE ALECSANDRI" University of Bacău. All rights reserved.

INTRODUCTION

Many applications (industry, agriculture, medicine ...) have been found in organotin (IV) family [1]. Many research groups have been focusing on synthesizing new molecules belonging to this family for both structural aspects and biological tests [2-7]. Our group has yet synthesized hundreds and hundreds of new molecules that were reported in many papers [8-15]. We present here the study of the interactions between (enH)₂O₂C-SO₃ (in water) and SnPh₃Cl (in water), Cy₂NH₂O₂C-SO₃ (in ethanol) and SnPh₂Cl₂ (in ethanol) which have yielded the studied complexes. Infrared studies have been carried out and the structures were suggested based on the spectroscopic data.

EXPERIMENTAL

 $(enH)_2O_2C-SO_3$ and $Cy_2NH_2O_2C-SO_3$ were obtained on neutralizing aminoimminomethane sulphonic acid respectively with ethylenediamine (en) and Cy_2NH in water in 1/1 ratio; yellow crystals are collected after a solvent evaporation at 60°C. When an aqueous solution of $(enH)_2O_2C-SO_3$ and ethanolic solution of $Cy_2NH_2O_2C-SO_3$ are allowed to react with aqueous solution SnPh₃Cl and ethanolic solution SnPh₂Cl₂, clear solutions are obtained and stirred during two hours. When submitted to a slow solvent evaporation, these solutions yield respectively white crystals and a white powder.

The elemental analyses have been performed at the laboratory of Microanalyses at the University of Bath (UK). The elemental analyses data $^{0}/_{0}$ calculated ($^{0}/_{0}$ found) for **B**:

 $^{0}/_{0}$ C: 22.66 (22.70); $^{0}/_{0}$ H: 5.16 (5.84); $^{0}/_{0}$ N: 14.11 (14.37) for A; $^{0}/_{0}$ C: 36.36 (35.92); $^{0}/_{0}$ H: 5.10 (4.69); $^{0}/_{0}$ N: 2.23 (3.28), have allowed to suggest 2[(enH)₂O₂C-SO₃].SnPhCl₃, and Cy₂NH₂O₂C-SO₃H.SnPhCl₃.H₂O as formula.

The infrared spectra were recorded with a Perkin Elmer (4400 - 350 cm⁻¹) spectrometer (Dakar University), the sample being as nujol mulls while CsI windows were used. Infrared data are given in cm⁻¹ – IR abbreviations: br (broad), (vs) very strong, (s) strong, (m) medium, (sh) shoulder, (vw) very weak.

All the chemicals were purchased from Aldrich and used without any further purification.

RESULTS AND DISCUSSION

Let us consider the infrared data:

- for A: vSO₃: 1074vs; v_{as}CO₂ + δ_sNH₃ + δ_sNH₂: 1620m, 1530w; v(Ph): 728m, 695m; v_sCO₂: 1330w; v(OH)+δ(OH): 3400br + 1560w;
- for B: vSO₃: 1060s; v_{as}CO₂ + δ_sNH₂: 1631m, 1571m; v(Ph): 733s, 695s; v_sCO₂: 1311w; v(OH)+δ(OH): 3373br + 1555sh.

The existence of hydrogen bonds in compound **A** is explained by the presence of the broad band spreading from 2900 cm⁻¹ to 3500 cm⁻¹. The suggested structure is discrete (Figure 1) in which the environment around the tin atom is octahedral. Thus, the axial positions are occupied by two monodentate $O_2C-SO_3^{2-}$ while the octahedral plan positions are occupied by three chloro atoms and the phenyl group. The non-coordinated oxygen atoms of the $O_2C-SO_3^{2-}$ anions are involved in hydrogen bonds with enH⁺.

The broad absorption spreading from 2900 cm⁻¹ to 3500 cm⁻¹ indicates the existence of hydrogen bonds in the **B** compound. The suggested basic structure contains an anion chelating a SnPhCl₃ leading to a dimeric form through OH...O acetic acid hydrogen bond type which dimerize by cations through NH...O hydrogen bond-finally tetrameric (Figure 2).

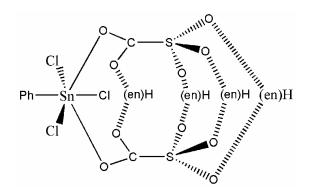



Figure 1. Compound A

CONCLUSION

The studied adducts have discrete structure with monodentate and monochelating anion, the cations being involved in hydrogen bonding .The environment around the tin center is octahedral.

ACKNOWLEDGEMENTS

We thank Professor A. Tidjani – Dakar University, Senegal - for performing the IR spectra and Professor K. C. Molloy – University of Bath, UK - for performing the elemental analyses.

REFERENCES

- 1. Hathaway, B.J.: Comprehensive Coordination Chemistry (Editors: Wilkinson, G., Gillard, R.D., McCleverty, J.A.), 1st ed., <u>5</u>, Chapter 53, Pergamon Press, Oxford, **1987**, 413;
- 2. Yin, H-D., Wang, C-H.: Crystallographic report: Crystal and molecular structure of triphenyltin thiazole-2-carboxylate, *Applied Organometalic Chemistry*, **2004**, **18**(8), 411-412;
- Kapoor, R.N., Guillory, P., Schulte, L., Cervantes- Lee, F., Haiduc, I., Parkanyi, L., Pannell, K.H.: Di(*p-tert*-butylphenyl)-*N*,*N*-di-(*iso*-butyl)carbamoylmethyl-phosphine oxide and its organotin and uranyl adducts: structural and spectroscopic characterization, *Applied Organometalic Chemistry*, 2005, <u>19</u>, 510-517;
- 4. Zhang, W.L., Ma, J.F., Jiang, H., μ-Isophthalato-bis[triphenyltin(IV)], *Acta Cryst. Sect E*, **2006**, <u>**E62**</u>, m460-m461;
- 5. Chandrasekhar, V., Boomishankar, R., Steiner, A., Bickley, J. F.: First Example of a Hydrogen-Bonded Three-Dimensional *Pillared* Structure Involving an Org-anotin Motif: Synthesis and Xray Crystal Structures of {[ⁿBu₂Sn(H₂O)₃(L)Sn(H₂O)₃ⁿBu₂]²⁺[L]²⁻}·2MeOH·2H₂O and {[Ph₃Sn(L)Sn(H₂O)Ph₃]_n}·THF (L = 1,5-Naphthalenedisulfonate), *Organometallics*, **2003**, <u>22</u>(17), 3342-3344;
- 6. Herntrich, T., Merzveiler, K.: [(Ph₃Sn)₃VO₄]·CH₃CN und [(Ph₃Sn)₃VO₄]·2 DMF, Triphenylzinnvanadate mit neuartigen Kettenstrukturen, *Zeitschrift für anorganische und allgemeine Chemie*, **2006**, <u>632</u>(14), 2341-2344
- Gielen, M., Bouhdid, A., Kayser, F., Biesemans, M., de Vos, D., Mahieu, B., Willem, R.: Di(nbutyl)tin bis(dihydroxybenzoate)s: Synthesis, spectroscopic characterization and *in vitro* antitumour activity, *Applied Organometalic Chemistry*, **1995**, <u>9</u>(3), 251-257;
- Okio, K.Y.A., Diop, L., Russo, U.: [Cy₂NH₂SO₄(SnPh₃)₂X]₂ (X = F, Cl): Synthesis and spectroscopic studies, *Scientific Study & Research - Chemistry & Chemical Engineering*, *Biotechnology, Food Industry*, 2009, <u>10</u>(1), 11-14;
- W. Diallo, A.Diassé Sarr, L.Diop, B. Mahieu, M.Biesemans, R. Willem, G. Kociok-Köhn, K. C. Molloy,: X-Ray structure of tetrabutylammonium chlorotrimethyltin hydrogenosulphate: the first cyclic dimer hydrogenosulphato hydrogen bonded adduct, *Scientific Study & Research – Chemistry & Chemical Engineering, Biotechnology, Food Industry*, 2009, <u>10</u>(3), 207-212;
- Diallo, W., Okio, K.Y.A., Diop, C.A.K., Diop, L.A., Diop L., Russo, U.: New selenito SnPh₃ residue containing complexes and adducts: Synthesis and spectroscopic studies, *Main Group Metal Chemistry*, 2009, <u>32</u>(2), 93-100;
- Qamar Kane, H., Okio, K. A., Fall, A., Diop, L., Russo, U., Mahieu, B.: Et₄NC₂O₄SnPh₃.2SnPh₃Cl and Cy₂NH₂C₂O₄SnPh₃.2SnPh₃Cl: Synthesis and Spectroscopic Characterization, *Main Group Metal Chemistry*, 2009, <u>32</u>(4), 229-233;
- De Barros, D, Diop, L., Mahieu, B.: On the Existence of «Tetrahedral» SnMe₂(PhCO₂)₂ and |SnMe₂(PhCO₂)₃| in New Benzoato Adducts: Synthesis and Spectroscopic Studies, *Main Group Metal Chemistry*, 2009, <u>32</u>(6), 341-346;
- De Barros, D., Diop, L., Mahieu, B.: Me₄NHWO₄SnPh₃X (X=Cl, Br), R₄NWO₄SnPh₃ (R=Me, Et) and (Snbu₃)₂WO₄: Synthesis and Spectroscopic Studies, *Main Group Metal Chemistry*, **2010**, <u>33</u>(1-2), 91-95;
- Diallo, W., Okio, K.Y.A, Diop, L. Diop, L.A., Russo, U., Wattiaux, A.: Some new sulfato and hydrogenosulfato adducts: synthesis, infrared and Mössbauer studies, *Scientific Study & Research - Chemistry & Chemical Engineering, Biotechnology, Food Industry*, 2010, <u>11</u>(2), 219-226;
- Diop, C.A.K., Diop, L., Toscano, R.A.: Synthesis, Characterization and X-RAY Structure of Polymeric [Triphenyltin(IV)][Aquatriphenyltin(IV)] Sulphate, [(Ph₃Sn)(H₂OSnPh₃)SO₄]n, *Main Group Metal Chemistry*, 2002, <u>25</u>(5), 327-328.